1 Implementation of Industrial Ecology for Industrial Hazardous Waste Management

Lawrence K. Wang
Lenox Institute of Water Technology, Lenox, Massachusetts, U.S.A., and
Zorex Corporation, Newtonville, New York, U.S.A.

Donald B. Aulenbach
Rensselaer Polytechnic Institute, Troy, New York, U.S.A.

1.1 INTRODUCTION

Industrial ecology (IE) is critically reviewed, discussed, analyzed, and summarized in this chapter. Topics covered include: IE definitions, goals, roles, objectives, approach, applications, implementation framework, implementation levels, industrial ecologists’ qualifications, and ways and means for analysis and design. The benefits of IE are shown as they relate to sustainable agriculture, industry, and environment, zero emission and zero discharge, hazardous wastes, cleaner production, waste minimization, pollution prevention, design for environment, material substitution, dematerialization, decarbonation, greenhouse gas, process substitution, environmental restoration, and site remediation [1–46]. Case histories using the IE concept have been gathered by the United Nations Industrial Development Organization (UNIDO), Vienna, Austria [39–41]. This chapter presents these case histories to illustrate cleaner production, zero discharge, waste minimization, material substitution, process substitution, and decarbonization.

1.2 DEFINITIONS OF INDUSTRIAL ECOLOGY

Industry, according to the Oxford English Dictionary, is “intelligent or clever working” as well as the particular branches of productive labor. Ecology is the branch of biology that deals with the mutual relations between organisms and their environment. Ecology implies more the webs of natural forces and organisms, their competition and cooperation, and how they live off one another [2–4].

The recent introduction of the term “industrial ecology” stems from its use by Frosch and Gallopoulos [10] in a paper on environmentally favorable strategies for manufacturing. Industrial ecology (IE) is now a branch of systems science for sustainability, or a framework for designing and operating industrial systems as sustainable and interdependent with natural
systems. It seeks to balance industrial production and economic performance with an emerging understanding of local and global ecological constraints [10,13,20].

A system is a set of elements inter-relating in a structured way. The elements are perceived as a whole with a common purpose. A system’s behavior cannot be predicted simply by analysis of its individual elements. The properties of a system emerge from the interaction of its elements and are distinct from their properties as separate pieces. The behavior of the system results from the interaction of the elements and between the system and its environment (system + environment = a larger system). The definition of the elements and the setting of the system boundaries are “subjective” actions.

In this context, industrial systems apply not only to private sector manufacturing and service, but also to government operations, including provision of infrastructure. A full definition of industrial systems will include service, agricultural, manufacturing, military and civil operations, as well as infrastructure such as landfills, recycling facilities, energy utility plants, water transmission facilities, water treatment plants, sewer systems, wastewater treatment facilities, incinerators, nuclear waste storage facilities, and transportation systems.

An industrial ecologist is an expert who takes a systems view, seeking to integrate and balance the environmental, business, and economic development interests of the industrial systems, and who will treat “sustainability” as a complex, whole systems challenge. The industrial ecologist will work to create comprehensive solutions, often simply integrating separate proven components into holistic design concepts for possible implementation by the clients.

A typical industrial ecology team includes IE partners, associates, and strategic allies qualified in the areas of industrial ecology, eco-industrial parks, economic development, real estate development, finance, urban planning, architecture, engineering, ecology, sustainable agriculture, sustainable industry systems, organizational design, and so on. The core capability of the IE team is the ability to integrate the contributions of these diverse fields into whole systems solutions for business, government agencies, communities, and nations.

1.3 GOAL, ROLE, AND OBJECTIVES

An industrial ecologist’s tasks are to interpret and adapt an understanding of the natural system and apply it to the design of man-made systems, in order to achieve a pattern of industrialization that is not only more efficient, but also intrinsically adjusted to the tolerances and characteristics of the natural system. In this way, it will have a built-in insurance against further environmental surprises, because their essential causes will have been designed out [29].

A practical goal of industrial ecology is to lighten the environmental impact per person and per dollar of economic activity, and the role of the industrial ecologist is to find leverage, or opportunities for considerable improvement using practical effort. Industrial ecology can search for leverage wherever it may lie in the chain, from extraction and primary production through final consumption, that is, from cradle to rebirth. In this regard, a performing industrial ecologist may become a preserver when achieving endless reincarnations of materials [3].

An overarching goal of IE is the establishment of an industrial system that recycles virtually all of the materials. It uses and releases a minimal amount of waste to the environment. The industrial systems’ developmental path follows an orderly progression from Type I, to Type II, and finally to Type III industrial systems, as follows:

1. Type I industrial systems represent an initial stage requiring a high throughput of energy and materials to function, and exhibit little or no resource recovery. It is a once flow-through system with rudimentary end-of-pipe pollution controls.
2. Type II industrial systems represent a transitional stage where resource recovery becomes more integral to the workings of the industrial systems, but does not satisfy its requirements for resources. Manufacturing processes and environmental processes are integrated at least partially. Whole facility planning is at least partially implemented.

3. Type III industrial systems represent the final ideal stage in which the industrial systems recycle all of the material outputs of production, although still relying on external energy inputs.

A Type III industrial ecosystem can become almost self-sustaining, requiring little input to maintain basic functions and to provide a habitat for thousands of different species. Therefore, reaching Type III as a final stage is the goal of IE [11]. Eventually communities, cities, regions, and nations will become sustainable in terms of natural resources and the environment.

According to Frosch [9]:

“The idea of industrial ecology is that former waste materials, rather than being automatically sent for disposal, should be regarded as raw materials – useful sources of materials and energy for other processes and products. The overall idea is to consider how the industrial system might evolve in the direction of an interconnected food web, analogous to the natural system, so that waste minimization becomes a property of the industrial system even when it is not completely a property of a individual process, plant, or industry.”

IE provides a foundation for sustainable industrialization, not just incremental improvement in environmental management. The objectives of IE suggest a potential for reindustrialization in economies that have lost major components of their industrial base. Specifically, the objective of industrial ecology is not merely to reduce pollution and waste as traditionally conceived, it is to reduce throughput of all kinds of materials and fuels, whether they leave a site as products, emissions, or waste.

The above objectives of IE have shown a new path for both industrial and developing countries. Central objectives of an industrial-ecology-based development strategy are making economies profoundly more efficient in resource use, less dependent upon nonrenewable resources, and less polluting. A corollary objective is repair of past environmental damage and restoration of ecosystems. Developing countries that recognize the enormous opportunity opened by this transformation can leapfrog over the errors of past industrialization. They will have more competitive and less polluting businesses [21].

1.4 APPROACH AND APPLICATIONS

The IE approach involves (a) application of systems science to industrial systems, (b) defining the system boundary to incorporate the natural world, and (c) seeking to optimize that system.

Industrial ecology is applied to the management of human activity on a sustainable basis by: (a) minimizing energy and materials usage; (b) ensuring acceptable quality of life for people; (c) minimizing the ecological impact of human activity to levels natural systems can sustain; (d) conserving and restoring ecosystem health and maintaining biodiversity; (e) maintaining the economic viability of systems for industry, trade, and commerce; (f) coordinating design over the life cycle of products and processes; and (g) enabling creation of short-term innovations with awareness of their long-term impacts.

Application of IE will improve the planning and performance of industrial systems of all sizes, and will help design local and community solutions that contribute to national and global solutions. For small industrial systems applications, IE helps companies become more
competitive by improving their environmental performance and strategic planning. For medium-sized industrial systems, IE helps communities develop and maintain a sound industrial base and infrastructure, without sacrificing the quality of their environments. For large industrial systems, IE helps government agencies design policies and regulations that improve environmental protection while building business competitiveness.

Several scenarios [20] offer visions of full-blown application of IE at company, city, and developing country levels. Lists of organizations, on-line information sources, and bibliographies in the book provide access to sources of IE information.

1.5 TASKS, STEPS, AND FRAMEWORK FOR IMPLEMENTATION

Pratt and Shireman [25] propose three simple but extraordinarily powerful tasks, over and over again, for practicing industrial ecological management:

1. Task 1, Eco-management: Brainstorm, test, and implement ways to reduce or eliminate pollution;
2. Task 2, Eco-auditing: Identify specific examples of materials use, energy use, and pollution and waste reduction (any form of throughput);
3. Task 3, Eco-accounting: Count the money. Count how much was saved, then count how much is still being spent creating waste and pollution, and start the cycle over.

The above three tasks are essentially eco-management, eco-auditing, and activity-based eco-accounting, which are part of an inter-related ecological management framework. Pratt and Shireman [25] further suggest a way to implement the three tasks by going through a series of perhaps 14 specific steps, spiraling outward from the initial Step 1, “provide overall corporate commitment,” to the final Step 14, “continue the process,” which flows back into the cycle of continuous improvement:

Step 1: Provide overall corporate commitment.
Step 2: Organize the management efforts.
Step 3: Organize the audit.
Step 4: Gather background information.
Step 5: Conduct detailed assessment.
Step 6: Review and organize data.
Step 7: Identify improvement options.
Step 8: Prioritize options.
Step 9: Implement fast-track options.
Step 10: Analyze options.
Step 11: Implement best options.
Step 12: Measure results.
Step 13: Standardize improvement.
Step 14: Continue the process.

Each of the components within the “three tasks” does not necessarily fall into discrete categories. For clarity of presentation, each of the tasks is divided into steps. Table 1 shows that these steps overlap and are repeated within this systematic approach. The names of tasks and steps have been slightly modified by the current author for ease of presentation and explanation.
As shown in Table 1, the company must initially provide the overall corporate commitment (Step 1) and organize the management efforts (Step 2) in Task 1 that will drive this implementation process forward (and around). Once the industrial ecological implementation process is initiated by the eco-management team in Task 1 (Steps 1 and 2), the eco-auditing team begins its Task 2 (Steps 3–7) with background and theory that support an industrial ecology approach, and the eco-accounting team begins its Task 3 (Step 5) to conduct detailed assessment. The eco-management team must then provide step-by-step guidance and directions in Task 1 (Steps 7–11) to identify, prioritize, implement, analyze, and again implement the best options. Subsequently, both the eco-auditing team (Task 2, Step 12) and the eco-accounting team (Task 3, Step 12) should measure the results of the implemented best options (Task 1, Step 11). The overall responsibility finally to standardize the improvements, and to continue the process until optimum results are achieved (Task 1, Steps 13, 14) will still be carried out by the eco-management team.

Table 1 Implementation Process for Applying Industrial Ecology at Corporate Level

<table>
<thead>
<tr>
<th>Task 1: Eco-management</th>
<th>Task 2: Eco-auditing</th>
<th>Task 3: Eco-accounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Overall corporate commitment</td>
<td>Step 3 Organize the audit</td>
<td>Step 5 Conduct detailed assessment</td>
</tr>
<tr>
<td>Step 2 Organize management efforts</td>
<td>Step 4 Gather background information</td>
<td>Step 12 Measure results</td>
</tr>
<tr>
<td>Step 7 Identify improvement options</td>
<td>Step 5 Conduct detailed assessment</td>
<td>Step 5 Conduct detailed assessment</td>
</tr>
<tr>
<td>Step 8 Prioritize options</td>
<td>Step 6 Review and organize data</td>
<td>Step 5 Conduct detailed assessment</td>
</tr>
<tr>
<td>Step 9 Implement fast-track options</td>
<td>Step 7 Identify improvement options</td>
<td>Step 5 Conduct detailed assessment</td>
</tr>
<tr>
<td>Step 10 Analyze options</td>
<td>Step 12 Measure results</td>
<td>Step 5 Conduct detailed assessment</td>
</tr>
<tr>
<td>Step 11 Implement best options</td>
<td></td>
<td>Step 5 Conduct detailed assessment</td>
</tr>
<tr>
<td>Step 13 Standardize improvements</td>
<td></td>
<td>Step 5 Conduct detailed assessment</td>
</tr>
<tr>
<td>Step 14 Continue the process</td>
<td></td>
<td>Step 5 Conduct detailed assessment</td>
</tr>
</tbody>
</table>

As shown in Table 1, the company must initially provide the overall corporate commitment (Step 1) and organize the management efforts (Step 2) in Task 1 that will drive this implementation process forward (and around). Once the industrial ecological implementation process is initiated by the eco-management team in Task 1 (Steps 1 and 2), the eco-auditing team begins its Task 2 (Steps 3–7) with background and theory that support an industrial ecology approach, and the eco-accounting team begins its Task 3 (Step 5) to conduct detailed assessment. The eco-management team must then provide step-by-step guidance and directions in Task 1 (Steps 7–11) to identify, prioritize, implement, analyze, and again implement the best options. Subsequently, both the eco-auditing team (Task 2, Step 12) and the eco-accounting team (Task 3, Step 12) should measure the results of the implemented best options (Task 1, Step 11). The overall responsibility finally to standardize the improvements, and to continue the process until optimum results are achieved (Task 1, Steps 13, 14) will still be carried out by the eco-management team.

1.6 QUALIFICATIONS OF INDUSTRIAL ECOLOGISTS

The implementation process for applying industrial ecology at the corporate level (as shown in Table 1) may sound modest in its concept. In reality, each step in each task will face technical, economical, social, legal, and ecological complexity, and can be accomplished only by qualified industrial ecologists.

Accordingly, the most important element for industrial ecology implementation will be drawing on in-company expertise and enthusiasm as well as outside professional assistance. The qualified industrial ecologists retained for their service must have their respective knowledge in understanding the rules and regulations, assessing manufacturing processes and wastes, identifying various options, and measuring results. Because it is difficult to find a single industrial ecologist who has all the required knowledge, several experts in different areas are usually assembled together to accomplish the required IE tasks.
The team of qualified industrial ecologists assembled should have a clear sense of the possibilities and methodologies in the following professional areas specifically related to the problem:

1. Industrial or manufacturing engineering of the target industrial system;
2. Energy consumption and material balances for environmental auditing;
3. Cleaner production, materials substitution, and dematerialization;
4. Zero emission, decarbonization, waste minimization, and pollution prevention;
5. Sustainable agriculture and sustainable industry;
6. Industrial metabolism and life-cycle analyses of products;
7. Site remediation and environmental restoration;
8. Ecological and global environmental analyses;
9. Accounting and economical analyses;
10. Legal, political affairs, and IE leverage analyses.

An IE team may not be required to have all of the above expertise. For example, the expertise of site remediation may not be required if the industrial system in question is not contaminated by hazardous substances. The expertise of global environmental analyses may not be needed if the IE level is at the company level, instead of at the regional or national level.

1.7 WAYS AND MEANS FOR ANALYSIS AND DESIGN

Each task and each step outlined in Table 1 for implementation of an industrial ecology project cannot be accomplished without understanding the ways and means for IE analysis and design. Indigo Development, a Center in the Sustainable Development Division of RPP International [13] has identified seven IE methods and tools for analysis and design: (a) industrial metabolism; (b) urban footprint; (c) input–output models; (d) life-cycle assessment; (e) design for environment; (f) pollution prevention; and (g) product life extension. Ausubel [2] and Wernick et al. [45] suggest that searching for leverage will be an important tool for IE implementation.

The United Nations Industrial Development Organization [39–41] and Ausubel and Sladovich [4] emphasize the importance of cleaner production, pollution prevention, waste minimization, sustainable development, zero emission, materials substitution, dematerialization, decarbonization, functional economic analysis, and IE indicators. These ways and means for analysis and design of industrial ecology are described separately herein.

1.8 SUSTAINABLE AGRICULTURE, INDUSTRY, AND ENVIRONMENT

Because IE is a branch of systems science of sustainability or a framework for designing and operating industrial systems as sustainable living systems interdependent with natural systems, understanding and achieving sustainable agriculture and industry will be the most important key to the success of sustainable environment.

An industrial ecologist may perceive the whole system required to feed planet Earth, preserve and restore its farmlands, preserve ecosystems and biodiversity, and still provide water, land, energy, and other resources for a growing population. The following is only one of many possibilities for achieving sustainable agriculture and industry: utilization of large volumes of carbon dioxide gases discharged from industrial and commercial stacks as a resource for decarbonation, pollution control, resource development, and cost saving [22,24,39–42].
Meeting the challenges involved in sustainable systems development, which can be either technical or managerial, will require interdisciplinary coordination among many technical, economic, social, political, and ecological research disciplines.

1.9 ZERO EMISSION, ZERO DISCHARGE, CLEANER PRODUCTION, WASTE MINIMIZATION, POLLUTION PREVENTION, DESIGN FOR ENVIRONMENT, MATERIAL SUBSTITUTION, DEMATERIALIZATION, AND PROCESS SUBSTITUTION

1.9.1 Terminologies and Policy Promotion

The terms of zero emission, zero discharge, cleaner production, waste minimization, pollution prevention, design for environment, material substitution, and dematerialization are all closely related, and each is self-explanatory. The US Environmental Protection Agency (USEPA), the United Nations Industrial Development Organization (UNIDO) and other national and international organizations at different periods of time have promoted each [8,19,23,30–34,39–46].

Design for environment (DFE) is a systematic approach to decision support for industrial ecologists, developed within the industrial ecology framework. Design for environment teams apply this systematic approach to all potential environmental implications of a product or process being designed: energy and materials used; manufacture and packaging; transportation; consumer use, reuse or recycling; and disposal. Design for environment tools enable consideration of these implications at every step of the production process from chemical design, process engineering, procurement practices, and end-product specification to postuse recycling or disposal. It also enables designers to consider traditional design issues of cost, quality, manufacturing process, and efficiency as part of the same decision system.

1.9.2 Zero Emission

Zero emission has been promoted by governments and the automobile industry in the context of energy systems, particularly in relation to the use of hydrogen as an energy source. Recent attention has focused on electric cars as zero-emission vehicles and the larger question of the energy and material system in which the vehicles are embedded. Classic studies about hydrogen energy may be found in a technical article by Hafele et al. [12]. The term “zero emission” is mainly used in the field of air emission control.

1.9.3 Zero Discharge

Zero discharge is aimed at total recycling of water and wastewater within an industrial system, and elimination of any discharge of toxic substances. Therefore, the term “zero discharge” is mainly used in water and wastewater treatment plants, meaning total water recycle. In rare cases, total recycling of air effluent within a plant is also called “zero discharge.” Wastewater recycling is important, not only for environmental protection, but also for water conservation in water shortage areas, such as California, United States. Several successful IE case histories are presented to show the advantages of zero discharge:
Total Wastewater Recycle in Potable Water Treatment Plants
The volume of wastewater produced from a potable water treatment plant (either a conventional sedimentation filtration plant or an innovative flotation filtration plant) amounts to about 15% of a plant’s total flow. Total wastewater recycle for production of potable water may save water and cost, and solve wastewater discharge problems [15,35–38].

Total Water and Fiber Recycle in Paper Mills
The use of flotation clarifiers and fiber recovery facilities in paper mills may achieve near total water and fiber recycle and, in turn, accomplish the task of zero discharge [16].

Total Water and Protein Recycle in Starch Manufacturing Plants
The use of membrane filtration and protein recovery facilities in starch manufacturing plants may achieve near total water and protein recycle and, in turn, accomplish the task of zero discharge [39–41].

Cleaner production, waste minimization, pollution prevention, designs for benign environmental impacts, material substitution, and dematerialization are all inter-related terms. Cleaner production is formally used and promoted by UNIDO (Vienna, Austria) [39–40], while waste minimization and pollution prevention are formally used and promoted by USEPA and U.S. state government agencies. Design for minimal environmental impact is very similar to cleaner production, and is mainly used in the academic field by researchers. Cleaner production emphasizes the integration of manufacturing processes and pollution control processes for the purposes of cost saving, waste minimization, pollution prevention, sustainable agriculture, sustainable industry, and sustainable environment, using the methodologies of material substitution, dematerialization, and sometimes even process substitution. Accordingly, cleaner production is a much broader term than waste minimization, pollution prevention, sustainability, material substitution, process substitution, and so on, and is similar to design for benign environmental impact. Furthermore, cleaner production implementation in an industrial system always saves money for the plant in the long run. Considering that wastes are resources to be recovered is the key for the success of an IE project using a cleaner production technology.

1.10 CASE HISTORIES OF SUCCESSFUL HAZARDOUS WASTE MANAGEMENT THROUGH INDUSTRIAL ECOLOGY IMPLEMENTATION
Several successful IE case histories are presented here to demonstrate the advantages of cleaner production for hazardous wastes management [40].

1.10.1 New Galvanizing Steel Technology Used at Delot Process SA Steel Factory, Paris, France
Galvanizing is an antirust treatment for steel. The traditional technique consisted of chemically pretreating the steel surface, then immersing it in long baths of molten zinc at 450°C. The old process involved large quantities of expensive materials, and highly polluting hazardous wastes. The cleaner production technologies include: (a) induction heating to melt the zinc, (b) electromagnetic field to control the molten zinc distribution, and (c) modern computer control of
the process. The advantages include total suppression of conventional plating waste, smaller inventory of zinc, better process control of the quality and thickness of the zinc coating, reduced labor requirements, reduced maintenance, and safer working conditions. With the cleaner production technologies in place, capital cost is reduced by two-thirds compared to the traditional dip-coating process. The payback period was three years when replacing existing plant facilities.

1.10.2 Reduction of Hazardous Sulfide in Effluent from Sulfur Black Dyeing at Century Textiles, Bombay, India

Sulfur dyes are important dyes yielding a range of deep colors, but they cause a serious pollution problem due to the traditional reducing agent used with them. The old dyeing process involved four steps: (a) a water soluble dye was dissolved in an alkaline solution of caustic soda or sodium carbonate; (b) the dye was then reduced to the affinity form; (c) the fabric was dyed; and (d) the dye was converted back into the insoluble form by an oxidation process, thus preventing washing out of the dye from the fabric. The cleaner production technology involves the use of 65 parts of starch chemical HydrolTM plus 25 parts of caustic soda to replace 100 parts of original sodium sulfide. The advantages include: reduction of sulfide in the effluent, improved settling characteristics in the secondary settling tank of the activated sludge plant, less corrosion in the treatment plant, and elimination of the foul smell of sulfide in the work place. The substitute chemical used was essentially a waste stream from the maize starch industry, which saved them an estimated US$12,000 in capital expenses with running costs at about US$1800 per year (1995 costs).

1.10.3 Replacing Toxic Solvent-Based Adhesives With Nontoxic Water-Based Adhesives at Blueminter Packaging Plant, Kent, UK

When solvent-based adhesives were used at Blueminter, UK, the components of the adhesive, normally a polymer and a resin (capable of becoming tacky) were dissolved in a suitable organic solvent. The adhesive film was obtained by laying down the solution and then removing the solvent by evaporation. In many adhesives, the solvent was a volatile organic compound (VOC) that evaporated to the atmosphere, thus contributing to atmospheric pollution. The cleaner production process here involves the use of water-based adhesives to replace the solvent-based adhesives. In comparison with the solvent-based adhesives, the water-based adhesives are nontoxic, nonpolluting, nonexplosive, nonhazardous, require only 20–33% of the drying energy, require no special solvent recovery systems nor explosion-proof process equipment, and are particularly suitable for food packaging. The economic benefits are derived mainly from the lack of use of solvents and can amount to significant cost savings on equipment, raw materials, safety precautions, and overheads.

1.10.4 Recovery and Recycling of Toxic Chrome at Germanakos SA Tannery Near Athens, Greece

Tanning is a chemical process that converts hides and skins into a stable material. Tanning agents are used to produce leather of different qualities and properties. Trivalent chromium is the major tanning agent, because it produces modern, thin, light leather suitable for shoe uppers, clothing, and upholstery. However, the residual chromium in the plant effluent is extremely toxic, and its effluent concentration is limited to 2 mg/L. A cleaner production technology has been developed to recover and reuse the trivalent chromium from the spent tannery liquors for
both cost saving and pollution control. Tanning of hides is carried out with chromium sulfate at pH 3.5–4.0. After tanning, the solution is discharged by gravity to a collection pit. In the recovery process, the liquor is sieved during this transfer to remove particles and fibers originating from the hides. The liquor is then pumped to a treatment tank where magnesium oxide is added, with stirring, until the pH reaches at least 8. The stirrer is switched off and the chromium precipitates as a compact sludge of chromium hydroxide. After settling, the clear liquid is decanted off. The remaining sludge is dissolved by adding concentrated sulfuric acid until a pH of 2.5 is reached. The liquor now contains chromium sulfate and is pumped back to a storage tank for reuse. In the conventional chrome tanning processes, 20–40% of the chrome used was discharged into wastewaters as hazardous substances. In the new cleaner production process, 95–98% of the spent trivalent chromium can be recycled for reuse. The required capital investment for the Germanakos SA plant was US$40,000. Annual saving in tanning agents and pollution control was $73,750. The annual operating cost of the cleaner production process was $30,200. The total net annual savings is $43,550. The payback period for the capital investment ($40,000) was only 11 months.

1.10.5 Recovery of Toxic Copper from Printed Circuit Board Etchant for Reuse at Praegitzer Industries, Inc., Dallas, Oregon, United States

In the manufacture of printed circuit boards, the unwanted copper is etched away by acid solutions as cupric chloride. As the copper dissolves, the effectiveness of the solution falls and it must be regenerated, otherwise it becomes a hazardous waste. The traditional way of doing this was to oxidize the copper ion produced with acidified hydrogen peroxide. During the process the volume of solution increased steadily and the copper in the surplus liquor was precipitated as copper oxide and usually landfilled. The cleaner production process technology uses an electrolytic divided cell, simultaneously regenerating the etching solution and recovering the unwanted copper. A special membrane allows hydrogen and chloride ions through, but not the copper. The copper is transferred via a bleed valve and recovered at the cathode as pure flakes of copper. The advantages of this cleaner production process are: improvement of the quality of the circuit boards, elimination of the disposal costs for the hazardous copper effluent, maintenance of the etching solution at optimum composition, recovery of pure copper for reuse, and zero discharge of hazardous effluent. The annual cost saving in materials and disposal was US$155,000. The capital investment cost was $220,000. So the payback period for installation of this cleaner production technology was only 18 months.

1.10.6 Recycling of Hazardous Wastes as Waste-Derived Fuels at Southdown, Inc., Houston, Texas, United States

Southdown, Inc., engages in the cement, ready-mixed concrete, concrete products, construction aggregates, and hazardous waste management industries throughout the United States. According to Southdown, they are making a significant contribution to both the environment and energy conservation through the utilization of waste-derived fuels as a supplemental fuel source. Cement kiln energy recovery is an ideal process for managing certain organic hazardous wastes. The burning of organic hazardous wastes as supplemental fuel in the cement and other industries is their engineering approach. By substituting only 15% of its fossil fuel needs with solid hazardous waste fuel, a modern dry-process cement plant with an annual production capacity of 650,000 tons of clinker can save the energy equivalent of 50,000 barrels of oil (or 12,500 tons of coal) a year. Southdown typically replaces 10–20% of the fossil fuels it needs to make cement with hazardous waste fuels.
Of course, by using hazardous waste fuels, the nation’s hazardous waste (including infections waste) problem is at least partially solved with an economic advantage.

1.10.7 Utilization and Reduction of Carbon Dioxide Emissions at Industrial Plants

Decarbonization has been extensively studied by Dr L. K. Wang and his associates at the Lenox Institute of Water Technology, MA, United States, and has been concluded to be technically and economically feasible, in particular when the carbon dioxide gases from industrial stacks are collected for in-plant reuse as chemicals for tanneries, dairies, water treatment plants, and municipal wastewater treatment plants [22,23,42]. Greenhouse gases, such as carbon dioxide, methane, and so on, have caused global warming over the last 50 years. Average temperatures across the world could climb between 1.4 and 5.8°C over the coming century. Carbon dioxide emissions from industry and automobiles are the major causes of global warming. According to the UN Environment Program Report released in February 2001, the long-term effects may cost the world about 304 billion US dollars a year in the future. This is due to the following projected losses: (a) human life loss and property damages as a result of more frequent tropical cyclones; (b) land loss as a result of rising sea levels; (c) damages to fishing stocks, agriculture, and water supplies; and (d) disappearance of many endangered species. Technologically, carbon dioxide is a gas that can easily be removed from industrial stacks by a scrubbing process using any alkaline substances. However, the technology for carbon dioxide removal is not considered to be cost-effective. Only reuse is the solution. About 20% of organic pollutants in a tannery wastewater are dissolved proteins that can be recovered using the tannery’s own stack gas (containing mainly carbon dioxide). Similarly, 78% of dissolved proteins in a dairy factory can be recovered by bubbling its stack gas (containing mainly carbon dioxide) through its waste stream. The recovered proteins from both tanneries and dairies can be reused as animal feeds. In water softening plants using chemical precipitation processes, the stack gas can be reused as precipitation agent for hardness removal. In municipal wastewater treatment plants, the stack gas containing carbon dioxide can be reused as neutralization and warming agents. Because a large volume of carbon dioxide gases can be immediately reused as chemicals in various in-plant applications, the plants producing carbon dioxide gas actually may save chemical costs, produce valuable byproducts, conserve heat energy, and reduce global warming problem [47].

By reviewing these case histories, one will realize that materials substitution is an important tool for cleaner production and, in turn, for industrial ecology. Furthermore, materials substitution is considered a principal factor in the theory of dematerialization. The theory asserts that as a nation becomes more affluent, the mass of materials required to satisfy new or growing economic functions diminishes over time. The complementary concept of decarbonization, or the diminishing mass of carbon released per unit of energy production over time, is both more readily examined and has been amply studied by many scientists. Dematerialization is advantageous only if using fewer resources accompanies, or at least leaves unchanged, lifetime waste in processing, and wastes in production [43].

It is hoped that through industrial ecology investigations, strategies may be developed to facilitate more efficient use of material and energy resources and to reduce the release of hazardous as well as nonhazardous wastes to our precious environment. Hopefully, we will be able to balance industrial systems and the ecosystem, so our agriculture and industry can be sustained for very long periods of time, even indefinitely, without significant depletion or environmental harm. Integrating industrial ecology within our economy will bring significant benefits to everyone.
REFERENCES

9. Frosch, R.A. Toward the end of waste: reflections on a new ecology for industry. Daedalus 1996, 125 (3), 199–212.
10. Frosch, R.A.; Gallopoulos, N.E. Strategies for manufacturing. Scientific American 1989, 144–152.