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Listeria innocua micropopulation lag phase and its variability have been modeled as a function of growth
temperature, intensity of heat stress, and the number of surviving cells initiating growth. Micropopulation
lag phases were found to correlate negatively with inoculum size and growth temperature and positively
with heat shock intensity. Validation of the models using experimental milk samples indicated that the aver-
age lag phase duration predicted is shorter andmore variable than the observed, meaning that they should be
considered safe for risk assessment. Our results suggest that the effect of inoculum size on the population lag
phase has both stochastic and physiological components.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Themicrobial lag phase reflects the time required for cells to adapt
to a new environment and start duplicating. Models of microbial
growth give accurate estimates of specific growth rate but usually
inaccurate estimates of lag time, probably because numerous factors
influence lag time and controlling them all is not feasible.

The lag phase depends on many factors, including potentially all
physical or chemical conditions of the growth environment. In addition,
cell injuries caused by heating, freezing, drying (Mackey and Kerridge,
1988), irradiation (Aguirre et al., 2011) and other preservation treat-
ments (Robinson et al., 2001) considerably extend the lag phase and
increase its variability. Many microbiologists have studied the effect of
inoculum size on bacterial lag time (Augustin et al., 2000; Duffy et al.,
1994; Gay et al., 1996; Mackey and Kerridge, 1988; Pascual et al.,
2001; Pin and Baranyi, 2006; Pin et al., 1999; Robinson et al., 2001;
Stephens et al., 1997), and their studies have come to contradictory
conclusions. Some studies have suggested that inoculum size has no
effect on lag phase duration, but these studies were carried out under
optimal or near-optimal microbial growth conditions in broth culture
(Brouillaud-Delattre et al., 1997; Duffy et al., 1994; Jason, 1983) and
food (Mackey and Kerridge, 1988). Conversely, studies conducted
under suboptimal growth conditions have reported that inoculum size
influences lag phase (Augustin et al., 2000; Gnanou Besse et al., 2006;
34 91 3943743.
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Pin and Baranyi, 2006; Robinson et al., 2001). This influence on lag
phase has been reported either when the inoculum was very small
(Augustin et al., 2000) or when only a small proportion of the popula-
tion was able to grow as a result of an applied stress (Augustin et al.,
2000; Pascual et al., 2001). Robinson et al. (2001) observed that, in
media containing inhibitory concentrations of NaCl, both the mean lag
time and variations between replicate inocula increased as the inocu-
lum size became smaller. Those authors identified two types of inocu-
lum size effects on population lag: a cooperative or inhibitory effect of
high cell concentrations, and a statistical effect at low cell concentra-
tions arising from the variability in individual lag times. There is little
information about the possible effects of cell–cell interactions on lag
time, although cell signaling has been shown to affect the emergence
of cells from dormancy (Mukamolova et al., 1998), and some evidence
suggests that pheromone-like substancesmay promote bacterial growth
(Kaprelyants et al., 1999).

Baranyi and his team (Baranyi, 1998; Baranyi and Pin, 1999; Pin and
Baranyi, 2006; Baranyi et al., 2009) analyzed the effects of inoculum size
on population lag and showed that as the size of the inoculumdecreases,
the population lag time increases by an amount that depends on the dis-
tribution of individual lag times and the maximum specific growth rate.
They suggested that population lag time must be less than the average
lag time of the individual cells in the population, since cells with short
lags begin to multiply at once and their descendants dominate the
population. They also observed that the smaller the inoculum is, the
more variable is the lag phase. How exactly does inoculum size affect
lag phase variability? There is no completely satisfactory answer to
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Table 1
Average number of Listeria innocua cells per sample (inoculum) cultured in whole milk
at 7 or 12 °C. These cells are the survivors after a heat treatment at 54 °C applied with
the purpose to achieve 1, 3 or 5 log reductions in the population size. Data are the
average of direct counts of ca. 20 plates.

Log reduction Growth temperature (°C)

7 12

Av Sd Av Sd

1 1.3 1.3 1.2 1.2
5.7 5.2 2.6 2.4

34.5 8.7 30.4 6.3
55.7 9.3 55.7 9.3

117.8 17.5 122.5 18.5
3 0.7 0.6 0.9 0.7

2.1 1.6 2.4 2.7
16.7 5.6 18.4 5.6
71.4 12.2 63.4 10.9

126.1 18.6 111.3 16.8
5 0.9 0.9 0.7 0.8

11.5 5.1 7.5 3.4
27.1 7.9 20.1 6.3
42.5 9.0 39.3 8.1
89.3 15.0 76.3 12.3

131.3 21.2 121.5 17.8

Av. Average number of cells per sample (inoculum size). Sd. standard deviation.
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this question. Although McKellar and Knight (2000) modeled the lag
phase of Listeriamonocytogenes at the nearly optimal growth temperature
of 30 °C by taking into account the variability of individual cells, this kind
of model is unlikely to be reliable under suboptimal or stress conditions,
when the lag phase becomes longer and more variable (Baranyi, 2002;
Gnanou Besse et al., 2006; Metris et al., 2003; Robinson et al., 2001).

Predictive microbiology modelers have developed systems that
accurately describe microbial behavior. Growth kinetics (Juneja and
Marks, 2006; Pin and Baranyi, 2006), growth/no growth boundaries
(Koutsoumanis, 2008; Mejlholm et al., 2010), and growth effects of
different kinds of stress (e.g. irradiation, high pressure, heat) (Aguirre
et al., 2011; Black et al., 2008; Smelt et al., 2008; Zhu et al., 2008) have
been studied to improve the accuracy of growth models. This research
has increased our understanding of the variability inmicrobial response
to the environment (Aguirre et al., 2009; Francois et al., 2006;
Koutsoumanis, 2008; Metris et al., 2005), and it shows that lag phase
varies broadly in many situations (Aguirre et al., 2011; Lianou and
Koutsoumanis, 2011; Stringer et al., 2011). Thus, in order tomake accu-
rate predictions about small populations of cells, it is particularly impor-
tant to take into account this variability, particularlywhen the cells have
been exposed to stress (Li et al., 2006).

Since natural contamination of foods may occur with very few cells,
and these cells are frequently stressed by food processing conditions, it
is essential to generate improved models that take into account what
injuries cells have suffered before they contaminate food and that use
a stochastic approach to deal with variability in the behavior of individ-
ual cells and micropopulations (Guillier et al., 2005). The objective of
this studywas tomodel the lag time ofmicropopulations and individual
cells, as well as the variability in that lag time, following different heat
shocks and subsequent growth at different refrigeration temperatures.

2. Material and methods

2.1. Bacterial strain and inoculum preparation

Listeria innocua (CECT 910, NCTC 11288, ATCC 33090) was kept fro-
zen at −20 °C in tryptic soy broth (TSB; Pronadisa, Madrid, Spain)
supplemented with 20% glycerol. The strain was subcultured twice in
sterile TSB at 37 °C for 24 h to reach the stationary phase, with a con-
centration of ca. 109 cfu/ml. Cell suspensions were then used to inocu-
late sterile TSB solution or commercial sterile whole milk (Asturiana,
Asturias, Spain).

2.2. L. innocua growth and inactivation parameters

The decimal reduction time (D value) in whole milk was taken
from Aguirre et al. (2009) and the D value in TSB was calculated by
log linear regression.

The maximum specific growth rate (μmax) was estimated in TSB at 7,
11 and 16 °C from turbidity growth curves in three replicate experi-
ments using an automated spectrophotometer (Bioscreen C, Labsystems,
Helsinki, Finland) kept in a cold room at 5 ± 1 °C. Serial five-fold dilu-
tions of each 24-h culture were prepared in fresh TSB to obtain dilutions
from approximately 107 to 100 cfu ml−1. Twenty replicate samples
(350 μl) from each dilution were inoculated into wells of Bioscreen
microplates. The plateswere loaded into the Bioscreen C at an incubation
temperature of 7, 11 or 16 °C. After shaking atmedium intensity for 10 s,
turbiditymeasurementswere determined using awide bandfilter at 420
to 580 nm at 30-min intervals. Plates were incubated for enough time to
reach stationary phase in the most dilute samples. Dilutions of each ini-
tial inoculum were plated by spreading onto TSA, then they were incu-
bated at 37 °C and finally colonies were counted. Using the Bioscreen
device, the time to detection (Td), defined as the time required to reach
an absorbance of 0.20, was obtained from each well, and a mean value
was calculated for each dilution. The μmax was estimated from the recip-
rocal of the absolute value of the regression slope of the Td versus ln(N).
The μmax in whole milk was estimated at 7 and 12 °C in a cooled
incubator (model FOC225I, Velp Scientifica, Usmate, Italy) (Aguirre
et al., 2012b).

2.3. Heat shock, inoculum size and growth temperature

Heat treatment at 54 °C was applied to obtain 0, 3 and 5 logarith-
mic reductions (D) in TSB (D54 °C = 6.6 min for TSB) and 1, 3 and 5
logarithmic reductions in whole milk [D54 °C = 13.7 min (Aguirre et
al., 2009)] in a temperature-controlled water bath (model TFB, Bunsen
S.A., Marid, Spain). Temperature was monitored with a thermocouple
(Testo AG 720, Kirchzarten, Germany). Tubes containing 9 ml of TSB
or whole milk were kept in the water bath and, once at 54 °C, were in-
oculated with 1 ml of the abovementioned L. innocua suspension to
yield the samples that would be treated for 5 log reductions (5D sam-
ples). 5D samples were diluted to a concentration around 107 cfu/ml
to obtain 3D samples. Unheated samples were inoculated with a sus-
pension of 104 cfu/ml. All tests were performed 3 times. When the
heat shock was completed, the contents of the TSB tubes were mixed
with 90 ml of cold TSB in a flask immersed in an ice water bath,
where the flask was kept for 1 min in order to end the heat shock but
minimize the possible adverse effects of cold. From these mother solu-
tions, half-dilutions were prepared in order to obtain several inoculum
sizes ranging from around 200 cells/ml down to 1 cell/ml (Table 3). The
same procedure was used to obtain different inocula to analyze the lag
phase in TSB at 7, 11 and 16 °C.

For experiments with milk, 100 μl of heat-shocked L. innocua sus-
pensions in whole milk (see Table 1 for inoculum sizes) were mixed
with 900 μl of cold, sterile whole milk in an Eppendorf tube and incu-
bated at 7 or 12 °C. Each batch was composed of at least 150 samples.
To estimate the average number of cells per well, 1 ml from each
dilution were mixed with melted tryptic soy agar (TSA; Pronadisa)
in plates and incubated at 37 °C for 48 ± 2 h. Approximately 20
plates were counted for each dilution and treatment.

2.4. Lag time in TSB (Bioscreen)

Once the heat shock was completed, samples were half-diluted
down to 1 cell/ml. Then micropopulation and individual cell lag
times were estimated in TSB from turbidity growth curves generated
using the Bioscreen C, as described in several studies (Aguirre et al.,
2009; Guillier et al., 2005; Metris et al., 2003). To do this, 300 μl
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from the diluted samples (50 samples per dilution) were transferred
to the two microplates of the Bioscreen (50 wells per dilution). To
estimate the initial average number of cells per well, 300 μl from
each dilution were mixed with molten TSA in plates and incubated
at 37 °C for 48 ± 2 h. Approximately 20 plates were counted for
each dilution and treatment.

Cultures were grown at 7, 11 and 16 °C. The increase in optical den-
sity (OD) was tracked by measuring absorbance in the wavelength
range from 420 to 580 nm using the Bioscreen C every 30 min for up
to 4 weeks at 7 °C, 15 days at 11 °C and8 at 16 °C. Cultureswere shaken
for 10 s at medium intensity before OD was measured.

Lag times were estimated using the detection time, defined as the
time required for the OD in the wavelength range between 420 and
580 nm to reach 0.2 units, which corresponds to a concentration of
ca. 107 cfu/well. This value was checked by preparing a dilution series
from a culture grown in TSB at 37 °C for 24 h. ODs of the dilutions
were measured using the Bioscreen, bacterial counts were estimated
by plating on TSA, and lag times were estimated based on the follow-
ing equation (Baranyi and Pin, 1999):

Lag ¼ Td−
ln Ndð Þ− ln N0ð Þ

μ

� �
ð1Þ

where Nd is the bacterial number (cfu) at Td, N0 the number of cells
(cfu) initiating growth in the well under consideration, and μ (h−1) is
the specific growth rate determined from the growth curve obtained
under the experimental conditions described above.

2.5. Modeling the effect of heat shock, inoculum size and growth
temperature on lag phase

Two multiple regression models were fitted to the data (Eq. (2))
using the software Statistical Analysis System (SAS® version 9.2,
SAS Institute Inc., Cary, NC, USA) based on a stepwise-regression algo-
rithm to determine which effects and variables affect the response
variable and to form a model that fits the data well without incurring
the negative effects of overfitting the model. All variables left in the
model are significant at the 0.050 level. No other variable met the
0.050 significance level for entry into the model.

One model quantifies the effect of heat shock, inoculum size and
growth temperature on the average lag phase of L. innocua in TSB.
The second quantifies the effect of the same factors on the standard
deviation (Sd) of the lag phase.

The general polynomial model developed in the present study
takes the form

ln y or zð Þð Þ ¼ a0 þ a1T þ a2Dþ a3C þ a12TDþ a13TC þ a23DC

þ a11T
2 þ a22D

2 þ a33C
2 ð2Þ

where y is the average lag phase; z, the Sd of lag phase; T, the growth
temperature (°C); D, the average number of logarithmic reductions
achieved in the population; C, the decimal logarithm of the average
number of cells per well (inoculum size); and a0….a33, the coeffi-
cients to be estimated.

2.6. Model validation in whole milk

To validate the models generated, lag phase data were obtained in
milk and compared to the model predictions.

To estimate the average number of cells per sample, the entire
contents of the Eppendorf tubes immediately after the heat shock
(see Section 2.3) were mixed with molten TSA in plates and kept at
37 °C for 48 ± 2 h. Approximately 20 samples were counted for
each treatment.

After the third day of incubation, growth was checked daily by
plating 100 μl of 5 samples into molten TSA and incubating at 37 °C
for 32 ± 2 h. When the cell number in any sample was found to be
higher than ca. 104 cfu, 100 μl of all remaining samples were plated
into TSA using a spiral platter system (Eddy Jet, IUL Instruments,
Barcelona, Spain) and the sampling times were recorded. Plates
were then incubated at 37 °C for 48 ± 2 h and colonies were counted
using an image analyzer (Countermat Flash, IUL Instruments, Barcelona,
Spain). To ensure an adequate number of colonies, two dilutions per
sample were prepared.

Lag time was calculated from the plate counts using Eq. (1) and
replacing Td with Tcount, defined as the time when the sample was
plated out. In this case, ln(Nd) was the natural logarithm of the cell
number detected at Tcount, and ln(N0) the natural logarithm of the
average initial number of bacteria after heat shock, as determined
by direct counting of 20 samples (see Section 2.6).

Table 1 summarizes the conditions chosen for validation (inoculum
sizes, logarithmic reduction and growth temperature).

In order to compare data from the model system in TSB with data
from milk and thereby validate the model predictions, the accuracy
factor (Af) and bias factor (Bf) were estimated according to the equa-
tions of Ross (1996):

Af ¼ 10 ∑ log Xpred=Xobsð Þj j=n� �
ð3Þ

Bf ¼ 10 ∑ log Xpred=Xobsð ÞÞ=n:
�

ð4Þ
2.7. Other statistical analysis

To find the best fit, a family of distributions was fitted to the exper-
imental data using EasyFit 5.5 software (Mathware Techonologies). The
chi-square test was applied to find the goodness of the fit, being gamma
distribution the best, followed by lognormal and normal distributions.

Variances in the distributions of lag phases were compared using a
permutation test, as described by Aguirre et al. (2011, 2012a).

Coefficient of variance (CV) was calculated to quantify the disper-
sion of the data. Since CV is the standard deviation divided by the
mean (CV = 100 ∗ Sd/mean), this scaledmeasure compares the degree
of variation between populations with different means (Jongenburger
et al., 2010).

The probability density function [f(x)] of a gamma-distribution es-
timated with Microsoft Excel was used to calculate the predicted lag
phase distributions:

f xð Þ ¼ λe−λx λxð Þκ−1

Γ κð Þ ð5Þ

where x is a lag phase; f(x), its relative frequency; λ rate; κ shape; e,
the base of the natural logarithm; and Γ(κ), the gamma function,
which was calculated using the Microsoft Excel function tool. The
rate and shape were used to characterize the gamma distribution
and were calculated by simple calculus according to the following
equations, using the mean and Sd predicted by the models:

λ ¼ mean=variance ð6Þ

κ ¼ λ �mean: ð7Þ

The Eq. (5) can be used replacing the rate by the scale (θ), being:

θ ¼ 1=λ: ð8Þ

2.8. Simulation of population growth on the basis of lag phases of
individual cells

Simulations were performed to analyze whether the effect of inoc-
ulation size on the lag phase duration of a population reflects only a
stochastic effect or includes a physiological effect as well, such as a
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quorum-sensing process or other type of intercellular communication.
The growth of populations of individual cells with a previously deter-
mined lag phase (see Section 2.4) and constant μmax for a given growth
temperature (see Table 2) was simulated using Microsoft Excel.

3. Results

3.1. Specific growth rate

Table 2 shows themaximum specific growth rates (μmax) of L. innocua
on TSB andmilk. The highest ratewas 0.31 h−1 on TSB at 16 °C, reflecting
thewell-knownmesophilic character of this species. Growthwas slightly
slower in milk than in TSB, although the differences were negligible.

3.2. Effect of heat shock, inoculum size and growth temperature on the
lag phase

Average lag phase and Sd of micropopulations were calculated
from ca. 100 samples and are shown in Table 3. In all cases, the lag
phase of micropopulations correlated negatively with inoculum size
and growth temperature and positively with heat shock intensity.
The longest lag phase was detected in the micropopulations very
likely to be composed of one cell that survived the most severe heat
shock and then were incubated at the lowest temperature. Conversely,
untreated micropopulations showed shorter lag phases than heat-
shocked ones, and the higher the growth temperature was, the shorter
was the lag phase. The lag phase variability (measured as Sd) also corre-
lated negatively with inoculum size and growth temperature and posi-
tivelywith heat shock intensity. On the other hand, the CVswere similar
at all incubation temperatures (Table 3), although the differences be-
tween lag phases were remarkable. For example, average lag phases
of the smallest inocula surviving a 5D heat treatment were 304, 212
and 92 h at 7, 11 and 16 °C, while the corresponding CVs were 41, 38
and 34% (Table 3).

Fig. 1 shows the lag phase frequency distributions for different
inoculum sizes of L. innocua grown on TSB at different temperatures
after heat treatment at 54 °C to achieve 0, 3 and 5 logarithmic reduc-
tions. Histogram analysis shows that the frequency of shorter lag
phase bins increased as inoculum size increased. In other words, the
average lag phase of small inocula was longer and more variable than
that of an inoculumof a hundred cells. In general, the lag phase distribu-
tions showed no tails, especially when inocula were large; in these
cases, the shape was approximately symmetrical. However, with great-
er heat stress and smaller inoculum, the shape of the distributions lost
symmetry and tails appeared, particularly at lower growth tempera-
tures. The gamma distribution showed the best fit in almost all distribu-
tions, followed by lognormal and normal distributions. For this reason,
the gamma distribution was chosen. Furthermore, the skewness of the
distributions were generally positive (Table 3), indicating that the tail
on the right side is longer than that of the left side and the bulk of the
values lie to the left of themean, a typical shape of gammadistributions,
characterized by κ values > 1.

Table 3 shows significant differences (α b 0.05) among the lag
phase distributions of cells that had been heat-treated in the same
way and incubated at the same temperature; these differences are
Table 2
Maximum specific growth rates (μmax) of Listeria innocua on different substrates. Data
are the average of three replicates.

Substrate Temperature (°C) μmax (h−1) SEa

TSB 7 0.09 0.016
TSB 11 0.14 0.001
TSB 16 0.31 0.007
Whole milk 7 0.08 0.009
Whole milk 12 0.14 0.006

a Standard error of μmax.
due to different numbers of cells initiating growth, as calculated
using the permutation test. The greater the difference is between
the average number of cells in the inoculum, the more probable it is
that the lag phase distributions differ significantly.

To integrate the effects of heat shock intensity, growth temperature
and inoculum size on the population lag phase and on its variability,
polynomial models were generated (Eq. (2)). The coefficients of signif-
icant variables according to the stepwise-regression algorithm are
shown in Table 4.

3.3. Model validation

To validate the models generated, their predictions were compared
with experimental lag phase data of L. innocua in milk. Comparison of
the observed and predicted average lag phases (Fig. 2A) and Sds
(Fig. 2B) under the conditions described in Table 1 shows that the pre-
dictions of both models showed good agreement with observations,
although the predicted lag phase was generally slightly shorter than
observed. Af was 1.106 for the average lag phase and 1.203 for Sd; Bf
was 0.990 for the average lag phase and 1.035 for Sd.

3.4. Application of the models

The models predict the lag phase and Sd (Table 4). Both parame-
ters were estimated for each heat treatment, growth temperature
and inoculum size, then these parameters were used to simulate the
lag phase distributions after assuming that lag phases fit a gamma
distribution (Baranyi and Pin, 2001). Simulations were performed
by applying Eq. (5) to several inoculum sizes containing L. innocua
micropopulations that survived 5 logarithmic reductions and were
grown at 7 °C. Predicted rates were 0.023, 0.062 and 0.212 for 1, 10
and 100 cells, respectively, while the corresponding shapes were
7.39, 13.59 and 31.28. The larger the inoculum is, the larger are the
rate and shape and, as expected, the narrower is the lag phase distri-
bution (Fig. 3). The difference between the broad dispersion in the
predicted lag phases of individual cells and the relatively narrow dis-
tribution of lag phases for a population of 100 cells is remarkable.

Our model may also be applied to predict lag phase distributions for
a given number of survivors after different heat treatments. Fig. 4 is an
example of such predictions and shows the frequency distribution of lag
phases of 10 viable cells after heat treatments inactivating 0, 90, 99.9
and 99.999% of the initial population. The corresponding rates are
0.271, 0.211, 0.119 and 0.062; the shapes are 31.68, 26.83, 19.16 and
13.59. The more intense the inactivating treatment is, the smaller are
the rate and shape, yielding a wider distribution.

4. Discussion

In this work, models have been developed to describe the effect of
inoculum size, heat shock intensity and growth temperature on the
lag phase of L. innocua and its variability.

The data in Table 3 provide insight into which parameters exert
greater influence on the micropopulation lag phase and its variability.
As expected, the higher the incubation temperature is, the shorter
and less variable is the lag phase. The more intense the heat treat-
ment is, the longer and more variable is the survivor lag phase,
since repair of sublethal injury requires biosynthesis to restore lost
components, which introduces a delay before cell division is possible
and leads to different recovery times depending on how damaged the
cells are. Similar to the effect of heat treatment, the smaller the inoc-
ulum is, the longer and more variable is the lag phase. Close analysis
of the data reveals that these three variables interact to influence the
lag phase and its variability. Nevertheless, the parameter with the
greatest effect on the lag phase duration is the growth temperature,
since in the narrow interval from 7 to 16 °C examined here, the lag
phase of untreated cells grown at 16 °C was less than 25% of the lag



Table 3
Effect of inoculum size, heat shock intensity and growth temperature on lag phase duration and variability of Listeria innocua in TSB. Lag phase durations marked with different
letters in the same square show significant differences (α b 0.05) in their distributions, based on the permutation test.

No. of log
reduction

Growth temperature

7 °C 11 °C 16 °C

Average
cell/sample

Sda Average
lag phase
(h)

Sd CVb

(%)
Skewness Average

cell/sample
Sd Average

lag phase
(h)

Sd
(h)

CV
(%)

Skewness Average
cell/sample

Sd Average
lag phase
(h)

Sd
(h)

CV
(%)

Skewness

0 212.8 27.4 64.9 a 6.1 9.3 −0.580 258.9 48.0 33.8 a 2.9 8.6 0.123 222.6 26.0 13.7 a 0.8 5.8 −0.361
151.5 19.5 80.3 ab 8.1 10.1 −0.364 174.3 26.0 36.0 ab 3.2 8.8 0.580 141.5 15.8 13.9 a 0.8 6.0 0.619
83.2 10.2 84.3 b 10.4 12.3 0.320 123.5 50.5 38.6 abc 3.5 9.1 0.627 83.5 9.5 14.0 a 0.9 6.3 0.555
44.7 6.1 89.4 c 12.3 13.8 0.677 89.4 9.2 40.5 abc 3.8 9.3 0.461 44.0 4.4 14.6 ab 1.0 6.6 0.094
23.3 3.1 108.9 cd 15.6 14.3 −0.219 64.3 6.6 41.5 bcd 5.1 12.2 0.947 21.8 4.3 15.3 abc 1.3 8.6 0.945
12.8 2.5 124.2 de 20.4 16.4 0.186 33.8 9.0 45.7 cde 5.6 12.1 1.349 12.0 1.9 17.5 cbd 1.6 9.3 0.964
7.8 2.3 130.2 df 22.4 17.2 0.852 23.1 4.1 49.7 ef 6.7 13.5 0.206 9.0 1.4 21.1 cde 2.8 13.3 −0.229
6.6 1.3 135.6 dg 24.8 18.3 1.064 7.5 2.7 54.6 efg 9.3 17.0 1.107 5.0 1.4 21.3 def 3.1 14.5 −0.301
3.8 1.8 143.5 efgh 31.6 22.0 1.096 3.3 2.2 60.2 fg 12.7 21.1 0.980 3.5 1.2 23.7 defg 4.3 18.2 −0.568
2.8 1.6 152.7 efgh 36.0 23.6 0.831 2.1 1.2 65.3 gh 14.9 22.8 0.996 2.4 1.3 24.3 efg 4.9 20.1 1.855
2.1 1.1 160.6 fgh 40.2 25.0 0.677 0.7 0.6 84.2 h 20.7 24.6 0.631 2.0 0.9 25.6 efg 5.3 20.8 −0.637
1.1 1.0 175.2 h 47.7 27.2 0.504 1.5 1.0 27.8 fg 6.0 21.5 1.330
0.7 0.7 187.4 h 52.9 28.2 0.268 0.7 0.7 31.8 g 7.2 22.6 1.665

3 232.2 27.2 91.7 a 11.6 12.7 0.381 242.1 30.8 54.3 a 5.5 10.1 −0.724 250.4 45.5 26.1 a 1.6 6.1 0.111
146.9 18.2 112.5 ab 16.1 14.3 0.418 162.4 18.8 60.4 ab 7.0 11.7 0.250 150.5 19.6 26.8 a 1.7 6.3 0.353
91.3 10.2 112.8 abc 17.1 15.1 0.347 98.0 13.5 62.2 abc 7.7 12.4 0.246 101.2 14.5 27.5 ab 1.9 6.8 −0.135
52.3 7.5 119.6 abcd 21.2 17.7 0.865 76.5 8.6 62.2 abc 7.9 12.7 0.299 74.5 10.9 28.6 abc 2.0 7.0 0.173
25.6 5.2 150.6 bcde 29.6 19.7 0.399 60.4 10.0 64.1 abcd 10.0 15.7 0.316 56.8 9.5 29.4 abc 2.6 8.8 0.527
15.7 4.2 172.9 cde 36.9 21.4 0.248 50.9 7.8 69.9 abcd 11.2 16.1 0.301 23.0 4.5 32.7 bcd 3.8 11.5 0.827
7.1 3.2 180.4 de 42.9 23.8 0.437 38.6 2.5 71.5 abcde 14.4 20.1 0.815 15.0 2.3 33.5 cde 5.4 16.1 0.991
3.6 2.3 190.6 e 49.7 26.1 0.468 22.1 5.2 82.6 bcde 17.5 21.2 0.841 8.4 3.1 35.8 def 6.9 19.3 −0.035
2.7 2.1 202.7 e 60.7 29.9 0.493 8.5 2.7 84.1 cde 19.7 23.5 0.250 4.9 1.2 40.3 ef 8.9 22.1 0.390
1.1 1.6 219.9 e 73.1 33.2 0.833 5.5 2.0 88.4 def 22.1 25.1 0.321 1.2 0.8 47.7 ef 12.3 25.7 0.306
0.7 0.8 234.3 e 88.6 37.8 0.662 2.7 1.7 96.0 def 26.6 27.7 0.338 0.6 53.3 f 16.0 30.0 0.396

1.3 0.9 123.1 ef 37.6 30.6 0.343
0.7 0.7 155.5 f 53.8 34.6 0.311

5 245.4 31.3 134.9 a 20.6 15.3 0.224 235.5 31.3 80.5 a 11.4 14.2 −0.703 234.0 47.4 36.5 a 2.5 6.9 −0.355
152.7 22.4 156.9 ab 26.5 16.9 0.133 165.3 19.2 90.4 ab 13.8 15.2 0.430 160.3 8.3 38.3 a 2.8 7.2 0.250
87.2 12.1 165.8 abc 30.6 18.4 0.229 95.3 11.2 92.9 ab 15.7 16.9 0.252 131.9 12.0 39.3 ab 3.1 7.9 1.471
48.2 7.0 185.2 bcd 41.3 22.3 0.002 69.4 7.3 100.8 abc 19.6 19.5 0.789 80.3 80.3 42.0 ab 3.3 7.9 0.357
25.4 5.2 200.0 bcde 49.0 24.5 0.004 51.5 5.2 111.9 abcd 24.3 21.7 1.083 71.9 8.8 45.0 abc 3.9 8.6 1.982
14.6 4.1 214.4 cde 56.9 26.6 0.595 25.3 4.8 131.6 bcde 31.0 23.6 0.726 43.9 43.9 45.4 abcd 5.3 11.7 2.052
6.5 3.2 228.7 de 65.9 28.8 0.499 13.1 2.3 142.7 cdef 36.1 25.3 0.718 30.3 5.4 48.7bcde 7.1 14.6 1.422
4.1 2.6 245.7 de 78.2 31.8 0.911 7.4 1.8 153.0 defg 42.5 27.8 0.367 21.3 4.3 55.9 cde 11.0 19.6 0.891
2.8 2.2 265.0 e 89.9 33.9 0.454 3.1 1.4 160.9 efg 50.4 31.3 0.413 9.1 2.3 59.7 def 13.8 23.1 0.715
1.4 1.9 293.8 e 109.2 37.2 0.545 1.5 1.0 176.9 fg 59.9 33.9 0.671 4.4 1.8 68.7 ef 17.6 25.6 0.795
0.7 0.6 304.3 e 124.3 40.9 0.812 0.8 0.7 212.5 g 80.1 37.7 0.900 1.2 1.0 84.6 f 24.1 28.5 0.888

0.8 0.6 91.6 f 31.1 34.0 0.989

Average cell per sample come from 20 direct plate counts. Average lag phases come from at least 100 data.
a Standard deviation.
b Lag phase coefficient of variation (Sd ∗ 100/mean).
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at 7 °C (Table 3). In fact, the higher the growth temperature is, the
more the lag phase lengthens as a consequence of heat treatment
(Fig. 5). These findings indicate that the lag phases of organisms
that survive heat treatments and are then maintained under refriger-
ation, which is common in the industrial preparation of many foods,
are actually quite long. Even so, a drop in the storage temperature
will not affect the lag phase duration as dramatically as it does the
specific growth rate: the value of μmax falls by approximately 50%
when the growth temperature falls by 3–4 °C in the interval between
0 and 10 °C, as reported by studies of L. monocytogenes and innocua
growth in broth and foods (Combase, 2011).

In contrast to the situation with lag phase duration, the parameter
with the greatest effect on lag phase variability is inoculum size
(Table 3). Pin and Baranyi (2006) simulated the growth of popula-
tions containing 1, 2, 4, 8, 16 and 100 cells based on the lag phases
of individual cells observed by Elfwing et al. (2004) and concluded
that growth curves initiated with few cells showed longer lag times
than those initiated with more cells. They also found that lag time
variances were greater at small inoculum sizes. This has been called
the stochastic effect (Baranyi, 2002), since it is due to a statistical
effect arising from the lag phase variability of individual cells. Our
experimental data confirm these simulations of the stochastic effect
and the statements of Pin and Baranyi (2006), who observed that
the effect of inoculum size on lag time can be observed with small in-
ocula, although this assertion should be treated with caution, because
the threshold number of cells needed to detect an effect of inoculum
size on lag phase duration depends on the distribution of single-cell
lag times and any factor that affects this distribution. Indeed, differ-
ences in lag time duration have been reported for relatively large
inocula when cells were severely stressed by starvation (Augustin et
al., 2000; Gay et al., 1996) or heating (Stephens et al., 1997), or when
the growth conditionswere very close to the growth/no growth bound-
ary (Pascual et al., 2001; Robinson et al., 2001), since the lag phase
distribution of individual cells shows considerable spread under these
conditions. In contrast to these findings, Robinson et al. (2001) observed
that under optimal conditions, lag times of uninjured L. monocytogenes
grown at 37 °C were little affected by inoculum size and there was little
variation between replicate inocula even at very low cell numbers, but
the inclusion of 1.2 MNaCl in the growthmedium triggered an influence
of inoculum size on lag phase duration. Our data with unstressed cells
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Fig. 1. Lag phase distributions of micropopulations of Listeria innocua grown in TSB at different temperatures after heat treatment at 54 °C to give 0, 3 and 5 log reductions.

Table 4
Polynomial coefficients to model the lag phase duration and its Sd for Listeria innocua in
TSB, based on the Eq. (2). The corresponding coefficients of determination (R2) and
root mean square error are shown.

Polynomial
coefficients

Average lag
phase

SE Pr > F Sd SE Pr > F

a0 6.2442 0.0828 b0.0001 4.1840 0.0519 b0.0001
a1 −0.1408 0.0154 b0.0001
a2 0.1030 0.0285 0.0005
a3 −0.3500 0.0076 b0.0001 −0.4155 0.0709 b0.0001
a12 0.0111 0.0006 b0.0001 0.0096 0.0016 b0.0001
a13 −0.0284 0.0042 b0.0001
a23
a11 −0.0026 0.0006 0.0001 −0.0093 0.0003 b0.0001
a22 0.0100 0.0015 b0.0001 0.0105 0.0044 0.0199
a33 −0.0559 0.0223 0.0137
R2 0.994 0.989
RMSE 7.25 3.10

SE. Standard error, Sd. Standard deviation. RMSE. Root Mean Square Error. All variables
left in the model are significant at the 0.050 level. No other variable met the 0.050
significance level for entry into the model.
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showed an effect of inoculum size on lag phase at a growth temperature
of 16 °C. These differences indicate that any deviation from optimal
growth conditions may affect lag phase duration and its variability.

The effect of inoculum size on lag phase duration and its variabil-
ity may be a purely stochastic process. However, it may also have a
physiological basis, for example in cell–cell interactions that affect
bacterial growth, as proposed by Kaprelyants and Kell (1996). That
study found that prokaryotes communicate with each other using sig-
naling molecules, many of which were found to stimulate bacterial
growth. According to Mukamolova et al. (2002), the social behavior
of cells is important for many different cellular processes associated
with multiplication, differentiation, survival in changing environments
and death. For example, acylated homoserine lactones have been
shown to shorten the lag phase of Nitrosomonas europea in biofilms in
a concentration-dependent manner (Batchelor et al., 1997), suggesting
that these signaling molecules are responsible for a cooperative effect
among cells. In order to determine whether the effect of inoculum
size on lag phase in our study has only a stochastic component or also
includes a physiological one, we simulated the growth of a population
of cellswith known lag phases (average number of cells per sample b 1,



Fig. 2. Validation of a model to predict the average lag phase and its variability in
Listeria innocua growing in whole milk. Predicted lag phase (solid symbols) and observed
lag phase (empty symbols) are given for different inoculum sizes (A), together with the
standard deviation of the lag phase (B). Cultures were treated at 54 °C to give decimal re-
ductions of 1 (diamonds), 3 (squares) or 5 (circles), and then incubated at 7 °C (symbols
without x) or 12 °C (symbols with x).
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(10 cells) at 7 °C.

66 J.S. Aguirre et al. / International Journal of Food Microbiology 164 (2013) 60–69
Table 3) and a constant μmax from Table 2. Likewise, the growth of
micropopulations with inocula > 1 cell was simulated based on the
lag phases in Table 3 and the same μmax. The predicted times for
micropopulations of all inoculum sizes to reach 106 cells were longer
than the observed times (Fig. 6). This suggests that the effect of inocu-
lum size on the lag phase cannot be attributed solely to a stochastic
process; instead, the presence of other cells, even in very low numbers,
seems to shorten the micropopulation lag phase.
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Fig. 3. Frequency distribution of lag phases simulated by applying Eq. (5). Rate and
shape were calculated with Eqs. (6) and (7), where mean and Sd were predicted by
the models described in Table 4. In this simulation, Listeria innocua cultures of different
inoculum sizes (1, 10, 100 cells) were subjected to 5 logarithmic reductions using heat
treatment, then incubated at 7 °C.
In our study, micropopulation lag phases were found to correlate
negatively with inoculum size and growth temperature and positively
with heat shock intensity. This behavior is consistent with the idea
that cell–cell interactions influence bacterial multiplication. Based
on the scenario suggested by Kaprelyants and Kell (1996), the larger
the cell population is, the more signal substance will be released and
one cell will quickly receive enough signaling molecules to initiate
growth. If, however, there are very few cells, they will need more
time to synthesize and release an adequate number of signaling mol-
ecules to initiate multiplication. Furthermore, the ability of cell–cell
interaction to reduce lag time will depend on cell concentration and
the proximity of cells to one another. If a solid food contains a rela-
tively small number of cells per gram, these cells may be completely
isolated from each other, without any chance of communication. As
a consequence, their lag times may be much longer than those pre-
dicted by models based on inocula of “only” hundreds or thousands
of cells per ml.

Thus, stochastic and cell–cell communication processes are not
mutually exclusive but instead may work together to explain the effect
of inoculum size on lag phase duration and variability. Future work is
needed to explore this interplay since communication between bacte-
rial cells is not well documented, and the complex intracellular pro-
cesses that occur during the lag phase are poorly understood. In
addition, any physiological explanation of lag phase duration and variabil-
ity will need to take into account that a quorum-sensing effect seems un-
likely at very low inoculum densities (Gnanou Besse et al., 2006). It may
be that the relative contribution of stochastic and physiological processes
0

1

2

3

0 4 8 12 16

Growth temperature (oC)

M
u

lt
ip

lie
r 

fa
ct

o
r 

o
f 

th
e 

la
g

 p
h

as
e

Fig. 5. Effect of heat stress intensity on the lag phase of surviving Listeria innocua grown
in TSB. Cultures subjected to a 3D treatment are shown as squares; cultures subjected
to 5D treatment, as circles. Comparisons are shown between heat-treated and
untreated cultures of the same inoculum size grown at the same temperature.

image of Fig.�3


150

200

250

300

350

400

450
A

ve
ra

g
e 

ti
m

e 
to

 r
ea

ch
 a

 m
ill

io
n

 c
fu

 (
h

)

Inoculum size (no of cells)

75

100

125

150

175

200

225

250

275

A
ve

ra
g

e 
ti

m
e 

to
 r

ea
ch

 a
 m

ill
io

n
 c

fu
 (

h
)

Inoculum size (no of cells)

35

55

75

95

115

135

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0 50 100 150 200 250 300

A
ve

ra
g

e 
ti

m
e 

to
 r

ec
h

 a
 m

ill
io

n
 c

fu
 (

h
)

Inoculum size (no of cells)

A

B

C

Fig. 6. Comparison of times required for micropopulations with different inocula
(empty symbols) to reach 106 cells with those times predicted by a simulation (solid
symbols) of a population formed by cells, which lag phases have been used to build
individual cell distributions (average number of cells per sample less than 1, Table 3)
at 7 °C (A), 11 °C (B) and 16 °C (C) for untreated cells (squares), heat treated to decline
the population in 3 log reductions (triangles) and 5 log reductions (circles). Growth
specific rates are assumed to be constant (0.09, 0.14 and 0.31 h−1 for 7, 11 and
16 °C, respectively).

67J.S. Aguirre et al. / International Journal of Food Microbiology 164 (2013) 60–69
to the lag phase changes with cell number, such that the stochastic effect
predominates at low inoculum sizes.

Stephens et al. (1997) suggested another factor to explain lag phase
variability. They showed that the variability in lag times of heat-injured
cells is likely to bedue to the fact that the cellswere in different stages of
the cell cycle when they were exposed to heat. Large cells at the end of
the cell cycle are more heat-resistant than small cells that have just
formed. This results in different lag phases for the cells surviving the
heat treatment.

Baranyi and Roberts (1994) suggested that lag should be consid-
ered a consequence of both the present and past environments of
the cells. They defined a parameter called the initial physiological
state of the cells (α0), a dimensionless number between 0 and 1
that quantifies the suitability of the current environment for the pop-
ulation (i.e. the history effect) (Baranyi and Pin, 2001).

ln α0ð Þ ¼ −Lag=μmax: ð9Þ

Rescaling this parameter to obtain the inverse of the physiological
state led to a new parameter h0, or the work to be done by the popu-
lation to adapt to the new environment (Robinson et al., 1998):

h0 ¼ − ln α0ð Þ: ð10Þ

This is equal to the product of the lag and the μmax. Several authors
(Robinson et al., 1998; McKellar et al., 2002; Pin et al., 2002) have
shown that h0 is constant for the same organism grown under the
same conditions but at different temperatures, which reflects the pro-
portionality between the growth rate and the time spent by cells to
adapt. As temperature decreases, a longer adaptation time is needed
and the duplication is faster.

Eqs. (9) and (10) do not consider the inoculum size, which our
results show to affect lag phase and consequently h0. Fig. 7 shows
the effect of the inoculum size on the work to be done under our ex-
perimental conditions. The larger the inoculum is, the smaller is h0,
which is consistent with the idea that a physiological process contrib-
utes to lag phase duration and variability. Cells may interact each
other and shorten the adaptation time to the new growth conditions.
From the data of D'Arrigo et al. (2006) and Metris et al. (2008), the
work to be done by L. innocua that survived heat treatments of differ-
ent intensity was calculated and compared with data in Fig. 7. In all
cases, the same tendency was observed: the work to be done in-
creases with the degree of the stress applied to cells. Surprisingly,
however, the h0 of unheated cells depends on inoculum size and
growth temperature (Fig. 6A), whereas that of the most stressed
cells depends only on inoculum size (Fig. 6C).

The polynomial models in Table 4 estimate the lag phase and its
variability as a function of growth temperature, the stress intensity
(in terms of the average number of log reductions in the population),
and the number of surviving cells initiating growth. The model
predictions were compared with experimental lag phase data of
L. innocua in milk (Fig. 2). The Af [Eq. (3)] indicates the spread of
the observations around the model predictions: ideally the Af should
be 1, but Af typically increases by 0.10–0.15 for every variable in the
model (Ross et al., 2000). Therefore, a model that satisfactorily pre-
dicts the effect of three variables (growth temperature, heat treat-
ment and inoculum size) on the microbial lag phase could be
expected to have an Af of 1.3–1.5. Our validation trials produced an
Af of 1.106 for lag duration and 1.203 for Sd, both of which are well
below these limits.

A Bf [Eq. (4)] for lag phase greater than 1 indicates that the model
over-estimates lag phase values and is fail-dangerous, whereas a value
smaller than 1 indicates that the model is fail-safe (Jeyamkonda et al.,
2001). A Bf greater than 1 for Sd indicates that the model predictions
aremore variable than the observations, i.e. it is unlikely that lag phases
observed fell out of the interval predicted. The models described in the
present study gave a Bf of 0.990 for lag duration and 1.035 for Sd, indi-
cating that the average lag phase duration predicted will be shorter
and more variable than the real one, meaning that they should be con-
sidered safe for risk assessment. Since our modeling approach shows
goodfit to reality, itmay significantly improve predictive tools for quan-
titative risk assessment.
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This sensitivity of lag phase to environmental factors highlights
the usefulness of the models described in the present study. The
data in Table 3 and the distributions in Fig. 3 show that for cells
that survive 5 log reductions due to heat treatment and are then incu-
bated at 7 °C, the expected average lag phase for 1 cell is twice that of
100 cells, and the difference in the spread of the expected lag phase
distribution is even more remarkable (Fig. 3). These predictions may
be useful for quantitative microbial risk assessment, when considered
together with other sources of randomness, such as uncertainty, vari-
ability, consumption data, and dose–response. In this regard, the rela-
tive importance of the variability of inputs has recently been studied
by Ellouze et al. (2011) and Busschaert et al. (2011).

In conclusion, the effect of inoculum size, stress and growth condi-
tions of survivors on the lag phase of L. innocua and its variability
depend on a complex set of interactions. Factors that appear to mod-
ulate this effect include the physiological state of the cell, level of
stress applied, and growth temperature. It is important to understand
how these interactions affect the lag phase in order to predict and
control microbial growth in food. The population size of a pathogen
in food depends on its initial concentration, as well as on many
other factors. Consequently, when performing quantitative microbial
risk assessment studies, it is important to take into account the initial
contamination level, not only because this number is important in
itself, but because it significantly affects the lag phase duration and
its variability.
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