Natural occurrence of aflatoxins in maize harvested in Serbia during 2009–2012

Jovana Kos*, Jasna Mastilović, Elizabet Janić Hajnal, Bojana Šarić

Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia

ARTICLE INFO

Article history:
Received 10 December 2012
Received in revised form 26 March 2013
Accepted 2 April 2013

Keywords:
Aflatoxins
Maize
Drought

ABSTRACT

The aim of the present study was to determine concentration of aflatoxins (AFs) B1, B2, G1 and G2 in 380 maize samples collected from different regions of Serbia during four years period and to analyze the influence of weather conditions on the AFs production.

Aflatoxins content was determined by direct competitive Enzyme Linked Immunosorbent Assay (ELISA) method.

In 180 maize samples analyzed in 2009–2011 period AFs were not detected. However weather condition changes in 2012 caused AFs presence in 137 (68.5%) of samples in the concentration range from 1.01 to 86.1 μg/kg with the mean level of 36.3 μg/kg.

The obtained results indicate great influence of hot and dry weather with prolonged drought during spring and summer 2012 on a contamination of maize with AFs.

Since the obtained results present the first national report of AFs maize contamination this study could be of a great interest for establishing monitoring programs of AFs in Serbia.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Maize is one of the major crops grown in Serbia. About 40% of total planted area of field crops in Serbia is covered with maize. In the recent years Serbia was one of the largest maize producer and exporter in Europe with the approximate amount of six and two million tons per year, respectively. Maize is mainly used as a component of animal feed (80%) as well as for human consumption and starch production (Maslac, 2011, 2012). Aspergillus species are one of the most frequent contaminants of maize which can result in mycotoxin production during growth, harvest, storage, transport and processing (Bankole & Adebanjo, 2003).

Aflatoxins (AFs) are a group of mycotoxins produced as secondary metabolites mainly by three Aspergillus species including Aspergillus flavus, Aspergillus parasticus and Aspergillus nomius (Greppy, 2002). Although, eighteen AFs have been identified, four of them have been found as contaminants in food and feed: B1, B2, G1 and G2 (Decastelli et al., 2007). Aflatoxins are highly toxic, mutagenic, teratogenic and carcinogenic compounds and International Agency for Research on Cancer included AFs as primary carcinogenic compounds (IARC, 2012). Aspergillus species can be found in soil, plant and animal remains, grains and seeds such as maize, peanuts, and tree nuts (Pitt, 2000). Toxins produced by Aspergillus species generally occur in agricultural products in tropical and subtropical regions where temperature and humidity are optimum for the growth of molds and production of the toxins (Rustom, 1997). Prolonged drought, high temperatures, substrate composition, storage time and conditions were reported as the main influence factors for fungal growth and AFs synthesis (Stack & Carlsson, 2003, p. 43). Although crops contamination with AFs is a global phenomenon, tropical and subtropical areas are more susceptible to contamination than those in temperate regions (Hell, Cardwell, & Poehling, 2003).

Recent studies reported Fusarium, Penicillium and Aspergillus as the most frequent fungi contaminants of cereals, feedstuffs, vegetables and fruits under prevailing continental climate conditions of Serbia (Levi, Stankovi, Bocar-Stančić, Škrinjar, & Mašić, 2004). According to Jajić, Jurić, and Abramović (2008) cereals in Serbia are mainly infected by Fusarium species. It should be noted that data about Aspergillus toxins presence in agriculture products from Serbia are limited.

Although Serbian regulations (Sl. Glasnik RS, 4/2010; Sl. Glasnik RS, 28/2011) for maximum allowed limits of AFs in maize intended for human and animal consumption were recently adopted and harmonized with European Union regulations (2002/32/EC, 2010/165/EC) monitoring program is still not prescribed. Due to the significant health risks associated with the presence of mycotoxins in food and feed it is important to establish control and monitoring systems.
programs as the sources for risk assessment. In the only published study of mycotoxins monitoring in Serbia, Skrbic, Malachova, Zivancev, Veprikova, & Hajsova (2011) reported presence of Fusarium toxins in wheat.

The data about AFs presence in maize has not been studied in Serbia as well as in neighboring countries. Hence, the aim of this first national report of AFs maize contamination was to analyze the natural occurrence of AFs in maize samples from 2009–2012 period and to provide insight into presence of AFs in Serbia.

2. Materials and method

2.1. Samples, kits and chemicals

The numbers of analyzed maize samples during 2009, 2010, 2011 and 2012 years were the following: 60, 60, 60 and 200, respectively.

The main maize growing areas in Serbia were included in the frame of the four-year monitoring program at the Institute of Food Technology, University of Novi Sad. Samples were collected and analyzed every year after harvest, from September to November. Sampling was performed according to EU requirements (2006/401/EC) in order to overcome irregular mycotoxins distribution among the crops and kernels. Particular numbers of incremental samples were combined in order to obtain aggregate samples of approximately 2–8 kg. Aggregate samples were homogenized and quar- tered to obtain a 500 g of laboratory samples which were kept in freezer at 4 °C until the analysis.

Determination of AFs were done by Enzyme Linked Immunosorbent Assay (ELISA) method using Quantitative AFs High Sensitivity Test kit and AFs Quantitative Test kit (Neogen Veratox®, Lansing, USA).

Chemicals used for ELISA analysis were distilled water (Milli-pore, BedFord, MA, USA) and methanol of analytical purity (Merck, Darmstad, Germany).

2.2. Sample extraction

500 g of each representative sample was ground to a 1 mm particle size using laboratory mill (Knifetec™ 1095 mill, Foss, Hoganas, Sweden). Subsamples of 5 g were extracted with 25 ml of methanol/water mixture (70:30, v/v) and shaken vigorously for three minutes on laboratory Griffin flask shaker (Griffin and George, Wembley, England). Extracts were filtered through a Whatman No. 1 filter paper (Whatman International Ltd., Maidstone, UK). The obtained filtrates were collected, vortexed (Vortex mixer, Velp Scientifica) and used for analysis.

2.3. Aflatoxin analysis by ELISA

AFs concentrations were determined according to the manufacturer’s procedure. Free AFs in the samples and standards are allowed to compete with enzyme-labeled AFs (conjugates) for the antibody binding sites. After a wash step, substrate is added, which reacts with the bound conjugate to produce blue color. The intensity of the color is inversely proportional to the concentration of mycotoxin in the sample or standard. Intensity of the color in each well was measured at 650 nm in a microwell reader (Thermo-labsystem, Thermo, Finland). The optical densities of the standards form the standard curve and the samples optical densities are plotted against the curve to calculate the exact concentration of mycotoxins.

At the beginning, all samples were analyzed with Quantitative AFs HS Test kit. Range of quantitation for this test kit is between 1 and 8 μg/kg. Samples with concentration of AFs higher than 8 μg/kg were additionally analyzed with AFs Quantitative Test kit (range of quantitation 5–50 μg/kg). Samples with content of AFs more than 50 μg/kg were analyzed again after dilution.

The analytical quality of the ELISA method was assured by the use of certified reference material as well as by participation in interlaboratory studies. Naturally contaminated maize with certified AFs content of 4.5 ± 0.5 μg/kg was used as certified reference material (CRM) for validation of Quantitative AFs High Sensitivity Test kit. CRM was supplied by Trilogy Analytical Laboratory (Trilogy® Reference Material, A-C-268, Washington, USA). Naturally contaminated maize sample from interlaboratory study with AFs mean value of 19.0 ± 4.18 μg/kg was used for determination of validation parameters of AFs Quantitative Test kit. The validation parameters (Table 1) were calculated and expressed using European Official Decision procedure (2002/657/EC) and their values were in accordance with recommendations given in Regulation 2006/401/EC. Further, the analytical quality of the ELISA method is assured by participation in five interlaboratory studies (LTS&D-0015 report, Neogen Corporation, Technical Services Division, Natural Toxins, Lansing, USA).

2.4. Statistical analysis

Statistical analysis of variance was carried out by Duncan’s multiple comparison tests using STATISTICA software version 10 (StatSoft Inc. 2011; USA). P values < 0.05 were regarded as significant.

3. Results and discussion

The results obtained in four years period indicate significant differences in occurrence of AFs in maize. In 180 samples analyzed during 2009–2011 period the presence of AFs was not detected.

Since weather conditions in 2012 were favorable for Aspergillus moulds growth, larger number of maize samples (200) was analyzed in comparison to previous years.

Aflatoxins occurrence in 68.5% of maize samples harvested in 2012 could be attributed to weather conditions favorable for mold growth and mycotoxins production. Extremely hot and dry conditions followed by drought were noted during maize growing season 2012 (Republic Hydrometeorological Service of Serbia, 2012).

Comparison of temperatures and precipitation for period of maize planting, growing and harvesting (April–September) in 2009–2012 and average values of these parameters in long-term period (1971–2000) is given in Table 2 (Republic Hydrometeorological Service of Serbia, 2009, 2010, 2011, 2012). The statistical analysis of variance between years showed significant difference for 2012 in terms of average temperatures and number of days with temperatures higher than 30 °C and 35 °C. Furthermore, 2011 and 2012 were characterized with significantly lower amount of precipitation in comparison to 2009 and 2010. It could be noted that different weather conditions during 2012 in

| Table 1 Validation parameters of two ELISA methods for determination of AFs. |
|---------------------------------|-----------------|
| | Quantitative high sensitivity test | Quantitative test |
| LOD | 0.50 | 1.40 |
| LOQ | 1.00 | 5.00 |
| RSDr | 8.06 | 7.54 |
| RSDr | 9.17 | 9.33 |
| Recovery | 103.2 | 96.5 |
| LOD: limit of detection (μg/kg) |
| LOQ: limit of quantification (μg/kg) |
| RSDr: relative standard deviation calculated under repeatability conditions |
| RSDr: relative standard deviation calculated under reproducibility conditions |
comparison to previous years resulted in presence of AFs in maize. Therefore, weather conditions in 2012 were additionally analyzed. Monthly average values of air temperatures and precipitation in Serbia for the period from April to September 2012 are shown in Table 3. In 2012 high air temperatures and lack of rainfall were noted. In particular, drought period characterized with extremely hot (daily temperatures near 40 °C) and dry conditions were recorded from June to September. Amount of precipitation during June, July, August and September was lower for 68, 75, 95 and 62% than average for multiannual period, respectively. Extreme drought conditions were recorded in August. Warm weather, lack of precipitation and dry conditions of soil during the drought time period resulted in appearance of mould, various pest and corn damage. Therefore, harvest started earlier, in the first part of September (Republic Hydrometeorological Service of Serbia, 2012).

According to literature data, growth of Aspergillus species and AFs production are favored by hot and dry weather conditions during the maize growing season and harvest. Although some species (A. flavus) can grow at temperatures from 12 °C to 48 °C, the optimal temperature interval for these moulds is from 25 °C to 42 °C. Some Aspergillus species can grow under dry conditions with water activity value of 0.78 (Santin, 2005). Since carbon-rich substrates are favorable for their growth, Aspergillus species are commonly found as contaminants of starchy foods, such as maize, bread and potatoes. Grain damage, pests, postharvest handling, manufacturing practices can also influence mould growth and toxins production (Santin, 2005; Stack & Carlson, 2003, p. 43; Steyn, 1984).

The obtained results (Table 4) show that 137 (68.5%) of analyzed maize samples in 2012 had higher AFs content than 1 μg/kg (in the range from 1.01 to 86.1 μg/kg). The mean value of these results was 36.3 μg/kg and they were distributed in the following way: 30 (15.0%) samples had concentration between 1 and 10 μg/kg, 48 (24.0%) samples between 10 and 50 μg/kg and 59 (29.5%) between 50 and 90 μg/kg. According to Serbian (Sl. Glasnik RS, 28/2011) and EU regulation (2010/165/EC) maximum permitted level of AFs (sum of B1, B2, G1 and G2) in maize intended for human consumption is 10 μg/kg. The obtained results in 2012 showed that 46.5% of maize samples could be used for this purpose. Maize samples (24%) with concentration of AFs in range of 10–50 μg/kg could be used for animal feed according to Serbian regulation (Sl. Glasnik RS, 4/2010) which prescribe 50 μg/kg as maximum permitted level. Regulation of European Union (2002/32/EC) prescribed 20 μg/kg as maximum permitted level of AFB1 in maize intended for animal feed.

Among 200 analyzed maize samples, AFs content ranging from 50.0 to 86.1 μg/kg was found in 59 samples making them unsuitable for human and animal consumption. Since the number of extremely contaminated maize samples was high (29.5%), an additional treatment procedure is required in order to reduce the level of AFs. Separation of the contaminated seeds from normal healthy seeds based on kernel size, color, presence of mold and damage, as well as inactivating or destroying the AFs in maize by some chemical and/or physical treatments are the most effective solutions for this problem (Payne, Cassel, & Adkins, 1986; Samarajeewa, Sen, Cohen, & Wei, 1990).

Table 3

<table>
<thead>
<tr>
<th>Month</th>
<th>T average (°C)</th>
<th>N</th>
<th>Nmax > 30 °C</th>
<th>Nmax > 35 °C</th>
<th>P (%)</th>
<th>Nprecipitation (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>13</td>
<td>72</td>
<td>23</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>16.7</td>
<td>104</td>
<td>23</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>22.5</td>
<td>26</td>
<td>12</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>25.1</td>
<td>55</td>
<td>15</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>23.8</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>20.3</td>
<td>20</td>
<td>10</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>Range of concentration</th>
<th>CF (%, CI (μg/kg), CM (μg/kg)) and SD (standard deviation).</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–10 μg/kg</td>
<td>15.0 ± 4.0, 5.0 ± 2.0, 1.0 ± 0.5</td>
</tr>
<tr>
<td>10–50 μg/kg</td>
<td>24.0 ± 6.0, 5.0 ± 2.0, 1.0 ± 0.5</td>
</tr>
<tr>
<td>50–90 μg/kg</td>
<td>29.5 ± 6.0, 5.0 ± 2.0, 1.0 ± 0.5</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Year</th>
<th>Deviation T</th>
<th>N</th>
<th>Nmax > 30 °C</th>
<th>Nmax > 35 °C</th>
<th>P (%)</th>
<th>Nprecipitation (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>1.7</td>
<td>37</td>
<td>2</td>
<td>41</td>
<td>303</td>
<td>83</td>
</tr>
<tr>
<td>2010</td>
<td>1.1</td>
<td>32</td>
<td>2</td>
<td>58</td>
<td>467</td>
<td>128</td>
</tr>
<tr>
<td>2011</td>
<td>1.3</td>
<td>47</td>
<td>8</td>
<td>38</td>
<td>239</td>
<td>65</td>
</tr>
<tr>
<td>2012</td>
<td>2.4</td>
<td>68</td>
<td>19</td>
<td>39</td>
<td>279</td>
<td>77</td>
</tr>
</tbody>
</table>

Different letters in the same column indicate signiﬁcant differences (P < 0.05) between values according to the Duncan’s multiple range test.

T: temperature.
N: numbers of days.
P: precipitation.
Σ: sum.

Table 5

<table>
<thead>
<tr>
<th>Year</th>
<th>Harvested (ha)</th>
<th>Yield (Mt)</th>
<th>Exports (Mt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>1 200 000</td>
<td>6400</td>
<td>1343</td>
</tr>
<tr>
<td>2010</td>
<td>1 230 000</td>
<td>6800</td>
<td>2004</td>
</tr>
<tr>
<td>2011</td>
<td>1 260 000</td>
<td>6300</td>
<td>2200</td>
</tr>
<tr>
<td>2012</td>
<td>1 250 000</td>
<td>3900</td>
<td>300</td>
</tr>
</tbody>
</table>
(Table 5). The amount of maize intended for export was also lower in 2012 in comparison to previous years (www.indexmundi.com/agriculture).

4. Conclusion

This first survey about presence of AFs in maize from Serbia showed that occurrence of this toxins depends on weather conditions. The obtained results for maize harvested in 2012 confirmed that this crop should be continuously monitored in order to protect the population against the unallowable risk of AFs contamination. In the future, more frequent survey about occurrence of AFs in Serbian maize from different seasons will be necessary to further assess the situation.

Acknowledgments

This study was supported by the Ministry of education and science of the Republic of Serbia, Project No. III 46001.

References

Sisson, P. F. (1987). The effect of climatic conditions on the incidence and severity of aflatoxin in the USA. In M. S. Zubler, E. B. Lillehoj, & B. L. Renfro (Eds.), Aflatoxin in maize, proceedings of the workshop (pp. 172–177). Mexico, D.F: CIMMYT.
Službeni glasnik Republike Srbije. (2011)Pravilnik o maksimalno dozvoljenim količinama ostataka sredstava za zaštitu bilja u hrani i hrani za životinje i o hrani i hrani za životinje za koju se utvrđuju maksimalno dozvoljene količine ostataka sredstava za zaštitu bilja, 28 (pp. 9–18).