11
In-Plant Management and Disposal of Industrial Hazardous Substances

Lawrence K. Wang
Zorex Corporation, Newtonville, New York, U.S.A., and
Lenox Institute of Water Technology, Lenox, Massachusetts, U.S.A.

11.1 INTRODUCTION
If the hazardous substances at industrial, commercial, and agricultural sites can be properly handled, stored, transported, and/or disposed of, there will be no environmental pollution, and no need to embark on any site remediation. With this concept in mind, the goal of in-plant hazardous waste management is to achieve pollution prevention and human-health protection at the sources where there are hazardous substances. This chapter begins with hazardous waste terminologies and characteristics. Special emphasis is placed on the manifest system, hazardous substances storage requirements, underground storage tanks, above-ground storage tanks, hazardous substances transportation, hazardous waste handling, and disposal.

11.1.1 General Introduction and Objectives
Most hazardous wastes are produced in the manufacturing of products for domestic consumption, or various industrial applications. Rapid development and improvement of industrial technologies, products, and practices frequently increase the generation rate of hazardous substances (including both useful materials and waste materials). These hazardous substances, which can be in the form of gas, liquid, or solid, must be properly handled in order to protect the plant personnel, the general public, and the environment.

The term “hazardous substance” refers to any raw materials, intermediate products, final products, spent wastes, accidental spills, leakages, and so on, that are hazardous to human health and the environment. Technically speaking, all ignitable, corrosive, reactive (explosive), toxic, infections, carcinogenic, and radioactive substances are hazardous [1–3].

Legally radioactive substances (including radioactive wastes) are regulated by the Nuclear Regulatory Commission (NRC), while all other hazardous substances (excluding radioactive substances) are mainly regulated by the U.S. Environmental Protection Agency (USEPA), the Occupational Safety and Health Administration (OSHA), and the state environmental protection agencies [4–22]. Guidelines and recommendations by the National Institute for Occupational Safety and Health (NIOSH), the American Conference of Governmental Industrial Hygienists (ACGIH), American Water Works Association (AWWA), American Public Health Association (APHA), Water Environmental Federation (WEF), American Institute of Chemical
Engineers (AIChE), and the American Society of Civil Engineers (ASCE) are seriously considered by practicing environmental engineers and scientists (including chemical/civil/mechanical engineers, biologists, geologists, industrial hygienists, chemist, etc.) in their decision-making process when managing, handling, and/or treating hazardous substances.

In the past 25 years, industry, government, and the general public in the industrially developed as well as developing countries have become increasingly aware of the need to respond to the industrial hazardous substance problems.

Some hazardous wastes, or mixture of hazardous wastes (such as cyanides, hydrogen sulfide, and parathion) are extremely or acutely hazardous because of their high acute toxicity. These extremely hazardous wastes, if human exposure should occur, may result in disabling personal injury, illness, or even death.

Dioxin-contaminated sites, which pose a human health threat, have been the subject of recent analyses by the Centers for Disease Control (CDC) in Atlanta, GA. It has been determined by CDC that 1 ppb of dioxin is detrimental to public health and that people should be dissociated from the hazard. A level of 1 ppb of dioxin (2,3,7,8-TCDD) in soil is recommended as an action level. In cases where soil concentrations exceed 1 ppb, it is recommended by CDC that potential human exposure to the contamination be examined further. If there is human exposure to 1 ppb or higher on a regular basis, cleanup is indicated. A substance that may be more toxic and hazardous than dioxin is expected to be discovered in the near future.

Although the properties of hazardous substances may sound alarming, the managerial skills and technologies used to handle, store, or treat hazardous substances are available. Modern technology exists to build and maintain environmentally sound industrial facilities that effectively produce useful products and, at the same time, render hazardous waste inert. Environmental laws, rules, regulations, and guidelines also exist to ensure that the modern technology will be adopted by owners or plant managers of industrial facilities for environmental protection.

This chapter is intended for the plant owner, the plant engineer/manager, their contractors, their consulting engineers, and the general public. This chapter may be used:

1. As a management and planning tool by industrial and technical personnel; and
2. As a reference document and an educational tool by any individuals who want to review important aspects of in-plant air quality, water quality, safety, and health protection at industrial sites having hazardous substances.

This chapter is not a comprehensive information source on occupational safety and health. It provides a general guideline for industrial and technical personnel at industrial sites to understand or familiarize themselves with:

- hazardous substance classification;
- environmental hazards and their management;
- hazardous air quality management;
- hazardous water quality management;
- hazardous solid waste (including asbestos) management;
- monitoring and analysis of hazardous samples;
- measuring instruments for environmental protection;
- hazardous waste generator status, and the regulatory requirements;
- hazardous waste and waste oil documentation requirements;
- hazardous waste and waste oil storage and shipping requirements;
- emergency preparation and response procedures;
- responsibilities and management strategies of very small quantity generator (VSQG), small quantity generator (SQG), and large quantity generator (LQG) of hazardous wastes;
- an example for managing hazardous wastes generated at medical offices;
The first step of site management is to determine whether or not the waste generated or an accidental release (i.e., spill of leaks of chemical/biological substances) occurring on an industrial site is hazardous.

Common hazardous wastes include: (a) waste oil, (b) solvents and thinners, (c) acids and bases/alkalines, (d) toxic or flammable paint wastes, (e) nitrates, perchlorates, and peroxides, (f) abandoned or used pesticides, and (g) some wastewater treatment sludges. Special hazardous wastes include: (a) industrial wastes containing the USEPA priority pollutants, (b) infectious medical wastes, (c) explosive military wastes, and (d) radioactive wastes or releases.

In general, there are two ways a waste or a substance may be identified as hazardous – it may be listed in the Federal and/or the State regulations or it may be defined by its hazardous characteristics.

Hazardous waste may be a listed discarded chemical, an off-specification product, an accidental release, or a liquid or solid residue from an operation process, which has one or more of the characteristics below:

- ignitable (easily catches fire, flash point below 140°F);
- corrosive (easily corrodes materials or human tissue, very acidic or alkaline, pH of <2 or >12.5);
- reactive (explosive, produces toxic gases when mixed with water or acid);
- toxic (can leach toxic chemicals as determined by a special laboratory test); and
- radioactive.

The hazardous waste identification regulations that define the characteristics of toxicity, ignitability, corrosivity, reactivity, and the tests for these characteristics, differ from state to state. In addition, concentration limits may be set out by a state for selected persistent and bioaccumulative toxic substances that commonly occur in hazardous substances. For example, the California Hazardous Waste Control Act requires the California State Department of Health Services (CDHS) to develop and adopt by regulation criteria and guidelines for the identification of hazardous wastes and extremely hazardous wastes.

In the State of California, a waste or a material is defined as hazardous because of its toxicity if it meets any of the following conditions: (a) acute oral LD$_{50}$ of less than 5000 mg/kg; (lethal oral dose for 50% of an exposed population); (b) acute dermal LD$_{50}$ of less than 4300 mg/kg; (c) acute 8 hour inhalation LC$_{50}$ of less than 10,000 ppm; (d) acute aquatic 96 hour LC$_{50}$ of less than 500 mg/L measured in waste with specified conditions and species; (e) contains 0.001% by weight, or 10 ppm, of any of 16 specified carcinogenic organic chemicals; (f) poses a hazard to human health or the environment because of its carcinogenicity, acute toxicity, chronic toxicity, bioaccumulative properties, or persistence in the environment; (g) contains a soluble or extractable persistent or bioaccumulative toxic substance at a concentration exceeding the established Soluble Threshold Limit Concentration (STLC); (h) contains a persistent or bioaccumulative toxic substance at a total concentration exceeding its Total Threshold Limit Concentration (TTLC); (i) is a listed hazardous waste (California list consistent with the Federal RCRA list) designated as toxic; and (j) contains one or more materials with an 8-hour LC$_{50}$ or LClO of less than 10,000 ppm and the LC$_{50}$ or LClO is exceeded in the head space vapor (lethal inhalation concentration for 50% of an exposed population).
A waste or a material is designated as “extremely hazardous” in the State of California if it meets any of the following criteria: (a) acute oral LD$_{50}$ of less than or equal to 50 mg/kg; (b) acute dermal LD$_{50}$ of less than or equal to 50 mg/kg; (c) acute inhalation LC$_{50}$ of less than or equal to 100 ppm; (d) contains 0.1% by weight of any of 16 specified carcinogenic organic chemicals; (e) has been shown through experience or testing to pose an extreme hazard to the public health because of its carcinogenicity, bioaccumulative properties, or persistence in the environment; (f) contains a persistent or bioaccumulative toxic substance at a total concentration exceeding its TTLC as specified for extremely hazardous waste; and (g) is water-reactive (i.e., has the capability to react violently in the presence of water and to disperse toxic, corrosive, or ignitable material into the surroundings).

The carcinogenic substances specified in the California criteria for hazardous and extremely hazardous materials have been designated potential carcinogens by OSHA. Under the California criteria, these substances cause a material to be designated as hazardous if they are present at a concentration of 0.001% by weight (10 ppm). A material containing 0.1% of these substances is designated extremely hazardous. The carcinogenic chemicals are the following: 2-acetylaminofluorene, acrylonitrile, 4-aminodiphenyl, benzidine and its salts, bis(chloromethyl) ether (CMME), 1,2-dibromo-3-chloropropane (DBCP), 3,3-dichlorobenzidine and its salts (DCB), 4-dimethylaminoazobenzene (DAB), ethyleneimine (EL), alpha-naphthylamine (1-NA), beta-naphthylamine (2-NA), 4-nitrobiphenyl (4-NBP), n-nitrosodimethylamine (DMN), beta-propiolactone (BPL), and vinyl chloride (VCM).

California criteria for defining hazardous wastes that are ignitable and reactive are identical to Federal criteria for hazardous wastes under RCRA defined at 40 CFR, Part 261. The California corrosivity criteria differ from the Federal criteria only in the addition of a pH test for nonaqueous wastes.

Because each state has its own criteria for defining hazardous wastes, the plant manager of an industrial site having hazardous substances should contact the local state environmental protection agency for the details.

In the State of Massachusetts, the waste generated on the site is considered “acutely hazardous” (equivalent to “extremely hazardous” as defined by the State of California) if it is on the list of “acutely hazardous wastes” published by the State of Massachusetts and/or Federal governments. These acutely hazardous wastes are extremely toxic or reactive and are regulated more strictly than other hazardous wastes. In order to find out if the waste on the site is hazardous, or even acutely hazardous, a plant manager may also check with: (a) the supplier of the product (request a hazardous material safety data sheet); (b) laboratories; (c) trade associations; and/or (d) environmental consulting engineers and scientists. In addition, self-reviewing the State and/or Federal hazardous waste regulations for the purpose of verification is always required.

Radioactive wastes are, indeed, hazardous, but are only briefly covered in this chapter. The readers are referred elsewhere [23–25] for detailed technical information on management of radioactive wastes.

Noise hazard at an industrial site should also be properly controlled. The readers are referred to another source [26] for detailed noise control technologies.

11.2 MANAGEMENT OF ENVIRONMENTAL HAZARDS AT INDUSTRIAL SITES

Environmental hazards are a function of the nature of the industrial site as well as a consequence of the work being performed there. They include (a) chemical exposure hazards, (b) fire and explosion hazards, (c) oxygen deficiency hazards, (d) ionizing radiation hazards, (e) biological
hazards, (f) safety hazards, (g) electrical hazards, (h) heat stress hazards, (i) cold exposure hazards, and (j) noise hazards. Both the hazards and the solutions are briefly described in this section [21].

11.2.1 Chemical Exposure Hazards

Preventing exposure to hazardous industrial chemicals is a primary concern at industrial sites. Most sites contain a variety of chemical substances in gaseous, liquid, or solid form. These substances can enter the unprotected body by inhalation, skin absorption, ingestion, or through a puncture wound (injection). A contaminant can cause damage at the point of contact or can act systemically, causing a toxic effect at a part of the body distant from the point of initial contact.

Chemical exposure hazards are generally divided into two categories: acute and chronic. Symptoms resulting from acute exposures usually occur during or shortly after exposure to a sufficiently high concentration of a hazardous contaminant. The concentration required to produce such effects varies widely from chemical to chemical. The term “chronic exposure” generally refers to exposures to “low” concentrations of a contaminant over a long period of time. The “low” concentrations required to produce symptoms of chronic exposure depend upon the chemical, the duration of each exposure, and the number of exposures. For either chronic or acute exposure, the toxic effect may be temporary and reversible, or may be permanent (disability or death). Some hazardous chemicals may cause obvious symptoms such as burning, coughing, nausea, tearing eyes, or rashes. Other hazardous chemicals may cause health damage without any such warning signs (this is a particular concern for chronic exposures to low concentrations). Health effects such as cancer or respiratory disease may not become manifest for several years or decades after exposure. In addition, some hazardous chemicals may be colorless and/or odorless, may dull the sense of smell, or may not produce any immediate or obvious physiological sensations. Thus, a worker’s senses or feelings cannot be relied upon in all cases to warn of potential toxic exposure to hazardous chemicals.

Many guidelines for safe use of chemicals are available in the literature [27,28].

11.2.2 Explosion and Fire Hazards

There are many potential causes of explosions and fires at industrial sites handling hazardous substances: (a) chemical reactions that produce explosion, fire, or heat; (b) ignition of explosive or flammable chemicals; (c) ignition of materials due to oxygen enrichment; (d) agitation of shock- or friction-sensitive compounds; and (e) sudden release of materials under pressure [21,29].

Explosions and fires may arise spontaneously. However, more commonly, they result from site activities, such as moving drums, accidentally mixing incompatible chemicals, or introducing an ignition source (such as a spark from equipment) into an explosive or flammable environment. At industrial sites, explosions and fires not only pose the obvious hazards of intense heat, open flame, smoke inhalation, and flying objects, but may also cause the release of hazardous chemicals into the environment. Such releases can threaten both plant personnel on site and members of the general public living or working nearby.

To protect against the explosion and fire hazard, a plant manager should (a) have qualified plant personnel field monitor for explosive atmospheres and flammable vapors, (b) keep all potential ignition sources away from an explosive or flammable environment, (c) use non-sparking, explosion-proof equipment, and (d) follow safe practices when performing any task that might result in the agitation or release of chemicals.
11.2.3 Oxygen Deficiency Hazards

The oxygen content of normal air at sea level is approximately 21%. Physiological effects of oxygen deficiency in humans are readily apparent when the oxygen concentration in the air decreases to 16%. These effects include impaired attention, judgment, and coordination, and increased breathing and heart rate. Oxygen concentrations lower than 16% can result in nausea and vomiting, brain damage, heat damage, unconsciousness, and death. To take into account individual physiological responses and errors in measurement, concentrations of 19.5% oxygen or lower are considered to be indicative of oxygen deficiency.

Oxygen deficiency may result from the displacement of oxygen by another gas, or the consumption of oxygen by a chemical reaction. Confined spaces or low-lying areas are particularly vulnerable to oxygen deficiency and should always be monitored prior to entry. Qualified plant personnel should always monitor oxygen levels and should use atmosphere-supplying respiratory equipment [21].

11.2.4 Ionizing Radiation Hazards

Radioactive materials emit one or more of three types of harmful radiation: alpha, beta, and gamma. Alpha radiation has limited penetration ability and is usually stopped by clothing and the outer layers of the skin. Alpha radiation poses little threat outside the body, but can be hazardous if materials that emit alpha radiation are inhaled or ingested. Beta radiation can cause harmful “beta burns” to the skin and damage the subsurface blood system. Beta radiation is also hazardous if materials that emit beta radiation are inhaled or ingested. Use of protective clothing, coupled with scrupulous personal hygiene and decontamination, affords good protection against alpha and beta radiation.

Gamma radiation, however, easily passes through clothing and human tissue and can also cause serious permanent damage to the body. Chemical-protective clothing affords no protection against gamma radiation itself; however, use of respiratory and other protective equipment can help keep radiation-emitting materials from entering the body by inhalation, ingestion, infection, or skin absorption.

If levels of radiation above natural background are discovered, a plant manager should consult a health physicist. At levels greater than 2 mrem/hour, all industrial site activities should cease until the site has been assessed by an industrial health scientist or licensed environmental engineers.

11.2.5 Biological Hazards

Wastes from industrial facilities, such as a biotechnology firms, hospitals, and laboratories, may contain disease-causing organisms that could infect site personnel. Like chemical hazards, etiologic agents may be dispersed in the environment via water and wind. Other biological hazards that may be present at an industrial site handling hazardous substances include poisonous plants, insects, animals, and indigenous pathogens. Protective clothing and respiratory equipment can help reduce the chances of exposure. Thorough washing of any exposed body parts and equipment will help protect against infection [30,31].

11.2.6 Safety Hazards

Industrial sites handling hazardous substances may contain numerous safety hazards, such as (a) holes or ditches, (b) precariously positioned objects, such as drums or boards that may fall,
(c) sharp objects, such as nails, metal shards, and broken glass, (d) slippery surfaces, (e) steep grades, (f) uneven terrain, and (g) unstable surfaces, such as walls that may cave in or flooring that may give way.

Some safety hazards are a function of the work itself. For example, heavy equipment creates an additional hazard for workers in the vicinity of the operating equipment. Protective equipment can impair a worker’s ability, hearing, and vision, which can result in an increased risk of an accident.

Accidents involving physical hazards can directly injure workers and can create additional hazards, for example, increased chemical exposure due to damaged protective equipment, or danger of explosion caused by the mixing of chemicals. Site personnel should constantly look out for potential safety hazards, and should immediately inform their supervisors of any new hazards so that proper action can be taken [1,21,31].

11.2.7 Electrical Hazards
Overhead power lines, downed electrical wires, and buried cables all pose a danger of shock or electrocution if workers contact or sever then during site operations. Electrical equipment used on site may also pose a hazard to workers. To help minimize this hazard, low-voltage equipment with ground-fault interrupters, and water-tight, corrosion-resistant connecting cables should be used on site. In addition, lightning is a hazard during outdoor operations, particularly for workers handling metal containers or equipment. To eliminate this hazard, weather conditions should be monitored and work should be suspended during electrical storms. An additional electrical hazard involves capacitors that may retain a charge. All such items should be properly grounded before handling. OSHA’s standard 29 CFR, Part 1910.137, describes clothing and equipment for protection against electrical hazards.

11.2.8 Heat Stress Hazards
Heat stress is a major hazard, especially for workers wearing protective clothing. The same protective materials that shield the body from chemical exposure also limit the dissipation of body heat and moisture. Personal protective clothing can therefore create a hazardous condition. Depending on the ambient conditions and the work being performed, heat stress can occur within as little as 15 minutes. It can pose as great a danger to worker health as chemical exposure. In its early stages, heat stress can cause rashes, cramps, discomfort, and drowsiness, resulting in impaired functional ability that threatens the safety of both the individual and coworkers.

Continued heat stress can lead to stroke and death. Careful training and frequent monitoring of personnel who wear protective clothing, judicious scheduling of work and rest periods, and frequent replacement of fluids can protect against this hazard [21].

11.2.9 Cold Exposure Hazards
Cold injury (frostbite and hypothermia) and impaired ability to work are dangers at low temperatures and when the wind-chill factor is low. To guard against them, the personnel at an industrial site should (a) wear appropriate clothing, (b) have warm shelter readily available, and (c) carefully schedule work and rest periods, and monitor workers’ physical conditions.
11.2.10 Noise Hazards

Work around large equipment often creates excessive noise. The effects of noise can include (a) workers being startled, annoyed, or distracted, (b) physical damage to the ear, pain, and temporary and/or permanent hearing loss, and (c) communication interference that may increase potential hazards due to the inability to warn of danger and the proper safety precautions to be taken.

If plant workers are subjected to noise exceeding an 8 hour, time-weighted average sound level of 90 dBA (decibels on the A-weighted scale), feasible administrative or engineering controls must be utilized. In addition, whenever employee noise exposure equals or exceeds an 8 hour, time-weighted average sound level of 85 dBA, workers must administer a continuing, effective hearing conservation program as described in OSHA regulation 29 CFR, Part 1910.95, [1,21,26].

11.3 MANAGEMENT OF AIR QUALITY AT INDUSTRIAL SITES

11.3.1 Airborne Contaminants

The U.S. Environmental Protection Agency (USEPA) has estimated that about 30% of commercial and industrial buildings cause “sick building syndrome.” Alternatively the health problems associated with such buildings can also be called “building syndrome,” “building-related illness,” or “tight building syndrome.” As a rule of thumb, to be considered as causing “sick building syndrome” a commercial/industrial building must have at least 20% of its occupants’ complaints last for more than two weeks, with symptom relief when the occupants leave the sick building.

At an industrial site, occupants complain when they experience respiratory problems, headache, fatigue, or mucous membrane irritation of their eyes, noses, mouths, and throats. The following contaminants in air are caused by the building materials [1,32,33,61]:

- Formaldehyde: from particle board, pressed wood, urea-formaldehyde foam insulation, plywood resins, hardwood paneling, carpeting, upholstery;
- Asbestos: from draperies, filters, stove mats, floor tiles, spackling compounds, older furnaces, roofing, gaskets, insulation, acoustical material, pipes, etc.;
- Organic vapors: from carpet adhesives, wool finishes, etc.;
- Radon: from brick, stone, soil, concrete, etc.;
- Synthetic mineral fibers: from fiberglass insulation, mineral wood insulation, etc.; and
- Lead: from older paints.

The following contaminants in air are caused by the use of various building equipments [33–36,66,70–75,79–81]:

- Ammonia: from reproduction, microfilm, and engineering drawing machines;
- Ozone: from electrical equipment and electrostatic air cleaners;
- Carbon monoxide, carbon dioxide, sulfur dioxide, hydrogen cyanide, particulates, nitrogen dioxide, benzoapyrene, etc.: from combustion sources including gas ranges, dryers, water heaters, kerosene heaters, fireplaces, wood stoves, garage, etc.;
- Aminos: from humidification equipment;
- Carbon, powder, methyl alcohol, trinitrofluorene, trinitrofluorenone: from photocopying machines;
- Methacrylates: from signature machines;
- Methyl alcohol: from spirit duplication machines;
- Dusts: from various industrial equipments; and
Microorganisms including bacteria, protozoa, virus, nematodes, and fungi: from stagnant water in central air humidifier, microbial slime in heating, ventilation, and air conditioning (HVAC) systems, fecal material of pigeons in HVAC units, etc.

Certain common contaminants in air are caused by the building inhabitants and hazardous substance releases:

- Formaldehyde: from smoking, waxed paper, shampoo, cosmetics, and medicine products, etc.;
- Acetone, butyric acid, ethyl alcohol, methyl alcohol, ammonia, odors: from biological effluents;
- Asbestos: from talcum powder, hot mittens;
- Nicotine, acrolein, carbon monoxide: from smoking;
- Vapors and dusts: from personal care products, cleaning products, fire retardants, insecticides, fertilizers, adhesives, carbonless paper products, industrial hazardous substance releases, etc.;
- Vinyl chloride: from aerosol spray; and
- Lead: from lead-containing gasoline.

Any real property, the expansion, redevelopment, or reuse of which may be complicated by the presence of one or more of the above hazardous substances is termed “brownfield” [37,38,70,84].

11.3.2 Health Effects

Various airborne contaminant sources and the health effects of each specific pollutant are described below in detail.

Carbon Monoxide

Carbon monoxide (CO) is a common colorless and odorless pollutant resulting from incomplete combustion. One of the major sources of CO emission in the atmosphere is the gasoline-powered internal combustion engine. The chemical can be a fatal poison. It can be traced to many sources, including incomplete incineration, unvented gas appliances and heaters, malfunctioning heating systems, kerosene heaters, and underground or connected garages. Environmental tobacco smoke is another major source of CO. The gas ties up hemoglobin from binding oxygen and may cause asphyxiation. Fatigue, headache, and chest pain are the result of repeated exposure to low concentrations. Impaired vision and coordination, dizziness, confusion, and death may develop at the high concentration exposure levels [32,33].

Carbon Dioxide

Carbon dioxide (CO₂) is a colorless and odorless gas. It is an asphyxiant-causing agent. A concentration of 10% can cause unconsciousness and death from oxygen deficiency. The gas can be released from industrial studies [39], automobile exhaust, environmental tobacco smoke (ETS), and inadequately vented fuel heating systems. It is heavy and accumulates at low levels in depressions and along the floor.

Nitrogen Oxides

Nitrogen oxides, which are mainly released from industrial stacks, include nitrous oxide (N₂O), nitric oxide (NO), nitrogen dioxide (NO₂), nitrogen trioxide (N₂O₃), nitrogen tetraoxide (N₂O₄),
nitrogen pentoxide (N\textsubscript{2}O\textsubscript{5}), nitric acid (HNO\textsubscript{3}), and nitrous acid (HNO\textsubscript{2}). Nitrogen dioxide is the most significant pollutant. The nature of the combustive process varies with the concentration of nitrogen oxides. Inhalation of nitrogen oxides may cause irritation of the eyes and mucous membranes. Prolonged low-level exposure may stain skin and teeth yellowish and brownish. Chronic exposure may cause respiratory dysfunction. Nitrogen oxides partially cause acid rains.

Sulfur Dioxide

Sulfur dioxide (SO\textsubscript{2}) is a colorless gas with a strong odor and is the major substance causing acid rains. The major emission source of the gas is fuel or rubber tire combustion from industry [40]. Excess exposure may occur in industrial processes such as ore smelting, coal and fuel oil combustion, paper manufacturing, and petroleum refining. The chemical has not been identified as a carcinogen or co-carcinogen by the data, but short-term acute exposures to a high concentration of sulfur dioxide suggest adverse effects on pulmonary function [33].

Ozone

Ozone (O\textsubscript{3}) is a powerful oxidizing agent. It is found naturally in the atmosphere by the action of electrical storms. The major indoor source of ozone is from electrical equipment and electrostatic air cleaners. The indoor ozone concentration is determined by ventilation. It depends on the room volume, the number of air changes in the room, room temperature, materials, and the nature of surfaces in the room. Ozone is irritating to the eyes and all mucous membranes. Pulmonary edema may occur after exposure has ceased [32,33].

Radon

Radon is a naturally occurring radioactive decay product of uranium. A great deal of attention centers around radon222, which is the first decay product of radium228. Radon and radon daughters have been found to contribute to lung cancer; USEPA estimates that radon may cause 5000 to 20,000 lung cancer deaths per year in the United States. The released energy from radon decay may damage lung tissue and lead to lung cancer. Smokers also may have a higher risk of developing lung cancer induced by radon.

Radon is present in the air and soil. It can leak into the indoor environment through dirt floors, cracks in walls and floors, drains, joints, and water seeping through walls. Radon can be measured by using charcoal containers, alpha-track detectors, and electronic monitors. Results of the measurement of radon decay products and the concentration of radon gas are reported as “working levels (WL)” and “picocuries per liter” (pCi/L), respectively. The continuous exposure level of 4 pCi/L or 0.02 WL has been used by USEPA and CDC as a guidance level for further testing and remedial action [33].

Once identified, the risk of radon can be minimized through engineering controls and practical living methods. The treatment techniques include sealing cracks and other openings in basement floors, and installation of sub-slab ventilation. Crawl spaces should also be well ventilated. Radon-contaminated groundwater can be treated by aerating [41–43] or filtering through granulated activated carbon [43,44].

Asbestos

Asbestos is a naturally occurring mineral and was widely used as an insulation material in building construction [35]. Asbestos possesses a number of good physical characteristics that make it useful as thermal insulation and fire-retardant material. It is electrically nonconductive,
durable, chemical resistant, and sound absorbent. However, lung cancer and mesothelioma have been found to be associated with environmental asbestos exposure. USEPA has listed asbestos as a hazardous air pollutant since 1971. The major route of exposure is the respiratory system. Adverse health effects include asbestosis, lung cancer, mesothelioma, and other diseases. The latency period for asbestos diseases varies from 10 to 30 years [33].

Formaldehyde

Formaldehyde (HCHO) is a colorless gas with a pungent odor. Formaldehyde has found wide industrial usage as a fungicide and germicide, and in disinfectants and embalming fluids. The serious sources of indoor airborne formaldehyde are furniture, floor underlayment insulation, and environmental tobacco smoke. Urea formaldehyde (UF) is mixed with adhesives to bond veneers, particles, and fibers. It has been identified as a potential hazardous source.

Formaldehyde gas may cause severe irritation to the mucous membranes of the respiratory tract and eyes. Repeated exposure to formaldehyde may cause dermatitis either from irritation or allergy. The gas can be removed from the air by an absorptive filter of potassium permanganate-impregnated alumina pellets or fumigation using ammonia. Exposure to formaldehyde may be reduced by using exterior grade pressed wood products that contain phenol resins. Maintaining moderate temperature and low humidity can reduce emissions from formaldehyde-containing material. The chemical is intensely irritating to mucous membranes of the upper respiratory tract, the eyes, and skin. Repeated exposure may cause dermatitis and skin sensitization. This substance has been listed as a carcinogen.

Pesticides

Pesticides are used to kill household insets, rats, cockroaches, and other pests. Pesticides can be classified based on their chemical nature or use as organophosphates, carbonates, chlorinated hydrocarbons, bipyridyls, coumarins and indandiones, redenticides, fungicides, herbicides, fumigants, and miscellaneous insecticides. The common adverse effects are irritation of the skin, eyes, and upper respiratory tract. Prolonged exposure to some chemicals may cause damage to the central nervous system and kidneys [32,33].

Volatile Organic Compounds

The sources of volatile organic compounds (VOCs) include building materials, maintenance materials, building inhabitants, and gasoline spills/leaks. Building materials include carpet adhesives and wool finishes. Maintenance materials include varnishes, paints, polishes, and cleaners. Volatile organic compounds may pose problems for mucous surfaces in the nose, eyes, and throat. Chemicals that have been recognized as a cancer-causing agent include, at least, perchloroethylene used in dry cleaning, chloroform from laboratories, gasoline from gas stations, etc. [33,42].

Lead

Lead has been widely used in the storage battery industry, the petroleum industry, pigment manufacturing, insecticide production, the ceramics industry, and the metal products industry. Most of the airborne lead that has been identified comes from combustion of gasoline [33,79] and removal of lead paint [34].
Respirable Particles
Respirable particles are 10 or less micrometers in aerodynamic diameter. The sources of respirable particles include kerosene heaters, paint pigments, insecticide dusts, radon, and asbestos. The particles may irritate the eyes, nose, and throat and may contribute to respiratory infections, bronchitis, and lung cancer.

Tobacco Smoke
Environmental tobacco smoke (ETS) is a major indoor pollutant. Both the National Research Council (NRC) and USEPA have indicated that passive smoking significantly increases the risk of lung cancer in adults and respiratory illness in children. It is composed of irritating gases and carcinogenic tar particles. Nonsmokers breathing ETS are called “involuntary smokers,” “passive smokers,” or “second-hand smokers.” There are more than 4700 chemical compounds in cigarette combustion products, such as carbon monoxide, carcinogenic/tars, hydrogen cyanide, formaldehyde, and arsenic. Of the chemicals, 43 have been recognized as carcinogens.

Environmental tobacco smoke (ETS) is a suspected source of many pollutants causing impaired health. A plant manager should either ban indoor smoking, or assign smoking areas at an industrial site. The most common impact in children from ETS is the development of wheezing, coughing, and sputum. According to 1986 reports by NRC, the risk of lung cancer is about 30% higher for nonsmoking spouses of smokers than for nonsmoking spouses of nonsmokers. Some studies also showed that ETS has been associated with an increased risk of heart disease [33].

PCB (Polychlorinated Biphenyl)
Polychlorinated biphenyls (PCBs) are a family of compounds that were used extensively in electrical equipment, such as transformers, because of their insulating and heat transferring qualities. They are suspected human carcinogens and have been linked to liver, kidney, and other health problems. It is known that PCBs can be transported by air, and this is thought to be one of the major ways in which they circulate around the world, explaining why they are found in the Arctic and Antarctic. Indian women dwelling on Cornwall Island located in the Canadian portion of the reservation have elevated levels of toxic PCBs in their breast milk. The PCB contamination does not appear to come from fish, but from air the women breathe every day [45].

Chlorofluorocarbon (CFC) and Freon
Freon is a commercial trademark for a series of fluorocarbon products used in refrigeration and air-conditioning equipment, as aerosol propellants, blowing agents, fire extinguishing agents, and cleaning fluids and solvents. Many types contain chlorine as well as fluorine, and should be called chlorofluorocarbons (CFCs) [85,86].

According to USEPA, roughly 28% of the ozone depletion attributed to chlorofluorocarbon (CFC) is caused by coolants in refrigerators and mobile air-conditioners. This being the case, it is necessary to analyze such issues as the refrigerants themselves used in air-conditioners, the types of air-conditioning resulting in CFC emissions, and the environmental fate, human toxicity, and legislation applying to these refrigerants.

The two most common CFC refrigerants in use today for air-conditioning purposes are Refrigerant 12 (CCl₂F₂) and Refrigerant 22 (CHClF₂). Refrigerant 12 was the first fluorocarbon-type refrigerant developed and used commercially. Its high desirability in air-conditioning applications arises from its extremely low human toxicity, good solubility, lack of effect on
elastomers and other plastics, and reasonable compression ratio. Refrigerant 22, another
commonly used air-conditioning coolant, although much safer to stratospheric ozone (because
of the hydrogen molecule contained), tends to enlarge elastomers and weaken them, thus causing
leakage wherever there is a rubber seal [46]. Of the CFC-12 used for refrigeration in the United
States, 41% is used by vehicle air-conditioners. However, because vehicle air-conditioners are
particularly prone to leaks and need frequent replacements of refrigerant, they use 75% of the
country’s replacement CFC-12.

The acute health effects of Refrigerant 12 are (a) irritation of mouth, nose, and throat; (b)
irregular heart beat; and (c) dizziness and light headiness. Chronic health effects are not known
at this time. The acute health effects of Refrigerant 22 are (a) heart palpitations; (b) tightness in
the chest; (c) difficulty in breathing. Chronic health effects include irregular heart rhythms and
skipped beats, and possible damage to the liver, kidneys, and blood.

Dioxins

Dioxins form a family of aromatic compounds known chemically as di-benzo-p-dioxins. Each
of these compounds has a nucleus triple ring structure consisting of two benzene rings inter-
connected to each other through a pair of oxygen atoms. Dioxin compound generally exists as
colorless crystalline solid at room temperatures, and is only slightly soluble in water and most
organic liquids. They are usually formed through combustion processes involving precursor
compounds. Once formed, the dioxin molecule is quite stable.

Dioxins are not decomposed by heat or oxidation in a 700°C incinerator, but pure
compounds are largely decomposed at 800°C. Chlorinated dioxins lose chlorine atoms on
exposure to sunlight and to some types of gamma radiation, but the basic dioxin structure is
largely unaffected. The biological degradation rate of chlorinated dioxins is slow, although
measured rates differ widely.

Incineration has been well organized as one of the best demonstrated and available
technologies for waste destruction by direct heat, thus the volume and toxicity of the remaining
residuals can be reduced.

Most interest has been directed toward the isomer 2,3,7,8-TCDD, which is among the most
toxic compounds known. Experimental animals are exceedingly sensitive to TCDD. The LD50,
the dose that kills half of a test group, for 2,3,7,8-TCDD is 0.6 μg/kg of body weight for male
guinea pigs. Humans exhibit symptoms effecting on enzyme and nervous systems, and muscle
and joint pains [46].

Dioxin can enter a person through (a) dermal contact, absorption through skin; (b)
inhalation, breathing of contaminated air; and (c) ingestion, eating contaminated materials such
as soil, food, or drinking water contaminated by dioxin. In assessing these three routes, control of
the physical and chemical properties of TCDD in the environment are containment, capping, and
monitoring.

Under existing USEPA regulations, dioxin-bearing wastes may be stored in tanks, placed
in surface impoundments and waste piles, and placed in landfills. However, in addition to
meeting the Resource Conservation and Recovery Act (RCRA) requirements for these storage
and disposal processes, the operators of these processes must operate in accordance with a
management plan for those wastes that is approved by USEPA. Factors to be considered include:
(a) volume, physical, and chemical characteristics of wastes, including their potential to migrate
through soil or to volatilize or escape into the atmosphere; (b) the alternative properties of
underlying and surrounding soils or other materials; (c) the mobilizing properties of other
materials codisposed with these wastes; and (d) the effectiveness of additional treatment, design,
or monitoring techniques.
Additional design, operating, and monitoring requirements may be necessary for facilities managing dioxin wastes in order to reduce the possibility of migration of these wastes to groundwater, surface water, or air so as to protect human health and the environment.

11.3.3 Air Emission Control

Air emission control technologies reduce levels of particulate emission and/or gaseous emission. Some air emission control equipment, such as dry injection units, fabric filters, cyclones, and electrostatic precipitators, are mainly designed to control particulate emissions. Others, such as dry scrubbers, thermal oxidizers, granular activated carbon, adsorption filters, and coalescing filters, control mainly gaseous pollutants including oily vapor. Air emission control equipment such as wet scrubbers and cartridge filters can control both particulate and gaseous emissions. Any gaseous effluent discharge at an industrial site that handles hazardous substances will normally require a discharge permit from one or more regular agencies.

For indoor air quality control, in addition to the air emission control technologies identified above, ventilation and air conditioning are frequently adopted by plant managers [36,85,86].

11.4 MANAGEMENT OF WATER QUALITY AT INDUSTRIAL SITES

11.4.1 Waterborne Contaminants and Health Effects

All point source and nonpoint source wastewaters at an industrial site must be properly managed for source separation, waste minimization, volume reduction, collection, pretreatment, and/or complete end-of-pipe treatment [39,47]. When industrial waste is not disposed of properly, hazardous substances may contaminate a nearby surface water (river, lake, sea, or ocean) and/or groundwater. Any hazardous substance release, either intentionally or unintentionally, increases the risk of water supply contamination and human disease. Major waterborne contaminants and their health effects are listed below.

Arsenic (As)

Arsenic occurs naturally and is also used in insecticides. It is found in tobacco, shellfish, drinking water, and in the air in some locations. The standard allows for 0.05 mg of arsenic per liter of water. If persons drink water that continuously exceeds the standard by a substantial amount over a lifetime, they may suffer from fatigue and loss of energy. Extremely high levels can cause poisoning.

Barium

Although not as widespread as arsenic, barium also occurs naturally in the environment in some areas. It can also enter water supplies through hazardous industrial waste discharges or releases. Small doses of barium are not harmful. However, it is quite dangerous when consumed in large quantities. The maximum amount of barium allowed in drinking water by the standard is 1.0 mg/L of water.

Cadmium

Only minute amounts of cadmium are found in natural waters in the United States. Hazardous waste discharges from the electroplating, photography, insecticide, and metallurgy industries can increase cadmium levels. Another common source of cadmium in drinking water is from
galvanized pipes and fixtures if the pH of a water supply is not properly controlled. The sources of cadmium exposure are the foods we eat and cigarette smoking. The maximum amount of cadmium allowed in drinking water by the standard is 0.01 mg/L of water.

Chromium
Chromium is commonly released to the environment from the electroplating industry and is extremely hazardous. Some studies suggest that in minute amounts, chromium may be essential to human beings, but this has not been proven. The standard for chromium is 0.05 mg/L of water [76].

Lead
Lead sources include lead and galvanized pipes, auto exhausts, and hazardous waste releases. The maximum amount of lead permitted in drinking water by the standards is 0.05 mg/L of water. Excessive amounts well above this standard may result in nervous system disorders or brain or kidney damage [69].

Mercury
Large increases in mercury levels in water can be caused by industrial and agricultural use and waste releases. The health risk from mercury is greater from mercury in fish than simply from water-borne mercury. Mercury poisoning may be acute, in large doses, or chronic, from lower doses taken over an extended time period. The maximum amount of mercury allowed in drinking water by the standard is 0.002 mg/L of water. That level is 13% of the total allowable daily dietary intake of mercury.

Selenium
Selenium is found in meat and other foods due to water pollution. Although it is believed to be essential in the diet, there are indications that excessive amounts of selenium may be toxic. Studies are under way to determine the amount required for good nutrition and the amount that may be harmful. The standard for selenium is 0.01 mg/L of water. If selenium came only from drinking water, it would take an amount many times greater than the standard to produce any ill effects.

Silver
Silver is sometimes released to the environment by the photographic industry, and is considered to be toxic at high concentration. Because of the evidence that silver, once absorbed, is held indefinitely in tissues, particularly the skin, without evident loss through usual channels of elimination or reduction by transmigration to other body sites, and because of other factors, the maximum amount of silver allowed in drinking water by the standard is 0.05 mg/L of water.

Fluoride
High levels of fluoride in drinking water can cause brown spots on the teeth, or mottling, in children up to 12 years of age. Adults can tolerate ten times more than children. In the proper amounts, however, fluoride in drinking water prevents cavities during formative years. This is why many communities add fluoride in controlled amounts to their water supply. The maximum amount of fluoride allowed in drinking water by the standard ranges from 0.4 to 2.4 mg/L depending on one average maximum daily air temperature. The hotter the climate, the lower the amount allowed, for people tend to drink more in hot climates. In this hot area, the maximum contaminant level for fluoride is 2.0 mg/L of water.
Nitrate

Nitrate in drinking water above the standard poses an immediate threat to children under three months of age. In some infants, excessive levels of nitrate have been known to react with the hemoglobin in the blood to produce an anemic condition commonly known as “blue baby.” If the drinking water contains an excessive amount of nitrate, it should not be given to infants under three months of age and should not to be used to prepare formula. The standard allows for 10.0 mg of nitrate (as N) per liter of water. Nitrate can be removed from water by ion exchange, RO, or distillation [48].

Pesticides

Millions of pounds (1 lb = 0.454 k) of pesticides are used on croplands, forests, lawns, and gardens in the United States each year. A large quantity of hazardous pesticides is also released by the pesticide industry to the environment. These hazardous pesticides drain off into surface waters or seep into underground water supplies. Many pesticides pose health problems if they get into drinking water and the water is not properly treated. The maximum limits for pesticides in drinking water are: (a) endrin, 0.0002 mg/L; (b) lindane, 0.004 mg/L; (c) methoxychlor, 0.1 mg/L; (d) toxaphene, 0.005 mg/L; (e) 2,4-D, 0.1 mg/L; and (f) 2,4,5-TP silvex, 0.01 mg/L.

Priority Pollutants

Many toxic organic substances, known as the USEPA priority pollutants, are cancer-causing substances and, in turn, are hazardous substances. Both the U.S. Drinking Water Standards and the Massachusetts Drinking Water Standards give maximum contaminant levels (MCL) for benzene, carbon tetrachloride, p-dichlorobenzene, 1,2-dichloroethane, 1,2-dichloroethylene, 1,1,1-trichloroethane, trichloroethylene (TEC), vinyl chloride, and total trihalomethanes (TTHM) in drinking water. In Massachusetts, monitoring for 51 unregulated VOCs is also required. In addition, the State of Massachusetts has announced the Massachusetts Drinking Water Guidelines, giving the lowest practical quantization limit (PQL) for 40 contaminants that have no regulated MCLs, but are evaluated on a case-by-case, on-going basis. More toxic priority pollutants may be incorporated into this list for enforcement by the State. Plant managers and consulting engineers should contact the home state for specific state regulations.

Microorganisms

Pathogenic microorganisms from the biotechnology industry, agricultural industry, hospitals, and so on may cause waterborne diseases, such as typhoid, cholera, infectious hepatitis, dysentery, etc. Coliform bacteria regulated by both the Federal and the State governments are only an indicator showing whether or not the water has been properly disinfected. For a disinfected water, a zero count on coliform bacteria indicates that the water is properly disinfected, and other microorganisms are assumed to be sterilized.

Radionuclides

Gross alpha particle activity, gross beta particle activity, and total radium 226 and 228 are found from radioactive wastes, uranium deposits, and certain geological formations, and are a cancer-causing energy. The MCLs for gross alpha particle activity, gross beta particle activity, and total radium 226 and 228 are set by the USEPA at 15 pCi/L, 4 mrem/year, and 5 pCi/L, respectively. Again the Massachusetts Drinking Water Guidelines are more stringent, and include additional photon activity, tritium, strontium-90, radon-222, and uranium for State enforcement. Radon in
groundwater can be effectively removed by granular activated carbon [44]. In a recent decision having potentially broad implications, a U.S. federal Court of Appeals has upheld USEPA regulations establishing standards for radionuclides in public water systems [49].

PCBs, CFCs, and Dioxin

Polychlorinated biphenyls (PCBs), CFCs, petroleum products, and dioxin are major toxic contaminants in air (Section 11.3.2), soil (Section 11.5.3), and also in water. The readers are referred to Sections 11.3.2 and 11.5.3 for details about PCB characteristics, health effects, treatment technologies, and so on. For water quality management, they have been included in the list of the USEPA priority pollutants [86].

Asbestos

Asbestos is an airborne contaminant (Section 11.3.2), a hazardous solid waste (Section 11.5), and also a waterborne contaminant, regulated by many states. The health effect of asbestos in water, however, is not totally known.

11.4.2 Water Pollution Prevention and Control

Depending on the State where the industrial plant is located, an aqueous effluent from a pretreatment facility or a complete end-of-pipe treatment facility can be discharged into a river, a lake, or an ocean, only if it meets the pretreatment standards and the effluent discharge standards established by the regulatory agencies, in accordance with the National Pollutant Discharge Elimination System (NPDES) or the State Pollutant Discharge Elimination System (SPDES). The standards can be industry-specific, chemical-specific, or site-specific, or all three. The readers are referred to other chapters of this handbook series for the details.

The plant manager of an industrial site having hazardous substances must establish an in-plant hazardous substance management program to ensure that the plant’s hazardous substances will not be released by accident, or by neglect, to the plant’s soil and groundwater.

Once a groundwater or a surface water is contaminated, the cleanup cost is very high. In general, a contaminated groundwater or surface water must be decontaminated to meet the Federal and the State drinking water standards and the State Guidelines if the groundwater or surface water source is also a potable water supply source. Even if a receiving water (either a surface water or a groundwater) is not intended to be used as a water supply source, the cleanup cost and the loss of revenue can be as high as hundreds of millions of dollars. Pollution prevention before contamination occurs is always better and more economical than pollution control after contamination occurs.

11.4.3 A Case History of Water Pollution by PCB Release

Polychlorinated biphenyls (PCBs) are colorless toxic organic substances that cause cancer and birth defects. There are more than 200 different types of PCBs, ranging in consistency from heavy, oily liquids to waxy solids, and each type further varying in the number and location of chlorine atoms attached to its molecular carbon rings. They are fire resistant and do not conduct heat or electricity well. Accordingly they have numerous commercial applications as insulation in electrical systems, for example, for transformers.

Owing to a lack of environmental knowledge and governmental guidance, General Electric Company released about 500,000 lb of hazardous PCBs into Hudson River in New York State between 1947 and 1976 from its plants in Fort Edward and Hudson Falls. Hudson River is...
one of North America’s great mountain streams, cruising through gorges, crashing over boulders, churning into a white-water delight, and eventually reaching the great Atlantic Ocean. For centuries, the great Hudson has been a reliable water resource for navigation, fishing, boating, swimming, winter sports, water supply, and natural purification. Around Glens Falls, the Hudson runs into civilization, into industry, and, in turn, into an industrial disaster: the pollution of more than 185 miles of the river with over half a million pounds of hazardous and poisonous PCBs.

In 1977, PCB production was banned in the United States, and its release to the Hudson was stopped. Since 1976, the State of New York has banned all fishing on the river between Bakers Fall in the Village of Hudson Fall and the Federal dam at Troy. Most affected has been the commercial striped bass fishery, which once earned New Yorkers $40 million a year. Now the river is no longer suitable for swimming or any water contact sports, and of course, definitely not suitable for domestic water supply. The loss of its recreation and water supply revenues is simply too high to be priced. In 1983, the USEPA declared the Hudson River, from Hudson Falls to New York City, one of the Nation’s largest and most complicated Superfund toxic-waste sites.

Now the New York State Department of Environmental Conservation and some environmental groups have advocated dredging the PCB-contaminated river bottom and transferring the PCB-containing sediment to a landfill site. Even though the cleanup costs, now estimated to run as high as $300 million U.S. dollars, are acceptable to U.S. tax payers, a landfill site to receive the PCB-contaminated sediment still cannot be found because of public resistance [50].

This is a typical environmental disaster that the industry must not forget and must not repeat. For more information on PCB pollution and management, the readers are referred to the literature [46,51].

11.5 MANAGEMENT OF HAZARDOUS SOLID WASTES AT INDUSTRIAL SITES

11.5.1 Disposal of a Large Quantity of Hazardous Solid Wastes

When disposed of improperly, hazardous solid wastes may contaminate air, soil, and/or groundwater, and increase the risk of human disease and environmental contamination.

Inevitably, some hazardous solid wastes generated at an industrial site must be discarded. Rusted, old containers or equipment might be targets for plantwide cleaning. Some industrial materials or products, such as half-used cans of paint or chemical might be discarded. Or the owner or plant manager might want to dispose of some products that are too old to be sold, or some building material (such as asbestos) that is too hazardous for everyday use.

A large quantity of any hazardous solid wastes can only be properly transported or disposed of by licenced or certified environmental professionals. Small quantity of hazardous wastes, however, can be handled by a plant manager.

11.5.2 Disposal of a Small Quantity of Hazardous Solid Wastes

Right now there is no easy way to dispose of very small quantity of hazardous household products, such as pesticides, batteries, outdated medicines, paint, paint removals, used motor oil, wool preservatives, acids, caustics, and so on. There are no places that accept such small quantities of wastes as generated by a small industrial/commercial site. For now, the best disposal techniques are listed in Table 1, which is recommended by the Massachusetts Department of Environmental Management, Bureau of Solid Waste Disposal.
Table 1 Methods for Disposal of Small Quantities of Common Hazardous Wastes

<table>
<thead>
<tr>
<th>Product</th>
<th>Take to a hazardous waste collection site (or store until available)</th>
<th>Wrap in plastic bag, put in trash, and alert the collector</th>
<th>Wash down drain with lots of water</th>
<th>Take to a special recycling center (not paper recycling)</th>
<th>Give to a friend to use, with careful instructions</th>
<th>Return to the manufacturer or to the retailer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acids (strong)</td>
<td>Best</td>
<td>Never</td>
<td>Never</td>
<td>Unavailable</td>
<td>Impractical</td>
<td>Impractical</td>
</tr>
<tr>
<td>Acids (weak)</td>
<td>Best</td>
<td>4th best</td>
<td>3rd best</td>
<td>Unavailable</td>
<td>2nd best</td>
<td>Impractical</td>
</tr>
<tr>
<td>Banned pesticides</td>
<td>2nd best</td>
<td>Never</td>
<td>Never</td>
<td>Never</td>
<td>Never</td>
<td>Best</td>
</tr>
<tr>
<td>Batteries</td>
<td>3rd best</td>
<td>Never</td>
<td>Impractical</td>
<td>Best</td>
<td>Never</td>
<td>2nd best</td>
</tr>
<tr>
<td>Caustics</td>
<td>Best</td>
<td>3rd best</td>
<td>4th best</td>
<td>Unavailable</td>
<td>2nd best</td>
<td>Impractical</td>
</tr>
<tr>
<td>Pesticide containers</td>
<td>Best</td>
<td>2nd best</td>
<td>Impractical</td>
<td>Unavailable</td>
<td>Impractical</td>
<td>Impractical</td>
</tr>
<tr>
<td>Flammables</td>
<td>Best</td>
<td>3rd best</td>
<td>Never</td>
<td>Unavailable</td>
<td>2nd best</td>
<td>Impractical</td>
</tr>
<tr>
<td>Outdated medicines</td>
<td>Best</td>
<td>3rd best</td>
<td>2nd best</td>
<td>Never</td>
<td>Never</td>
<td>Impractical</td>
</tr>
<tr>
<td>Paint</td>
<td>2nd best</td>
<td>3rd best</td>
<td>Never</td>
<td>Unavailable</td>
<td>2nd best</td>
<td>Impractical</td>
</tr>
<tr>
<td>Paint remover</td>
<td>Best</td>
<td>Never</td>
<td>Never</td>
<td>Unavailable</td>
<td>2nd best</td>
<td>Impractical</td>
</tr>
<tr>
<td>Pesticides</td>
<td>Best</td>
<td>3rd best</td>
<td>Never</td>
<td>Unavailable</td>
<td>2nd best</td>
<td>Impractical</td>
</tr>
<tr>
<td>Used motor oil</td>
<td>3rd best</td>
<td>Never</td>
<td>Never</td>
<td>Best</td>
<td>Never</td>
<td>2nd best</td>
</tr>
<tr>
<td>Wood preservatives</td>
<td>Best</td>
<td>2nd best</td>
<td>Never</td>
<td>Unavailable</td>
<td>3rd best</td>
<td>Impractical</td>
</tr>
</tbody>
</table>

Note: Strong acids include battery acid, murintic acid, and hydrochloric acid. Weak acids include acetic acid, toilet bowl cleaner, and lactic acid. Banned pesticides include Silvex, Mirex, Aldrin, Chlordane, DDT, and Heptachlor. Caustics include oven cleaner and drain cleaner. Flammables include alcohol, acetone, turpentine, lacquer, and paint thinner. Pesticides include rodent poisons, insecticides, weed killer, and other herbicides and fungicides. Pesticide containers should be triple-rinsed, and the contents sprayed on crops or yard, before discarding.
Small quantities of hazardous solid wastes (such as potassium dichromate, lead nitrate, silver nitrate, asbestos, etc.), liquid chemicals (such as chloroform, PCB, methylene chloride, etc.), petrochemicals (such as gasoline, No. 2 fuel oil, etc.), or pure metals (such as mercury, sodium, etc.), which are stored in bottles or cans, however, are not considered to be hazardous “household products.” Accordingly these nonhousehold hazardous solid wastes, even in small quantities, can only be properly disposed of by licenced or certified environmental professionals.

11.5.3 Hazardous and Infectious Solid Wastes

A few selected hazardous solid wastes, and hazardous liquid wastes stored in drums/tanks, are described below for reference.

Infectious and Hazardous Medical Wastes

In a 1987 Federal Register notice, USEPA first defined the three waste categories (pathological waste, laboratory waste, isolation waste) below, which should be treated as infectious:

1. Pathological waste: Surgical or operating room specimens (like body parts) and other potentially contaminated waste from outpatient areas and emergency rooms.
2. Laboratory waste: Pathological specimens (all tissues, blood specimens, excreta, and secretions obtained from patients or laboratory animals) and other potentially contaminated wastes.
3. Isolation waste: Disposable equipment and utensils (like syringes and swabbing) from rooms of patients suspected to have a communicable disease.
4. General hospital waste: Cafeteria garbage, disposal gowns, drapes, packaging, etc., representing about 85% of total hospital waste.
5. Hazardous waste: Dental clinics, chemotherapy wastes (some) listed as hazardous by USEPA, and low-level radioactive waste.

Incineration has been common practice in hospitals for decades. It is quick, easy, and especially handy for rendering the more repulsive wastes unrecognizable. It also reduces waste volume by up to 90%, leaving mostly ashes behind, for landfilling. Because of their comparatively small size, hospital incinerators have until recently been exempted from federal rules that control air emissions of larger incinerators, like mass-burn facilities. According to the November 1987 USEPA report, there were 6200 hospital incinerators around the United States. Only 1200 are “controlled-air” incinerators, a relatively new design that limits the air in the burn chamber, ensuring more complete incineration. However, even the 1200 controlled-air models do not necessarily have stacks equipped with scrubbers to prevent acid gas and dioxin emissions [46,52].

In many states, regulations only require that hospital incinerators not create a public nuisance usually recognized as odors and smoke opacity. Disposal costs for these medical wastes are becoming stiffer, just as surely as they are for infectious and other hazardous/toxic wastes. This adds another incentive to incinerate. It may be possible that a good deal of hospital waste could be separated, reduced, and recycled. While infectious waste is obviously not recyclable, the amount of waste designated infectious can be greatly reduced by separating materials to avoid excess contamination [74].

Health officials are increasingly concerned about disposal of infectious, radioactive, and toxic medical wastes that have become major components in the treatment and diagnosis of many diseases. Legal complications in handling medical wastes are another issue. There are, for example, no federal regulations for disposal of medical waste. State and local regulations are widely divergent.
Petroleum Contaminated Soil

Petroleum (crude oil) is a highly complex mixture of paraffinic, cycloparaffinic (naphthenic), and aromatic hydrocarbons, containing low percentages of sulfur and trace amounts of nitrogen and oxygen compounds. The most important petroleum fractions, obtained by cracking or distillation, are various hydrocarbon gases (butane, ethane, propane), naphtha of several grades, gasoline, kerosene, fuel oils, gas oil, lubricating oils, paraffin wax, and asphalt. From the hydrocarbon gases, ethylene, butylene, and propylene are obtained. About 5% of the petroleum (crude oil) consumed in the United States is used as feedstocks by the chemical industries. The rest is consumed for production of various products, such as gasoline, fuel oils, and so on, introduced above. The crude oil, when spilled or leaked, will contaminate the soil because it is flammable, and moderately toxic by ingestion. One of the major components of petroleum product is benzene, which is a known human carcinogen.

Gasoline, fuel oils, and lubricating oils are three major pollutants among the petroleum family members, and are therefore introduced in more detail.

Gasoline is a mixture of volatile hydrocarbons suitable for use in a spark-ignited internal combustion engine and having an octane number of at least 60. The major components are branched-chain paraffins, cycloparaffins, and aromatics. The present source of gasoline is petroleum, but it may also be produced from shale oil and Athabasca tar sands, as well as by hydrogenation or gasification of coal. There are many different kinds of gasolines:

- Antiknock gasoline: a gasoline to which a low percentage of tetra-ethyl-lead, or similar compound, has been added to increase octane number and eliminate knocking. Such gasolines have an octane number of 100 or more and are now used chiefly as aviation fuel.
- Casinghead gasoline: see natural gasoline (below).
- Cracked gasoline: gasolines produced by the catalytic decomposition of high-boiling components of petroleum, and having higher octane ratings (80–100) than gasoline produced by fractional distillation. The difference is due to the prevalence of unsaturated, aromatic, and branched-chain hydrocarbons in the cracked gasoline.
- High-octane gasoline: a gasoline with an octane number of about 100.
- Lead-free gasoline: an automotive fuel containing no more than 0.05 g of lead per gallon, designed for use in engines equipped with catalytic converters.
- Natural gasoline: a gasoline obtained by recovering the butane, pentane, and hexane hydrocarbons present in small proportions in certain natural gases. Used in blending to produce a finished gasoline with adjusted volatility, but low octane number. Do not confuse with natural gas (q.v.).
- White gasoline: an unleaded gasoline especially designed for use in motorboats; it is uncracked and strongly inhibited against oxidation to avoid gum formation, and is usually not colored to distinguish it from other grades. It also serves as a fuel for camp lanterns and portable stoves.
- Polymer gasoline: a gasoline produced by polymerization of low-molecular-weight hydrocarbons such as ethylene, propane, and butanes. It is used in small amounts for blending with other gasoline to improve its octane number.
- Pyrolysis gasoline: gasoline produced by thermal cracking as a byproduct of ethylene manufacture. It is used as a source of benzene by the hydrodealkylation process.
- Reformed gasoline: a high-octane gasoline obtained from low-octane gasoline by heating the vapors to a high temperature or by passing the vapors through a suitable catalyst.
- Straight-run gasoline: gasoline produced from petroleum by distillation, without use of cracking or other chemical conversion processes. Its octane number is low.
Fuel oil is any liquid petroleum product that is burned in a furnace for the generation of heat, or used in an engine for the generation of power, except oils having a flash point below 100°F and oil burned in cotton or wool burners. The oil may be a distilled fraction of petroleum, a residuum from refinery operations, a crude petroleum, or a blend of two or more of these.

ASTM has developed specifications for six grades of fuel oil. No. 1 is a straight-run distillate, a little heavier than kerosene, used almost exclusively for domestic heating. No. 2 (diesel oil) is a straight-run or cracked distillate used as a general purpose domestic or commercial fuel in atomizing-type burners. No. 4 is made up of heavier straight-run or cracked distillates and is used in commercial or industrial burner installations not equipped with preheating facilities. The viscous residuum fuel oils, Nos. 5 and 6, sometimes referred to as bunker fuels, usually must be preheated before being burned. ASTM specifications list two grades of No. 5 oil, one of which is lighter and under some climatic conditions may be handled and burned without preheating. These fuels are used in furnaces and boilers of utility power plants, ships, locomotives, metallurgical operations, and industrial power plants.

Lubrication oil is a selected fraction of refined mineral oil used for lubrication of moving surfaces, usually metallic, and ranging from small precision machinery (watches) to the heaviest equipment. Lubricating oils usually have small amounts of additives to impart special properties such as viscosity index and detergency. They range in consistency from thin liquids to greaselike substances. In contract to lubricating greases, lube oils do not contain solid or fibrous minerals.

The major petroleum release sources are bulk gasoline terminals, bulk gasoline plants, service stations, and delivery tank trucks. USEPA estimates there are approximately 1500 bulk terminals, 15,000 bulk plants, and 390,000 gasoline service stations in the United States, of which some 180,000 are retail outlets [46]. Fuel oil release is mainly caused by underground storage tank leakage. Lubricating oil release, however, is mainly caused by neglect or intentional dump.

Release of gasoline, lubricating oil, and fuel oils to the soil occurs from spills, leaks, loading and unloading operations. Disposal of petroleum-contaminated soil is now one of the major environmental tasks.

Dioxin
Dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD) is among the most toxic compounds known today. It is an airborne contaminant from an incineration process, which has been described in Section 11.3.2. Dioxin also frequently occurs as an impurity in the herbicide 2,4,5-T. Accordingly, when the herbicide 2,4,5-T is applied to crops, dioxin is also released to the soil. Any spills of dioxin also cause soil contamination. It may be removed by extraction with coconut-activated carbon. Its half-life in soil is about one year.

PCBs
Polychlorinated Diphenyl (PCB) is an airborne contaminant (Section 11.3.2), a waterborne contaminant (Section 11.4.1) and also a contaminant in soil due to PCB releases, such as spills, leakages, and landfills. Before the United States banned manufacture of PCBs in 1979, Monsanto had produced more than 1 billion pounds. Practises one thought acceptable and hazard-free in the past have led to PCB releases into the environment. Such practises were conducted by industries using PCBs in processes and products and discharging the PCB-containing waste into rivers and streams. Other PCB-containing waste was disposed of in landfills. When used in transformers and electrical capacitors, PCB compartments are sealed and in place for the life of the equipment. Occasionally seals will leak or external structures are damaged, resulting in leakage. The following are applications in which PCBs have been found
and hence are potential sources: (a) cooling and insulating fluids for transformers; (b) dielectric impregnating for capacitors; (c) flame retardants for resins and plastics in the electrical industry; (d) formulations in paints and printing inks; (e) water-repellent additives; (f) dye carrier for pressure-sensitive copy paper; (g) incombustible hydraulic fluids; and (h) dust control agents for road construction.

Other Organic and Inorganic Contaminants

In addition to gasoline, CFC, and so on, various other organic and inorganic compounds such as heavy metals, sulfides, and cyanides on the USEPA Priority Pollutants List, and subject to various water quality criteria, guidelines, etc., when released can also contaminate the soil. The contaminated soil then becomes a hazardous solid waste which must be properly disposed of [63–86].

11.5.4 Disposal of Hazardous and Infectious Wastes

Incineration has been used extensively in hospitals for disposal of hospital wastes containing infectious and/or hazardous substances. Most hospital incinerators (over 80%), however, are outdated or poorly designed. Modern incineration technology, however, is available for complete destruction of organic hazardous and infectious wastes. In addition, adequate air pollution control facilities, such as scrubbers, secondary combustion chambers, stacks, and so on, are needed to prevent acid gas, dioxin, and metals from being discharged from the incinerators.

The same modern incinerators equipped with scrubbers, bag-filters, electro-precipitators, secondary combustion chambers, stacks, etc., are equally efficient for disposal of hazardous PCBs, dioxin, USEPA priority pollutants, and so on, if they are properly designed, installed, and managed. Incineration technology is definitely feasible, and should not be overlooked. The only residues left in the incinerators are small amount of ashes containing metals. The metal-containing ashes may be solidified and then disposed of on a landfill site.

Environmentalists and ecologists, however, oppose construction of any new incinerators and landfill facilities. They would like to close all existing incineration and landfill facilities, if possible. They are wrong. Unless human civilization is to go backward, there will always be hazardous and infectious wastes produced by industry. These wastes must go somewhere. A solution must be found.

It is suggested that waste minimization, spill prevention, leakage prevention, volume reduction, waste recycle, energy conversion, and conservation be practiced by the industry as well as the community. Innovative technology must be developed, and good managerial methods must be established for this practise. With all these improvements, modern incinerators and landfill facilities may still be needed, but their numbers and sizes will be significantly reduced.

Section 11.15 introduces a case history showing how an organic hazardous waste can be reused as a waste fuel in the cement industry. A cement plant is a manufacturing plant needed by our civilization. With special managerial arrangements and process modification, a cement kiln can be operated for production of cement as well as for incineration of hazardous waste. Because hazardous waste can replace up to 15% of fuel for this operation, the industry not only saves 15% of energy cost, but also solves a hazardous waste disposal problem. It should be noted that modern incineration and air purification technologies are still required. In this case the cement kiln acts like an incinerator. It is not necessary for the community or the waste-producing industry to build an incinerator solely for waste disposal.
Section 11.14 presents two case histories: (a) disposal of photographic wastes by a large quantity generator; and (b) disposal of photographic wastes by a small quantity generator. In general, it is economically feasible for a large quantity generator to pretreat its wastes, aiming at regulatory compliance. A small quantity generator with in-house engineering support may also pretreat its wastes, and discharge the pretreated effluent to a receiving water or a POTW. Without in-house engineering support, it would be more cost-effective for the small quantity generator to hire an outside engineering consultant and/or an outside general contractor for proper onsite storage of its hazardous/infectious wastes, subsequent transportation of its wastes by a licenced transporter, and final offsite disposal of its wastes by a licenced facility.

Section 11.13 presents an example showing how a medical office manages its hazardous wastes and what the regulatory requirements are.

Friable asbestos is hazardous, and should be properly disposed of following governmental requirements and guidelines presented in Section 11.6.

11.6 DISPOSAL OF HAZARDOUS ASBESTOS

11.6.1 Asbestos, Its Existence and Releases

The term “asbestos” describes six naturally occurring fibrous minerals found in certain types of rock formations. Of that general group, the minerals chrysolite, amosite, and crocidolite have been most commonly used in building products. Under the Clean Air Act of 1970, the USEPA has been regulating many asbestos-containing materials (ACM), which, by USEPA definition, are materials with more than 1% asbestos. “Friable asbestos” includes any materials that contain greater than 1% asbestos, and that can be crumbled, pulverized, or reduced to powder by hand pressure. This asbestos may also include previously nonfriable material that becomes broken or damaged by mechanical force. The Occupational Safety and Health Administration’s (OSHA) asbestos construction standard in Section K, “Communication of Hazards to Employees,” specifies labeling many materials containing 0.1% or more asbestos [20,22,53].

Asbestos became a popular commercial product because it is strong, will not burn, resists corrosion, and insulates well. When mined and processed, asbestos is typically separated into very thin fibers. When these fibers are present in the air, they are normally invisible to the naked eye. Asbestos fibers are commonly mixed during processing with material that binds them together so that they can be used in many different products. Because these fibers are so small and light, they remain in the air for many hours if they are released from ACM in a building. When fibers are released into the air they may be inhaled by people in the building.

In July 1989, USEPA promulgated the Asbestos Ban and Phase-down Rule. The rule applies to new product manufacture, importation, and processing, and essentially bans almost all asbestos-containing products in the United States by 1997. This rule does not require removal of ACM currently in place in buildings. In fact, undisturbed materials generally do not pose a health risk; they may become hazardous when damaged, disturbed, or deteriorate over time and release fibers into building air. Controlling fiber release from ACM in a building or removing it entirely is termed “asbestos abatement,” aiming at mainly friable asbestos.

Asbestos has been mainly used as building construction materials for many years. Their applications and releases include the following situations.

Vinyl Floor Tiles and Vinyl Sheet Flooring
Asbestos has been added to some vinyl floor tiles to strengthen the product materials, and also to decorate the exposed surfaces. Asbestos is also present in the backing in some vinyl sheet
flooring. The asbestos is often bound in the tiles and backing with vinyl or some type of binder. Asbestos fibers can be released if the tiles are sanded or seriously damaged, or if the backing on the sheet flooring is dry-scraped or sanded, or if the tiles are severely worn or cut to fit into place.

Pipe Insulation

Hot water and steam pipes in some older homes may be covered with an asbestos-containing material, primarily as thermal insulation to reduce heat loss, and to protect nearby surfaces from the hot pipes. Pipes may also be wrapped in an asbestos “blanket” or asbestos paper tape.

Asbestos-containing insulation has also been used on furnace ducts. Most asbestos pipe insulation in homes is preformed to fit around various diameter pipes. This type of asbestos-containing insulation was manufactured from 1920 to 1972. Renovation and home improvements may expose and disturb the asbestos-containing materials.

Wall and Ceiling Insulation

Buildings constructed between 1930 and 1950 may contain insulation made with asbestos. Wall and ceiling insulation that contains asbestos is generally found inside the wall or ceiling (“sandwiched” behind plaster walls). The asbestos is used as material for thermal insulation, acoustical insulation, and fire protection. Renovation and home improvements may expose and disturb the materials.

Appliances

Some appliances, such as toasters, popcorn poppers, broilers, dishwashers, refrigerators, ovens, ranges, clothes dryers, and electric blankets are, or have been, manufactured with asbestos-containing parts or components for thermal insulation. As a typical example, hair dryers with asbestos-containing heat shields were only recalled in 1979. Laboratory tests of most hair dryers showed that asbestos fibers were released during use.

Roofing, Shingles, and Siding

Some roofing shingles, siding shingles, and sheets have been manufactured with asbestos using Portland cement as a binding agent. The purposes for the addition of asbestos are strength enhancement, thermal insulation, acoustical insulation, and fire protection. Because these products are already in place and outdoors, there is likely to be little risk to human health. However, if the siding is worn or damaged, asbestos may be released.

Ceilings and Walls with Patching Compounds and Textured Paints

Some large buildings built or remodeled between 1978 and 1987 may contain a crumbly, asbestos-containing material that has been sprayed onto the ceiling or walls. Some wall and ceiling joints may be patched with asbestos-containing material manufactured before 1977. Some textured paint sold before 1978 contained asbestos. Sanding or cutting a surface with the building materials that may contain asbestos will release asbestos to the air, and thus should be avoided.

Stoves, Furnaces, and Door Gaskets

Asbestos-containing cement sheets, millboard, and paper have been used frequently in buildings when wood-burning stoves have been installed. These asbestos-containing materials were used as thermal insulation to protect the floor and walls around the stoves. On cement sheets, the label may tell the plant manager if they contains asbestos. The cement sheet material will probably not
release asbestos fibers unless scraped. This sheet material may be coated with a high temperature paint, which will help seal any asbestos into the material. Asbestos paper or millboard were also used for this type of thermal insulation. If these materials were placed where they are subjected to wear, there is an increased possibility that asbestos fibers may be released. Damage or misuse of the insulating material by sanding, drilling, or sawing will also release asbestos fibers.

Oil, coal, or wood furnaces with asbestos-containing insulation and cement are generally found in some older buildings. Updating the system to oil or gas can result in removal or damage to the old insulation. If the insulation on or around the furnaces is in good condition, it is best to leave it alone. If the insulation is in poor condition, or pieces are breaking off, there will be an asbestos release.

Some door gaskets in furnaces, ovens, and wood and coal stoves may contain asbestos. The asbestos-containing door gaskets on wood and burning stoves are subject to wear and can release asbestos fibers under normal use conditions. Handle the asbestos-containing material as little as possible.

11.6.2 Health Risk of Asbestos

Asbestos has been shown to cause cancer of the lung and stomach according to studies of workers and others exposed to asbestos. There is no level of exposure to asbestos fibers that experts can assume is completely safe.

Some asbestos materials can break into small fibers that can float in the air, and these fibers can be inhaled. These tiny fibers are small, cannot be seen, and can pass through the filters of normal vacuum cleaners and get back into the air. Once inhaled, asbestos fibers can become lodged in tissue for a long time. After many years, cancer or other sickness can develop. In order to be a health risk, asbestos fibers must be released from the material and be present in the air for people to breathe. A health risk exists only when asbestos fibers are released from the material or product. Soft, easily crumbled asbestos-containing material, previously defined as “friable asbestos,” has the greatest potential for asbestos release and therefore has the greatest potential to create health risks.

Asbestos fibers, in particular in friable asbestos, can cause serious health problems. If inhaled, they can cause diseases that disrupt the normal functioning of the lungs. Three specific diseases – asbestoses (a fibrous scarring of lungs), lung cancer, and mesothelioma (a cancer of the lining of the chest or abdominal cavity) – have been linked to asbestos exposure. These diseases do not develop immediately after inhalation of asbestos fibers; it may be 20 years or more before symptoms appear. In general, as with cigarette smoking and the inhalation of tobacco smoke, the more asbestos fibers a person inhales, the greater the risk of developing an asbestos-related disease.

11.6.3 Identification of Asbestos

Plumbers, building contractors, or heating contractors are often able to make a reasonable judgment about whether or not a product contains asbestos, based on a visual inspection. In some cases, the plant manager may want to have the material analyzed. Such analysis may be desirable if the industrial plant has a large area of damaged material or if the plant manager is preparing a major renovation that will expose material contained behind a wall or other barrier.

A list of 221 laboratories receiving initial accreditation to perform bulk asbestos analysis during the second quarter of 1989 has been released by the National Institute of Standards and
Technology, Gaithersburg, MD. There are two types of air sampling techniques:

1. Personal air sampling (required by OSHA) is designed to measure an individual worker’s exposure to fibers while the worker is conducting tasks that may disturb ACM. The sampling device is worn by the worker and positioned so that it samples air in the worker’s breathing zone.

2. Area (or ambient) air sampling is conducted to get an estimate of the numbers of airborne asbestos fibers present in a building. It is used as an assessment tool in evaluating the potential hazard posed by asbestos to all building occupants.

11.6.4 Operation and Maintenance (O&M) Program

The principal objective of an O&M program is to minimize exposure of all building occupants to asbestos fibers. To accomplish this objective, an O&M program includes work practises to (a) maintain ACM in good condition, (b) ensure proper cleanup of asbestos fibers previously released, (c) prevent further release of asbestos fibers, and (d) monitor the condition of ACM.

The methods for monitoring/correcting the condition of ACM include: (a) “surfacing ACM” (asbestos-containing material that is sprayed on or otherwise applied to surfaces, such as acoustical plaster on ceilings and fireproofing materials on structural members, or other materials on surfaces for acoustical, fireproofing, or other purposes); (b) “thermal system insulation” (TSI) (asbestos-containing material applied to pipes, fittings, boiler, breaching, tanks, ducts, or other interior structural components to prevent heat loss or gain or water condensation); and (c) “miscellaneous ACM” (interior asbestos-containing building material on structural components, structural members or fixtures, such as floor and ceiling tiles; does not include surfacing material or thermal system insulation).

The O&M program can be divided into three types of projects: (a) those that are unlikely to involve any direct contact with ACM; (b) those that may cause accidental disturbance of ACM; and (c) those that involve relatively small disturbances of ACM.

First, a person who may be the plant manager, a principal member of staff, or an outside asbestos consultant should be installed as the Asbestos Program Manager in order to establish and implement an O&M program. The appointed Asbestos Program Manager shall have overall responsibility for the asbestos control program. He/she may develop and implement the O&M program, establish training and experience requirements for contractors’ workers, supervise and enforce work practises with assistance of work crew supervisors, and conduct periodic reinspections and be responsible for record keeping. This Asbestos Program Manager should be properly trained in O&M program development and implementation. An asbestos contractor may be hired to provide services for ACM abatement and for building decontamination following a fiber release episode. In addition to the abovementioned Asbestos Program Manager, the plant manager, asbestos consultant, asbestos contractor, a communications person, a record-keeping person, a lawyer, and the federal, state, and local government advisors may also get involved in the O&M program. Secondly, a physical and visual inspection of the building is to be conducted and bulk samples of such materials are to be taken to determine if ACM is present. Then an ACM inventory can be established, and the ACM’s condition and potential for disturbance can be assessed.

An official O&M program is to be developed based on the inspection and assessment data, as soon as possible if ACM is located. Either the Asbestos Program Manager or a qualified consultant should develop the O&M program. The written O&M program should state clearly the O&M policies and procedures for that building, identify and describe the administrative line of authority for that building, and should clearly define the responsibilities of key participants,
such as the Asbestos Program Manager and custodial and maintenance supervisors and staff. The written O&M program should be available and understood by all participants involved in the management and operations of the building.

In general the O&M program developed for a particular building should include the following O&M program elements:

- **Notification:** a program to tell workers, tenants, and building occupants where ACM is located, and how and why to avoid disturbing the ACM. All persons affected should be properly informed.
- **Surveillance:** regular ACM surveillance to note, assess, and document any changes in the ACM’s condition by trained workers or properly trained inspectors. Air monitoring to detect airborne asbestos fibers in the building may provide useful supplemental information when conducted along with a comprehensive visual and physical ACM inspection/reinspection program. Air samples are most accurately analyzed using transmission electron microscopy (TEM).
- **Controls:** work control/permit system to control activities that might disturb ACM. This system requires the person requesting work to submit a job request form to the Asbestos Program Manager before any work is begun.
- **Work practices:** O&M work practises to avoid or minimize fiber release during activities affecting ACM.
- **Record keeping:** to document O&M activities. OSHA and USEPA have specific requirement for workers exposed to asbestos.
- **Worker protection:** medical and respiratory protection programs, as applicable.
- **Training:** the Asbestos Program Manager, and custodial and maintenance staff training. The building owner should make sure that the O&M program developed is site-specific and tailored for the building. The O&M program should take into account use, function, and design characteristics of a particular building.

The O&M program once established shall be implemented and managed conscientiously and reviewed periodically. Alternatives on control options that may be implemented under an O&M program include: (a) repair, (b) encapsulation, (c) enclosure, (d) encasement, and (e) minor removal. The abatement actions other than O&M can also be selected when necessary. For instance, removal of ACM before renovations may be necessary in some instances.

11.6.5 O&M Training Program

Properly trained custodial and maintenance workers are critical to a successful A&M program. The following items are highlighted training requirements:

1. OSHA and USEPA require a worker training program for all employees exposed to fiber levels at or above the action level (0.1 f/cc, 30 min time-weighted average or TWA).
2. Some states and municipalities may have specific work training requirements.
3. At least three levels of maintenance worker training can be identified: (a) Level 1 Awareness training for workers involved in activities where ACM may be accidentally disturbed (may range from 2 to 8 hours); (b) Level 2 Special O&M training for maintenance workers involved in general maintenance and incidental ACM repair tasks (at least 16 hours); (c) Level 3 Abatement worker training for workers who may conduct asbestos abatement. This work involves direct, intentional contact with ACM. “Abatement worker” training courses that involve 24 to 32 hours of training fulfill this level of training.
11.6.6 General Guidelines for Handling Asbestos-Containing Materials

If the plant manager thinks that a material contains asbestos, and the material must be banned, rubbed, handled, or taken apart, he/she should hire a trained, asbestos-removal contractor before taking any risky action. In order to determine the experience and skill of a prospective asbestos-removal contractor, the contractor should be asked these questions:

1. Is the contractor certified? (Ask to see the certificate).
2. Have the contractor and the contractor’s workers been trained?
3. Does the contractor have experience of removing asbestos from buildings?
4. Will the contractor provide a list of references from people for whom he/she has worked with asbestos?
5. Will the contractor provide a list of places where he/she has worked with asbestos?
6. Will the contractor use the “wet method” (water and detergent)?
7. Will the contractor use polyethylene plastic barriers to contain dust?
8. Will the contractor use a HEPA (high efficiency particulate air) filter vacuum cleaner?
9. Will the contractor’s workers wear approved respirators?
10. Will the contractor properly dispose of the asbestos and leave the site free of asbestos dust and debris?
11. Will the contractor provide a written contract specifying these procedures?

The plant manager or the owner of an industrial site must make sure to hire a certified, trained, and experienced asbestos contractor who follows the following General Guidelines for Handling Products Containing Asbestos established by the U.S. Consumer Product Safety Commission and the U.S. Environmental Production Agency [22]:

1. The contractor should seal off the work area from the rest of the residence and close off the heating/air conditioning system. Plastic sheeting and duct tape may be used, which can be carefully sealed with tape when work is complete. The contractor should take great care not to track asbestos dust into other areas of the residence.
2. The work site should be clearly marked as a hazard area. Only workers wearing disposable protective clothing should have access. Household members and their pets should not enter the area until work is completed and inspected.
3. During the removal of asbestos-containing material, workers should wear approved respirators appropriate for the specific asbestos activity. Workers should also wear gloves, hats, and other protective clothing. The contractor should properly dispose of all of this equipment (along with the asbestos material) immediately after using it.
4. The contractor should wet the asbestos-containing material with a hand sprayer. The sprayer should provide a fine mist, and the material should be thoroughly dampened, but not dripping wet. Wet fibers do not float in the air as readily as dry fibers and will be easier to clean up. The contractor should add a small amount of a low sudsing dish or laundry detergent to improve the penetration of the water into the material and reduce the amount of water needed.
5. The contractor should assure that if asbestos-containing material must be drilled or cut, it is done outside or in a special containment room, with the material wetted first.
6. The contractor should assure that, if the material must be removed, it is not broken into small pieces, as asbestos fibers are more likely to be released. Pipe insulation is usually installed in preformed blocks and should be removed in complete pieces.
7. The contractor should place any material that is removed and any debris from the work in sealed, leak-proof, properly labeled, plastic bags (6 mm thick) and should dispose of them in a proper landfill. The contractor should comply with Health Department instructions about how to dispose of asbestos-containing material.

8. The contractor should assure that after removal of the asbestos-containing material, the area is thoroughly cleaned with wet mops, wet rags, or sponges. The cleaning procedure should be repeated a second time. Wetting will help reduce the chance that the fibers are spread around. No asbestos material should be tracked into other areas. The contractor should dispose of the mop heads, rags, and sponges in the sealed plastic bags with the removed materials.

9. Plant personnel, if trained but not certified, can perform minor repairs (approximately the size of a hand), taking special precautions regarding dust, sweep, or vacuum particles suspected of containing asbestos. The fibers are so small that they cannot be seen and can pass through normal vacuum cleaner filters and get back into the air. The dust should be removed by a wet-mopping procedure or by specially designed “HEPA” vacuum cleaners used by trained asbestos contractors.

11.6.7 Environmental Regulations on ACM Mandatory Requirements

Regulations

There are several important OSHA and USEPA regulations that are designed to protect workers. They are summarized here, as guidance. OSHA has specific requirements concerning worker protection and procedures used to control ACM. These include the OSHA construction industry standard for asbestos (29 CFR1926.58), which applies to O&M work, and the general industry asbestos standard (29 CFR1910.1001). State-delegated OSHA plans, as well as local jurisdictions, may impose additional requirements.

The OSHA standards generally cover private sector workers and public sector employees in states that have an OSHA state plan. Public sector employees, or certain school employees, who are not already subject to a state OSHA plan are covered by the USEPA “Worker Protection Rule” (Federal Register: February 25, 1987; 40 CFR 763, Subpart G, Abatement Projects; Worker Protection, Final Rule).

The OSHA standards and the USEPA Worker Protection Rule require employers to address a number of items, which are triggered by exposure of employees to asbestos fibers. Exposure is discussed in terms of fibers per cubic centimeter (cc) of air. A cc is a volume approximately equivalent to that of a sugar cube.

Two main provisions of the regulations fall into the federal category of “Permissible Exposure Limits” (PELs) to airborne asbestos fibers. They are:

1. An 8 hour time-weighted average limit (TWA) of 0.2 fiber per cubic centimeter (f/cc) of air based on an 8 hour time-weighted average (TWA) sampling period. This is the maximum level of airborne asbestos, on average, that any employee may be exposed to over an 8 hour period (normal work shift).

2. Excursion limit (El): 1.0 f/cc as averaged over a sampling period of 30 minutes.

These levels trigger mandatory requirements, which include the use of respirators and protective clothing, the establishment of “regulated areas,” the posting of danger signs, as well as the use of engineering controls and specific work practices [20,53].

OSHA regulations also establish an “action level”: 0.1 f/cc for an 8 hour TWA. Employee training is required once an action level of 0.1 f/cc and/or the “excursion limit” is reached.
This training must include topics specified by the OSHA rules. If an employee is exposed at or above the action level for a period of 30 days or more in a calendar year, medical surveillance is required according to the OSHA construction industry asbestos standard.

Medical Examination and Medical Surveillance

OSHA also requires medical examinations under its “General Industry Standard” for any employee exposed to fiber levels in the air at or above the OSHA “action level” (0.1 f/cc) and/or the “excursion limit” (1.0 f/cc). In both cases – the action level and excursion limit – the OSHA medical examination requirement applies if the exposure occurs for at least one day per year.

Medical surveillance is defined as “a periodic comprehensive review of a worker’s health status.” The required elements of an acceptable medical surveillance program are listed in the OSHA standards for asbestos. According to those regulations, participation in a medical surveillance program is required for any employee who is required to wear a negative pressure, air-purifying respirator. Replacement, annual, and termination physical exams are also required for these employees. However, a termination exam is only necessary under the construction industry standard (which applies to custodial and maintenance employees) if a physician recommends it. While not mandatory, USEPA and NIOSH recommend physical examinations, including cardiac and pulmonary tests, for any employee required to wear a respirator by the building owner. These tests determine whether workers will be unduly stressed or uncomfortable when using a respirator [20].

11.6.8 Notification Requirements

USEPA or the State [if the State has been delegated authority under National Emission Standards for Hazardous Air Pollutants (NESHAP)] must be notified before a building is demolished or renovated. The following information is required on the NESHAP notice: (a) name and address of the building owner or manager; (b) description and location of the building; (c) estimate of the approximate amount of friable ACM present in the facility; (d) scheduled starting and completion dates of ACM removal; (e) nature of planned demolition or renovation and method(s) to be used; (f) procedures to be used to comply with the requirements of the regulation; and (g) name, address, and location of the disposal site where the friable asbestos waste material will be deposited.

The notification requirements do not apply if a building owner plans renovation projects that will disturb less than the NESHAP limits of 160 square feet of friable ACM on facility components or 260 linear feet of friable ACM on pipes (quantities involved over a one-year period). For renovation operations in which the amount of ACM equals or exceeds the NESHAP limits, notification is required as soon as possible.

11.6.9 Emissions Control, Waste Transportation, and Waste Disposal

The NESHAP asbestos rule prohibits visible emissions to the outside air by requiring emission control procedures and appropriate work practices during collection, packaging, transportation, or disposal of friable ACM waste. All ACM must be kept wet until sealed in a leak-tight container that includes the appropriate label. The following table provides a simplified reference for building owners regarding the key existing NESHAP requirements.

Under the expanded authority of RCRA, a few states have classified asbestos-containing waste as a hazardous waste, and require stringent handling, manifesting, and disposal procedures. In those cases, the state hazardous waste agency should be contacted before disposing of...
asbestos for approved disposal methods and record-keeping requirements, and for a list of approved disposal sites.

Friable asbestos is also included as a hazardous substance under USEPA’s CERCLA regulations. The owner or manager of a facility (e.g., building, installation, vessel, landfill) may have some reporting requirements, for example, the U.S. Department of Transportation (USDOT) requirements for asbestos transport activities under the Hazardous Materials Transportation Act of 1975 (HMTA). The HMTA regulatory program applies to anyone who transports hazardous materials, or arranges for their transportation or shipment, and to anyone who manufactures, reconditions, repairs, tests, or marks packages or containers for use in the transportation of hazardous materials [49 USC Sec. 1804(a)].

USDOT has designated asbestos as a hazardous material for the purposes of transportation, and has issued requirements for shipping papers, packaging, marking, labeling, and transport vehicles applicable to shipment and transportation of asbestos materials (49CFR173.101). Commercial asbestos must be transported in rigid, leak-tight packages: in bags or other non-rigid packaging in close freight containers, motor vehicles or rail cars loaded by the consignor and unloaded by the consignee exclusively, or bags or other nonrigid packages that are dust- and sift-proof in strong fiber board or wooden boxes (49CFR173.1090).

Specific regulations exist for the transport of asbestos materials by highway [53]. Asbestos must be loaded, handled, and unloaded using procedures that minimize occupational exposure to airborne asbestos particles released in association with transportation. Any asbestos contamination of transport vehicles also must be removed using such procedures (49CFR177.844). Additional motor carrier’s safely regulations apply to common, contract, and private carriers of property by motor vehicle, as defined under these regulations (49CFR Parts 390–397).

11.7 MONITORING AND ANALYSIS OF AIR, WATER, AND CONTAMINATED MATERIALS

11.7.1 General Approach

Because airborne and volatile contaminants can present a significant threat to industrial workers’ health and safety, identification and quantification of these airborne and volatile contaminants through air/soil monitoring is an essential component of a health and safety program at an industrial site having hazardous substances. The purpose of air and soil monitoring is to identify and quantify airborne and volatile hazardous contaminants in order to determine the level of plant worker’s protection needed.

In general, there are two principal approaches available for identifying and/or quantifying airborne contaminants as well as volatile contaminants in soil:

1. The first approach: onsite use of direct-reading instruments as initial qualitative identification or screening (note: the airborne/volatile contaminant, or the class to which it belongs, is demonstrated to be present but quantitative determination of its exact concentration must await subsequent testing); and
2. The second approach: laboratory analysis of air and/or soil samples (note: the air sample can be obtained by gas sampling bag, filter, sorbent, and wet-contaminant collection methods).

Care must be taken in sampling of contaminated air, soil, water, or materials in order to obtain representative samples, and, in turn, to gain meaningful results. In general, the onsite use of direct-reading instruments for qualitative analysis and the onsite sampling of contaminated air, soil, water, or materials are performed by a licenced engineer, a licenced geologist, or a
certified technician. The subsequent quantitative laboratory analysis, if required, can be performed by either a certified laboratory or a licenced engineering firm, depending on the environmental quality parameters.

For instance, air samples and the building material samples contaminated by formaldehyde and lead are routinely sampled by an engineering technician under the supervision of a licenced engineer. The samples are shipped to a certified laboratory for quantitative analysis by the licenced engineer.

In another common case, soil that may be contaminated by volatile gasoline is routinely qualitatively tested with a direct-reading instrument and sampled by an engineer/scientist under the supervision of either a licenced engineer or geologist. The contaminated soil is qualitatively identified and/or documented and shipped by the engineer/scientist, quantitatively analyzed by a certified laboratory, and its quantitative data interpreted by the licenced engineer/geologist.

In New York and Massachusetts where PCB contamination is always a possibility, the laboratory tests required by the state environmental protection agencies for analysis of a petroleum-contaminated soil are as follows: (a) flash point; (b) total petroleum hydrocarbon (TPH); (c) PCB screening; (d) total organic halides (TOH); (e) reactivity of cyanide and sulfide; (f) BTEX or equivalent; (g) eight metals under TCLP (Toxicity Characteristics Leaching Procedure) for USTs; and (h) full range of tests under TCLP for ASTs and spills.

In still another case, airborne asbestos is frequently qualitatively identified and/or sampled by either a licenced engineer or a certified asbestos contractors, and quantitatively analyzed by a certified laboratory. The building material, such as the insulation for the plumbing system, however, can only be removed by State-certified asbestos contractor. The readers are referred to Section 11.6.3 for air sampling and identification of asbestos-containing materials.

A continuous contaminant source monitor can provide both industrial plants and regulatory agencies with numerous benefits. A properly installed and operated continuous monitoring system can yield a large amount of data on source air emissions or source effluent discharges. This information is beneficial, because it establishes a reliable foundation upon which important decisions can be made.

11.7.2 Measuring Instruments

Reliable measurements of airborne volatile or hazardous substances in the field using onsite instruments are useful for: (a) selecting personal protective equipment at an industrial site; (b) delineating areas where protection is needed; (c) assessing the potential health effects of hazardous exposure; (d) determining the need for specific medical monitoring; and (e) providing an early warning for personnel evacuation due to contamination, when necessary.

The National Pollutant Discharge Elimination System (NPDES) reporting requirements for effluent testing allow alternate methods of analysis to be substituted for the prescribed methods if prior approval has been obtained from the U.S. Environmental Protection Agency (USEPA) regional administrator having jurisdiction where the discharge occurs.

Steps an individual permit holder must take to use an alternate test procedure for regulatory reporting of specific discharges follow. An alternate test procedure differs from those published in the Federal Register for NPDES-certification purposes (Source: Federal Register, Title 40, Chapter 1, Subchapter D, Part 136: Vol. 38, No. 199, Oct. 16, 1973; Vol. 41, No. 232, Dec. 1, 1976). Many Hach methods (Hach Company, Loveland, CO, USA) are identical to these published methods and thus are approved by USEPA and highly recommended by the authors for rapid field testing of effluent samples.
Direct-reading instruments have been developed as early warning devices for use at various industrial sites, where a leak or an accident could release a high concentration or high dose of a known chemical or known radiation into the environment. They provide information on flammable, or explosive atmospheres, oxygen deficiency, certain gases and vapors, or ionizing radiation, at the time of measuring, enabling rapid decision making by the plant managers. Direct-reading instruments, which can be either batch monitoring systems or continuous monitoring systems, are the primary tools of initial site characterization. The readers are referred to Chapter 1 entitled “Onsite Monitoring and Analyses of Industrial Pollutants” for more information on several common direct-reading field instruments and their conditions and/or hazardous substances they measure.

As a minimum, the flame ionization detector (FID) or the photo-ionization detector (PID) must be available at industrial sites handling hazardous substances.

11.8 HAZARDOUS WASTE GENERATOR STATUS AND REGULATORY REQUIREMENTS

11.8.1 Hazardous Waste Generators

Regulations

In general, two activities determine the generator category of an industrial plant: the rate at which the plant generates and how much the plant stores (accumulates). Under new, more flexible regulations, the amount and length of time an industrial plant can accumulate wastes may vary according to the type of waste. In the State of Massachusetts, there are three generator statuses, which are introduced below as a typical example.

1. Large Quantity Generator (LQG): generates more than 1000 kg (2200 lb) of hazardous waste in a month; once the first 1000 kg has been accumulated, the waste must be shipped within 90 days; there is no limit to the amount that can be accumulated.

2. Small Quantity Generator (SQG): generates less than 1000 kg of hazardous waste in a month, and/or less than 1 kg of acutely hazardous waste (acutely hazardous waste is listed in the State regulations).

3. Very Small Quantity Generator (VSQG): generates less than 100 kg of hazardous waste in a month, and generates no acutely hazardous waste.

Other State governments in the United States have similar regulatory requirements. The maximum monthly volume of waste oil and maximum monthly volume of all other hazardous waste generated at an industrial plant site can be estimated and regulated according to the State of Massachusetts “Guide to Determining Status and Regulatory Requirements” (Table 2).

An Example in Massachusetts

An industrial plant in Massachusetts generates 60 gallons of spent solvent and 550 gallons (2081.75 L) of waste oil in a month. According to the Guide (Table 2); the plant is a Small Quantity Generator (SQG) of hazardous waste because it produces more than 100 kg but less than 1000 kg, and the plant is also a Large Quantity Generator (LQG) of waste oil because the plant produces more than 1000 kg. The plant’s regulatory status is found in Table 2, under line 5 (SQG for HW; LQG for WO).

Reading across the columns, on line 5, the plant may accumulate its solvent for as long as 180 days, or until the plant has reached a volume of 2000 kg (500 gallons; 1892.5 L) in
The plant must ship its waste oil every 90 days regardless of the volume. The plant manager must obtain an USEPA Identification Number and use a manifest for both wastes. The plant manager must manage his/her waste according to the accumulation area standards and must fulfill the emergency preparation and response requirements listed in subsequent sections. The plant manager, however, is not required to manage his/her waste in containers (Table 2), whichever happens first (column 3). The plant must ship its waste oil every 90 days regardless of the volume. The plant manager must obtain an USEPA Identification Number and use a manifest for both wastes. The plant manager must manage his/her waste according to the accumulation area standards and must fulfill the emergency preparation and response requirements listed in subsequent sections. The plant manager, however, is not required to manage his/her waste in containers (Table 2), whichever happens first (column 3). The plant must ship its waste oil every 90 days regardless of the volume. The plant manager must obtain an USEPA Identification Number and use a manifest for both wastes. The plant manager must manage his/her waste according to the accumulation area standards and must fulfill the emergency preparation and response requirements listed in subsequent sections. The plant manager, however, is not required

Table 2 Guide to Determining Status and Regulatory Requirements for Hazardous Waste Management

<table>
<thead>
<tr>
<th>Hazardous waste (HW)a</th>
<th>Waste oil (WO)b</th>
<th>Accumulation time, HW (days)</th>
<th>Accumulation HW volume in tanks (kg)</th>
<th>Accumulation HW volume in containers (kg)</th>
<th>Manifest usage requirement</th>
<th>Permission for self-transport HW</th>
</tr>
</thead>
<tbody>
<tr>
<td>LQG</td>
<td>LQG</td>
<td>90</td>
<td>No limit</td>
<td>No limit</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>LQG</td>
<td>SQG</td>
<td>90</td>
<td>No limit</td>
<td>No limit</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>LQG</td>
<td>VSQG</td>
<td>90</td>
<td>No limit</td>
<td>No limit</td>
<td>Yesa</td>
<td>No</td>
</tr>
<tr>
<td>LQG</td>
<td>None</td>
<td>90</td>
<td>No limit</td>
<td>No limit</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SQG</td>
<td>LQG</td>
<td>180</td>
<td>6000b</td>
<td>2000</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SQG</td>
<td>SQG</td>
<td>180</td>
<td>6000b</td>
<td>2000</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SQG</td>
<td>VSQG</td>
<td>180</td>
<td>6000b</td>
<td>2000</td>
<td>Yesa</td>
<td>No</td>
</tr>
<tr>
<td>SQG</td>
<td>None</td>
<td>180</td>
<td>6000b</td>
<td>2000</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>VSQG</td>
<td>LQG</td>
<td>No limit</td>
<td>600</td>
<td>600</td>
<td>Yesa</td>
<td>No</td>
</tr>
<tr>
<td>None</td>
<td>LQG</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>VSQG</td>
<td>SQG</td>
<td>No limit</td>
<td>600</td>
<td>600</td>
<td>Yesa</td>
<td>Yes</td>
</tr>
<tr>
<td>VSQG</td>
<td>VSQG</td>
<td>No limit</td>
<td>600</td>
<td>600</td>
<td>Yesa</td>
<td>Yes</td>
</tr>
<tr>
<td>VSQG</td>
<td>None</td>
<td>No limit</td>
<td>600</td>
<td>600</td>
<td>Yesa</td>
<td>Yes</td>
</tr>
<tr>
<td>None</td>
<td>SQG</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>None</td>
<td>VSQG</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Yesa</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: This matrix guide does not reflect acutely hazardous wastes.

aA manifest must be used for the VSQG category unless self-transported.
bWhen accumulating in both tanks and containers, the total accumulation cannot exceed 6000 kg and the container accumulation cannot exceed 2000 kg.
cLQG = 1000 or more kg per month of waste generation; SQG = 100–999 kg per month of waste generation; VSQG = less than 100 kg per month of waste generation.
to file an annual report or a contingency plan or provide full personnel training, which is necessary for larger generators.

11.8.2 Hazardous Waste and Waste Oil Documentation Using a Manifest

As a generator, an industrial plant always retains responsibility for hazardous waste. If the plant’s waste is dumped or disposed of improperly, the plant manager and the owner will be held responsible. It is therefore important that the plant manager or the owner knows where the plant’s waste is going and whether or not it is handled properly and safely [73].

U.S. Federal law (the Recourse Conservation and Recovery Act of 1976, known as RCRA) requires a national “cradle to grave” tracking system for hazardous waste. In the State of Massachusetts, for instance, every shipment of hazardous waste by a large or small generator must be transported by a licenced hauler and sent to a licenced treatment, storage, or disposal facility (TSD) or a permitted recycling facility, and it must be accompanied by a multipart shipping document, called the Uniform Hazardous Waste Manifest.

In the State of Massachusetts, the plant manager or a designated consulting engineer must use the Massachusetts Manifest form unless the plant is sending its waste to a facility out of state, in which case the plant manager should contact the other state to find out which form to use. The plant manager or the plant’s consulting engineer will be responsible for completing the generator portion of the manifest. Directions for the distribution of the copies are printed on the manifest. A copy will be returned to the industrial plant when the disposal facility or the recycling facility has accepted its shipment.

If the industrial plant’s manager or consulting engineer does not receive a copy of the manifest from the receiving facility (i.e., the disposal facility and/or the recycling facility) within 35 days of the date when the plant’s waste was shipped, the transporter or the operator of the facility must be contacted to determine the status of the waste. If the plant has still not received the manifest within 45 days, an Exception Report, explaining the efforts the plant has taken, must be filed with the State’s Division of Hazardous Waste and with the State where the designated facility is located.

For all generators, copies of all manifests and any records of tests and analyses carried out on the hazardous waste must be kept for at least three years, and for the duration of any enforcement action.

The most common problems in completing the manifest are clerical. For clarity, because this is a multiple carbonless copy form of about eight pages, typing is strongly recommended. The generator should check for legibility of all copies before transferring the manifest to the transporter at the time of shipment. The generator must ensure that all information is complete and accurate by reviewing the following summary when completing the manifest.

1. The plant’s federal Identification (ID) Number must be correctly stated. The plant’s specific location must have an ID number to use the manifest.
2. The identification number of the transporter and the receiving facility and their valid hazardous waste licenses must be double checked with the State’s regulatory agency.
3. If there is a second transporter, the generator has the responsibility to select this second transporter and both the generator and the second transporter must complete certain portions of the manifest.
4. The generator shall have a program to reduce the volume and toxicity of waste generated, which is a national requirement of all generators and is intended to encourage good management practice. Large quantity generators are required to report how they are reducing waste in their annual report.
5. The contents of the shipment must be fully and accurately described, packed, marked, and labeled.

6. Any special handling instructions must be clearly given. The generator can list an alternative receiving facility and must list, in the case of an international shipment, the city and State at which the shipment leaves the United States.

7. If more than four wastes are included in a single shipment, a second prenumbered manifest must be used. When more than two transporters are used for one shipment, the State requirements must be reviewed. In the State of Massachusetts an eight-part Massachusetts Continuation Sheet, numbered to match the first manifest, should be used.

8. Instructions regarding the use and distribution of the manifest copies that are stated on the manifest must be reviewed. The generator retains certain copies at the time of shipment. One copy should be mailed to the manifest office of the State in which the destination facility is located. One copy is returned to the generator by the receiving facility when the shipment arrives. The generator copies must be kept in the file for at least three years. If a signed manifest copy from the destination facility is not received within 35 days, the generator must investigate and file an Exception Report with the State Enforcement Section within 45 days of shipment if the signed copy has still not been received.

When a small or a very small quantity generator is to ship only waste oil or a very small quantity generator is to spill other waste, a transporter’s log instead of a manifest may be used for that shipment. However, the generator must register on a prescribed form with the State of Massachusetts.

11.8.3 The USEPA Identification Number (USEPA-ID)

In order to have an industrial hazardous waste accepted by a licenced hauler or treatment/storage facility, the industrial plant (i.e., the generator) must be assigned a number, with a special prefix for the plant location. This number will be entered on each manifest.

In order to get an USEPA-ID, the plant manager shall call or contact the State government for an application for an USEPA Identification Number. The completed application should be mailed to the state office listed in the instruction. While a plant is waiting for a permanent USEPA-ID number, the plant can obtain a temporary USEPA-ID number over the telephone.

The USEPA-ID number is site-specific. The State Division of Hazardous Waste must be notified in writing, or on a specified form, of any change in the generator’s address, contact person, or generator status.

11.8.4 Shipping Hazardous Waste

All hazardous waste must be transported in containers that are labeled with the words HAZARDOUS WASTE, the name of the waste, type of hazard (e.g., toxic, flammable), and generator’s name, address, and USEPA-ID number.

A list of licenced transporters and facilities for treatment, storage, or disposal is always available from the State government. Many transporters are authorized to assist the plant manager in preparing the plant’s hazardous waste for shipment.

A summary of recommended procedures for shipping hazardous wastes from an industrial plant to another location is now given below:

1. Select a licenced transporter and a hazardous waste facility that will receive the plant’s waste;
2. Identify the waste based on a licenced engineer’s testing or a certified laboratory testing prior to shipping the waste;
3. Obtain a federal identification (USEPA-ID) number by requesting a required form (such as Notification of Hazardous Waste Activity Form) from a State regulatory agency (note: the identification number is specific to the location, not the hazardous waste);
4. Obtain a manifest for a shipment of waste destined for disposal in a State (note: this specific State’s manifest form with a preprinted State document number is required); and
5. Ship the plant’s waste in accordance with federal transportation regulations (CFR Title 49, Part 100–177).

11.8.5 Hazardous Waste Storage Standards for an Accumulation Area

The accumulation or storage area of an industrial plant (i.e., a generator) must meet the following conditions for both containers and tanks in accordance with the home State regulations. The Massachusetts hazardous waste regulations (310 CMR 30.000) are listed below as a reference:

1. Above-ground tanks and containers must be on a surface that does not have any cracks or gaps and is impervious to the hazardous wastes being stored;
2. The area must be secured against unauthorized entry;
3. The area must be clearly marked (e.g., by a visible line or tape, or by a fence) and be separate from any points of generation;
4. The area must be posted with a sign. “HAZARDOUS WASTE” in capital letters at least one inch high (1 in. = 2.54 cm);
5. An outdoor area must have secondary containment, such as a dike, which will hold any spill or leaks at (a) 10% of the total volume of the containers, or (b) 110% of the volume of the largest container, whichever is larger; and
6. Any spillage must be promptly removed: in general, if the hazardous waste being stored has no free liquids, no pad is required, provided that the accumulation area is sloped, or the containers are elevated.

11.8.6 Standards for Waste Containers and Tanks

General Massachusetts standards (310 CMR 30.680–30.690) for waste containers and tanks in accordance with the same Massachusetts hazardous waste regulations (310 CMR 30.000) are given below as a reference:

1. Each container and tank must be clearly and visibly labeled throughout the period of accumulation with the following:
 (a) the words “HAZARDOUS WASTE,”
 (b) the name of the waste (e.g., waste oil, acetone),
 (c) the type of hazard(s) (e.g., ignitable, toxic, dangerous when wet, corrosive), and
 (d) the date on which the accumulation begins;
2. Each container must be in good condition;
3. Wastes of different types must be segregated; for example, this includes not mixing waste oil or used fuel oil with other wastes; be careful not to put incompatible wastes in the same container or put wastes in unwashed containers that previously stored incompatible wastes;
4. Separate containers of incompatible wastes by a dike or similar structure;
5. Each container holding hazardous wastes must be tightly closed throughout the period of accumulation, except when the waste is being added or removed;
6. Containers holding ignitable or reactive wastes must be at least 15 m (50 ft) away from the property line; if this is not possible or practical, the plant manager representing the generator must store such containers in compliance with all applicable local ordinances and bylaws; and
7. Inspect the accumulation area at least once a week for any leaking or deterioration of all containers; there must be enough aisle space between the containers to allow for inspections.

11.8.7 Criteria for Accumulation Time Limits

If an industrial plant is classified as a small quantity generator (SQG), the plant manager may accumulate up to 2000 kg or 4400 lb in containers, or up to 6000 kg (approximately 1650 gal or 6245 L) in tanks for as long as 180 days according to Massachusetts regulations 310 CMR 30.351. If both tanks and containers are used to store hazardous waste and/or waste oil, the total waste that can be accumulated at any one time may not be determined by adding the two limits. The 180 day clock may be started when a total of 100 kg, (approximately 25 gal or 94.63 L) is accumulated, if the containers are reslated at that time.

11.8.8 Criteria for Satellite Accumulation

Additional flexibility is offered by allowing an industrial plant to accumulate up to 55 gal (or 208.18 L) of hazardous waste, or one quart (or 1 L) of acutely hazardous waste, at each point where the plant generates its waste if the plant meets the following conditions:
1. The waste must be generated from a process at the location of the satellite accumulation;
2. Each satellite accumulation area can have only one container for each waste stream in use at a time;
3. Each satellite accumulation area must be managed by a person who is directly responsible for the process producing the waste; and
4. The waste must be moved to the main designated accumulation area within three days after the container is full.

11.8.9 Criteria for Accumulation of Waste Oil in Underground Storage Tanks

The Massachusetts criteria (310 CMR 30.690) for accumulating waste oil in underground storage tanks (USTs), including those resting directly on the ground, are generalized below:
1. For leak detection in old tanks containing waste oil that were installed before October 15, 1983 under a grandfather clause, a dipstick test must be conducted every 30 days; a more than \(\frac{1}{2} \) in. (1.27 cm) difference in level within a 24 hour period must be reported to the State government; underground tanks containing other hazardous wastes must undergo a tightness test, and must be monitored on a daily basis;
2. Tanks installed after the effective date (October 15, 1983) of a new Massachusetts law regarding underground storage tanks must have secondary containment and a monitoring system or be constructed of a corrosion-resistant material; and
3. A log must be kept of all test results for at least three years.
11.9 STORAGE TANK INSPECTION AND LEAK DETECTION

11.9.1 Requirements for Underground Storage Tanks

The State of New York [11–14,55] has promulgated rules and regulations for the early detection of leaks or potential leaks of petroleum bulk storage by plant owners and operators. In the State of New York [14], underground tanks shall be checked for leakage using one or more of the following:

1. Inventory monitoring may be used if it detects a leak of one percent (1%) of flowthrough plus 130 gal on a monthly basis and is coupled with an annual tightness test. Inventory monitoring must be done.

2. Weekly monitoring of the interstitial space of a double-walled tank may be practiced using pressure monitoring, vacuum monitoring, electronic monitoring, or manual sampling.

3. Vapor wells for monitoring soils in the excavation zone may be used. Vapor monitoring systems must be designed and installed by a qualified engineer or technician in accordance with generally accepted practices. Wells must be protected from traffic, permanently labeled as a “monitoring well” or “test well – no fill” and equipped with a locking cap, which must be locked when not in use so as to prevent unauthorized access and tampering. Vapor monitoring may be used only under the following conditions: (a) soils in the excavation zone must be sufficiently porous to allow for the movement of the vapors from the tank to the vapor sensor; gravel, coarse and crushed rocks are examples of porous soils; (b) the stored substance or a tracer compound placed in the tank must be sufficiently volatile so as to be detectable by the vapor sensor; (c) vapor monitoring must not be hindered by groundwater, rainfall, or soil moisture such that a release could go undetected for more than 30 days; (d) background contamination must not mask or interfere with the detection of a release; (e) the system must be designed and operated to detect increases in vapors above background levels; monitoring must be carried out at least once per week; and (f) the number and positioning of vapor monitoring wells must be sufficient to ensure detection of releases from any portion of the tank and must be based on a scientific study; wells must be at least four inches in diameter.

4. Groundwater monitoring wells designed and installed by a qualified engineer or technician may be used. Wells must be protected from traffic, permanently labeled as a “monitoring well” or “test well – no fill” and equipped with a locking cap that must be locked when not in use to prevent unauthorized access and tampering. Groundwater monitoring may be used only under the following conditions: (a) the substance stored must be immiscible in water and have a specific gravity of less than one; (b) the groundwater table must be less than 20 ft from the ground surface; the hydraulic conductivity of the soil between the tank and well must not be less than one hundredth (0.01) cm/s; gravel and coarse to medium sand are examples of such soil; (c) the slotted portion of the well casing must be designed to prevent migration of soil into the well and must allow entry of the hazardous substances into the well under both high and low groundwater conditions; (d) wells must be at least four inches in diameter and be sealed from the ground surface to the top of the filter pack to prevent surface water from entering the well; (e) wells must be located within the excavation zone or as close to it as technically feasible; (f) the method of monitoring must be able to detect at least one-eighth (\(\frac{1}{8}\)) of an inch of free product on top of the groundwater; monitoring must be carried out once per week; and (g) the number and positioning of...
the groundwater monitoring well(s) must be sufficient to ensure detection of releases from any portion of the tank and must be based on a scientific study.

5. Automatic tank gauging equipment may be used if it can detect a leak of two-tenths (0.2) of a gallon per hour or larger with a probability of detection of 95% and probability of false alarm of 5% or less. Monitoring must be carried out once per week; or

6. Other equivalent methods as approved by the Department if the method can detect a leak of two-tenths (0.2) of a gallon per hour with a 95% probability of detection and probability of false alarm of 5%.

In the State of New York, underground and on-ground piping shall also be checked for leakage by the owner or the plant manager according to the general guidelines established by the Department of Environmental Conservation [14].

11.9.2 Requirements for Aboveground Storage Tanks

While leak detection is not emphasized for aboveground storage tanks (ASTs), daily inspections, monthly inspections, annual inspections, and five-year inspections are legally required by the State of New York for AST owners or operators [14].

Daily Inspection

The owner or operator must visually inspect the aboveground storage equipment for spills and leaks each operating day. In addition, the owner or operator must check to ensure that drain valves are closed if not in use and there are no unpermitted discharges of contaminated water or hazardous substances.

Monthly Inspections

The owner or operator must conduct comprehensive monthly inspections of aboveground storage equipment. This inspection includes: (a) identifying cracks, area of wear, corrosion, poor maintenance and operating practices, excessive settlement of structures, separation or swelling of tank insulation, malfunctioning equipment, safety interlocks, safety trips, automatic shutoffs, leak detection, and monitoring, warning, or gauging equipment that may not be operating properly; (b) visually inspecting dikes and other secondary containment systems for erosion, cracks, evidence of releases, excessive settlement, and structural weakness; (c) checking on the adequacy of exterior coatings, corrosion protection systems, exterior welds and rivets, foundations, spill control equipment, emergency response equipment, and fire extinguishing equipment; (d) visual checking of equipment, structure, and foundations for excessive wear or damage; (e) reviewing the State compliance; and (f) performing monthly release detection, which meets the performance standards established by the State.

Annual Inspections

The structure-to-electrolyte potential of corrosion protection systems used to protect aboveground tank bottoms and connecting underground pipes must be inspected annually.

Five-Year Inspections

The owner or operator must inspect aboveground piping systems and all aboveground tanks; the inspection must be consistent with a consensus code, standard, or practice and be developed by a
nationally recognized association or independent testing laboratory and meet the specifications of this subdivision; based on the inspection, an assessment and evaluation must be made of system tightness, structural soundness, corrosion, wear and operability; reinspection is required no later than every five years from the date of the initial inspection or regulatory deadline, whichever occurs first, except as follows. If thinning of 1 mL per year or greater occurs on the pipe or tank walls, or the expected remaining useful life as determined by the above inspections is less than ten years, then reinspection must be performed on the tank or pipe at one-half of the remaining useful life.

11.9.3 Tank and Pipeline Leak Tests

Tracer tank and pipeline leak tests developed by Tracer Research Corporation do not require that tanks or pipelines be taken out of service during any testing procedures.

The leak tests have demonstrated the capability for unambiguously detecting, quantifying, and locating leaks as small as 0.05 gal/hour in underground and aboveground storage tanks and pipelines. Storage tanks containing fuels, lubricants, heating oils, solvents, wastewater, volatile or nonvolatile chemicals, and hazardous wastes are easily tested regardless of size or type.

Leak Testing for Underground Storage Tanks

This section introduces a five-step procedure developed by Tracer Research Corporation for conducting the leak testing for an underground storage tank.

1. Step 1. Leak testing is performed by adding a small amount of a special volatile chemical tracer to the contents of a tank or pipeline; these chemicals are selected for their compatibility with tank and pipeline systems, as well as the lack of their presence in the environment around the tank; the tracer is added at a concentration of only a few PPM, and thus has no impact on the physical properties of tank and pipeline contents.
2. Step 2. Tracer mixes evenly in tanks, pipelines, and the vapor space inside a tank, by diffusion and product use.
3. Step 3. If a tank or pipeline leaks, the tracer is released into the surrounding soil where it rapidly volatizes; after the tracer has had time to disperse and migrate through the soil away from the leak (usually about two weeks), soil gas samples are collected from the probes surrounding the tanks and pipelines.
4. Step 4. Samples are analyzed for tracer and hydrocarbon vapors by means of a very sensitive gas chromatograph; the presence of tracer vapors, which can be detected in the low parts-per-trillion, provides unambiguous information about the occurrence of leakage and its location.
5. Step 5. Because information about site contamination is important, the plant manager is provided with a hydrocarbon site survey at the same time; hydrocarbon vapor maps serve to show the magnitude of leakage and the extent of the contamination if leaks are detected; if no leaks are detected, the absence of hydrocarbons confirms this finding.

Leak Testing for Pipelines

The tracer pipeline leak testing, which is similar to the tracer tank leak testing, is effective for locating leaks in all types of pipeline installations, including pipe buried under pavement, airline runways, buildings, or underwater. Where leaks are known to exist, the tracer leak test is effective in determining their location without expensive excavation.
The testing method can be retrofitted to existing underground piping. Where the pipeline runs under soil cover, a special leak detection hose that is permeable to the tracer is buried approximately 0.61 m (2 ft) deep in a ditch running above the pipeline. One sample from the hose can provide monitoring coverage of up to 152.4 m (500 ft) of pipeline. At new installations, the leak detection hose is installed adjacent to the pipe at the time of burial. This installation is very low cost and provides unique sensitivity. When a pipeline runs under concrete or pavement, it is monitored by a series of probes placed 7.62 m (25 ft) apart, installed through the pavement.

Leak Testing for Aboveground Storage Tanks

Aboveground tank testing is performed by inserting vapor sampling probes under the tank bottom. To ensure detection of leakage from any point on the tank floor, evacuation probes are placed under the perimeter of the tank and one or more air injection probes are placed beneath the center of the tank. A program of air injection and/or evacuation is initiated to collect samples from under the tank. These samples are analyzed for the presence of tracer.

In the case of a facility that has multiple tanks in close proximity to each other, different tracer compounds can be used so that sample analysis will rapidly identify a specific leaking tank.

Leak Testing for Tank Farms

The tracer leak tests are also economical means for testing aboveground storage tanks at large tank installations, such as jet fuel systems at military bases, large airport hydrant fuel systems, terminals and refineries. Important benefits result from the fact that the testing is implemented by placing tracer in the receiving tanks where incoming product is stored. The product is released to other parts of the system and the same tracer is used to test all the portions of the system that contain or transport the product.

11.10 EMERGENCY PREPARATION AND RESPONSE

11.10.1 Emergency Equipment

To minimize the risk of fire, explosion, or release of hazardous wastes that may contaminate the environment, an industrial plant classified as a generator is required to have the following on site, and immediately accessible to its hazardous waste handling area:

- an alarm or communication system that can provide emergency instruction to employees;
- a telephone, two-way radio, or other device that can summon police, fire, or emergency response teams;
- portable fire extinguishers and/or fire control equipment (e.g., foam, inert gas), spill control equipment, and decontamination equipment; and
- adequate supply and pressure of water, automatic sprinklers or water sprays, or foam-producing equipment.

All equipments identified above are required unless the hazards posed by the plant’s wastes do not require one of them. In such a case, an approval from the regulatory agency is required. The equipment, when provided, must be periodically tested and properly maintained so it will work during an emergency.
11.10.2 Emergency Preparation

An industrial plant classified as a generator must thoroughly familiarize each of its employees with all the waste handling and emergency procedures that may be needed for each of their jobs. An employee must have immediate access to alarm or communication devices, either directly or through another employee, whenever hazardous waste is being handled. If the plant’s operation is at any time being handled by a single employee, that person must have immediate access to a telephone or two-way radio.

For easy movement of employees and emergency equipment, the plant manager must mark all exits clearly and maintain adequate aisle space in the area of hazardous waste handling.

11.10.3 Liaison With Local Authorities

A generator and its designated consulting engineer must make every reasonable attempt to carry out the following arrangements, with regard to the waste produced by the generator:

- Familiarizing the plant’s local police department, fire department, local boards of health, and any emergency response teams with the hazardous nature of the plant’s waste; the layout of the plant site, including entrances and evacuation routes, and the location where the plant’s employees usually work;
- Familiarizing local hospitals with the hazards of the plant’s waste and the types of injuries that could result from any accidents;
- Obtaining agreements with emergency response teams and contractors, and local boards of health; and
- Making an agreement with the regulatory agency and service agency that will have primary emergency authority, and specifying others as support, if more than one police and/or fire department might respond to an emergency.

If such arrangements cannot be made, a copy of a signed and dated letter from the plant, the generator, to the State or local entity, which demonstrates an effort to make these arrangements must be considered sufficient, if an approval from the State or local entity can be obtained.

11.10.4 Emergency Coordinator

The industrial plant, the generator, must designate at least one employee to be on call (or on the premises) at all times. This person is the emergency coordinator and is responsible for coordinating all emergency response measures. Alternatively, a licenced consulting engineer can also be retained by the generator to be its emergency coordinator.

11.10.5 Emergency Response

It is generally required by the State regulations that the generator have posted next to each telephone near the plant’s waste generation area the following:

- Name(s) and telephone number(s) of the plant’s emergency coordinator(s);
- Location(s) of the fire control equipment and any fire alarms;
- Telephone numbers of the National Response Center, the fire department, the police department, and the ambulance department, or if there is a direct alarm system, instructions on how to use it; and
- Evacuation routes, where applicable.
If any of the following emergencies occur, the plant manager or the assigned emergency coordinator should immediately perform the following:

- Fire. Attempt to extinguish the fire and/or calling the fire department;
- Hazardous chemical/oil spill or leak. Contain the flow as quickly as possible and as soon as possible clean up the waste and any soil or other materials that may have become contaminated with waste;
- A hazardous chemical/oil release (spill or leak) or threat of release, fire or explosion of hazardous waste that may threaten human health or the environment. (a) Call the appropriate State environmental protection agency’s regional office, or (b) Call the State police if the incident occurs after 5 p.m., or on a day that the State environmental protection agency is closed, and (c) Call the National Response Center, which usually has a 24-hour toll-free number.

11.11 MANAGEMENT OF AN INDUSTRIAL SITE CLASSIFIED AS A VERY SMALL QUANTITY GENERATOR

11.11.1 Registration

If an industrial plant in Massachusetts generates less than 100 kg a month of hazardous waste, and no acutely hazardous waste, the plant is eligible to register as a very small quantity generator. To qualify as a very small quantity generator (VSQG), the plant manager must register a waste management plan with the appropriate State environmental protection agency. If the plant does not register as a VSQG, it will be subject to the more stringent SQG regulations.

11.11.2 Treatment/Disposal Options

As a registered VSQG, an industrial plant has the following options for handling the waste:

1. The plant may recycle or treat its waste, provided the process described in the plant’s registration is acceptable to the appropriate State environmental protection agency;
2. The plant may transport its waste to another generator who is in compliance with the regulations and who will count the plant’s waste as part of their generation; or
3. The plant may transport its waste in the plant’s own vehicle to a licenced treatment, storage or disposal facility, or permitted recycling facility, or use a licenced transporter and a manifest form, which requires an USEPA-ID number; or
4. The plant may use a licenced transporter and a manifest form, which requires an USEPA-ID number.

11.11.3 Self-Transport Option

As a registered VSQG, an industrial plant may transport its own hazardous waste under certain conditions in accordance with the appropriate State regulations. The following are the Massachusetts regulations (310 CMR 30.353), which are presented as a typical example:

1. The plant transports only the waste that the plant generated on its premises.
2. The plant does not transport more than 200 kg at one time.
3. The plant’s waste must be in containers that are:
 (a) no larger than 55 gal or 208.18 L in volume;
 (b) compatible with the waste;
(c) tightly sealed;
(d) labeled as “HAZARDOUS WASTE”;
(e) labeled with the name of the waste and the type of hazard (i.e., ignitable); and
(f) tightly secured to the vehicle.

4. The plant does not transport incompatible wastes in the same shipment.

5. In the event of a spill or leak of hazardous waste that may threaten human health or
the environment, the plant or its designated consulting engineer should notify the
appropriate State environmental protection agency, the State police, the local fire
department, and the National Response Center, as described previously.

6. The plant must have a copy of its registration with the State in the vehicle.

7. The plant must be in compliance with the federal Department of Transportation and
State Department of Public Safety requirements, if any.

11.11.4 Record-Keeping

If an industrial plant in Massachusetts, for instance, is not using a licenced transporter but is
transporting its own wastes, this plant does not need an USEPA-ID number or manifest form.
The plant must, however, keep a record of the type and quantity, as well as the date, method
of transport, and treatment/disposal of its waste(s). The plant manager needs proof of the receipt
of the waste by the facility and/or generator.

All generators must keep receipts or manifests of waste shipped, and records of waste
analysis for at least three years, or for the duration of any enforcement action by the appropriate
State environmental protection agency.

11.11.5 Accumulation Limits

The plant as a very small quantity generator (VSQG) in Massachusetts may accumulate up to
600 kg (approximately 165 gal or three 55 gal drums) of hazardous waste in containers that meet
the standards introduced previously, with no time limit.

11.12 MANAGEMENT OF AN INDUSTRIAL SITE CLASSIFIED
AS A LARGE QUANTITY GENERATOR OR A
SMALL QUANTITY GENERATOR

11.12.1 Registration

The amount and length of time a large industrial plant accumulates its wastes may vary
according to the type of waste. The Massachusetts Guide to Determining Status and Regulatory
Requirements (Table 2) or equivalent should be used as a guide to determine the plant’s
generator category (Regulatory Status) for hazardous waste and waste oil [6].

For example, a plant in Massachusetts must be registered as a Large Quantity Generator
(LQG) if it produces more than 2200 lb (1000 kg) of hazardous waste, not including waste oil,
or one quart (1 kg) or more of acutely hazardous waste, as defined in the December 1992
Massachusetts regulations [4–10], in a month’s time. There is no limit to the amount that can be
accumulated by the plant, but the waste must be shipped within 90 days. A generator not in
Massachusetts must contact the local State agency in order to obtain the most recent regulations
for its home state.
If a Massachusetts plant produces less than this amount each month, the plant is classified as a small (SQG) or very small (VSQG) quantity generator and is subject to less stringent requirements, as discussed previously.

If a Massachusetts plant produces more than 1000 kg (approximately 265 gal) of waste oil in a month, the plant’s waste oil must be shipped within 90 days but the plant is not subject to certain written plans and reports under Massachusetts Management Requirements. The plant may, however, be classed as a small quantity generator (SQG) or very small quantity generator (VSQG) of other hazardous wastes.

As a large (LQG) or small (SQG) quantity generator of hazardous waste in the State of Massachusetts, the plant is required to:

1. Notify the US Environmental Protection Agency (USEPA), and obtain an USEPA Identification Number for the industrial site;
2. Identify and segregate the plant’s hazardous wastes;
3. Label the plant’s waste as hazardous waste, describing the waste and the hazards associated with it and the date when accumulation began in each container;
4. Store the plant’s waste by type in separate containers that are tightly sealed, and provide appropriate aisle space to meet fire codes;
5. Use a licenced hazardous waste transporter and/or a licenced treatment, storage, or disposal facility, under the condition that the plant, as a generator, has ultimate legal responsibility for the plant’s hazardous wastes;
6. Use a uniform hazardous waste manifest as a shipping document for all plant wastes, including waste oil; and
7. Keep records of waste analyses, reports, and manifests for at least three years.

In Massachusetts, there are additional requirements for Large Quantity Generators (LQG) of hazardous waste (but not waste oil):

1. Each manifest must contain a certification that the plant has a program in place to reduce the volume and toxicity of waste generated, as much as is economically practicable;
2. A Biennial Report summarizing the plant’s manifest shipments for the previous years must be submitted to the State environmental protection agency;
3. A training program is required for all personnel involved in managing hazardous waste. A written plan is required to specify how the plant’s personnel will be familiarized with procedures for using and repairing emergency and monitoring equipment, how the plant’s personnel will respond to fire or explosions, potential groundwater or surface water contamination, how to shutdown operations, what the job title and description of each position will be related to hazardous waste management with the requisite qualifications and duties, what training will be provided, and what the qualifications of the relevant training personnel will be; and
4. A written contingency plan is prepared based on a Spill Prevention Control and Countermeasures (SPCC) Plan, or similar emergency plan, which describes the layout of the plant, emergency equipment and handling procedures, places where the plant personnel would normally be working, entrances and exits and evacuation routes; a list including the names, addresses, and telephone numbers of the emergency coordinator(s) must be distributed to local fire and police departments, the mayor, board of health and emergency response teams.
11.13 MANAGEMENT OF HAZARDOUS INDUSTRIAL WASTE FROM MEDICAL OFFICES: AN EXAMPLE

11.13.1 Hazardous and Infectious Wastes from Medical Offices

Federal and State laws define waste as “hazardous” if it is ignitable, corrosive, reactive, or toxic. Other wastes are listed by name. These may differ from lists of hazardous materials, which are regulated by OSHA and Right-to-Know. The Standard Industrial Classification (SIC) of a physician’s medical office and a dentist’s office are 8011 and 8021, respectively.

If a medical office has photoprocessing waste, typically from x-ray processes, which leaches silver in a concentration of 5 mg/L or more, or has a dental waste which leaches mercury in a concentration of 0.2 mg/L or more, this medical office is a “generator” of hazardous waste, of which concentrations are determined by an extraction procedure toxicity test.

Syringes, sharps, blood products, and the like from hospitals are considered infectious waste and are regulated by the US Department of Public Health. It is recommended that any infectious waste from a medical office be placed in rigid containers and steam-sterilized or autoclaved. A method and a facility for disinfecting and compacting infectious wastes, such as disposal diapers, animal beddings, and so on, have recently been developed by Wang and Wang [59].

11.13.2 Waste Disposal

If the amount of hazardous waste a medical office produces in a month is less than 25 gal (95 L), this medical office qualifies as a very small quantity generator (VSQG) in Massachusetts. As a VSQG, the medical office is required to register with the State regulatory agency, label its wastes as hazardous, and ship it with a licenced hazardous waste hauler or precious metal transporter to a licenced treatment or disposal facility.

The disposal options of this medical office as a VSQG are listed below [5]:

1. The generator may want to reclaim silver from the x-ray waste itself. If its silver recovery equipment is hard-piped and connected to the photoprocessor, this generator is currently exempt from recycling permits.
2. The generator may ship its silver waste to a reclaimer. Be aware that it is the generator’s responsibility as the generator of the waste to know where its waste is going and how it is handled.
3. If the generator is a registered VSQG, it may transport its waste to another generator or a receiving facility as long as it carries its VSQG registration in its vehicle, does not transport more than 55 gal (208.18 L) at a time, obtains a receipt for its waste, and retain the receipts for at least three years.
4. Some liquid residues can be discharged to the sewer if they are not classified as hazardous waste. The generator should call its local sewer authority for information. If the generator discharges the waste to a septic tank or dry well, it needs a groundwater discharge permit from the State regulatory agency.

11.14 MANAGEMENT OF HAZARDOUS INDUSTRIAL WASTES FROM GRAPHIC ARTS, PRINTERS, AND PHOTOGRAPHERS: AN EXAMPLE

11.14.1 Requirements

Each State has its own requirements and regulations for management of hazardous wastes at industrial sites. This section presents the Massachusetts requirements for graphic artists, printers, and photographers as a typical example.
Massachusetts Law requires industrial plants that produce hazardous waste to: (a) identify their wastes; (b) count their wastes to determine monthly quantities; (c) manage their wastes properly, based on the State requirements on monthly quantities of hazardous wastes that can be stored; (d) apply for a federal USEPA-ID if the industrial plant is a small quantity generator (SQG) or very small quantity generator (VSQG); or (e) register with the state division of hazardous waste if the plant qualifies as a very small quantity generator (VSQG).

11.14.2 Hazardous Waste Identification

The hazardous wastes generated from graphic artists, printers, and photographers can be identified by their specific wastes number, hazard condition and SIC as shown in Tables 3 and 4.

To identify other hazardous wastes in shop, the three types of the material safety data sheet (MSDS) provided by the supplier of the product should be reviewed. A plant manager can also find out the hazardous ingredients in the processing chemical and refer to the State Hazardous Waste Regulations or call the State Division of Hazardous Waste.

It should be noted that ink and paint wastes may contain certain metals that make the waste “FP Toxic.” For more information, the readers are referred to the MSDS, to talk to the manufacturer or an environmental consultant, or have a certified laboratory conduct an Extraction Procedure Toxicity Test on the waste in question.

The following summarizes the current Massachusetts regulations for disposal of photographic wastes containing silver (waste number D011 shown in Table 3).

If less than 25 gal (95 L) of spent fixer is generated each month (assuming there are no other wastes, or if there are other wastes, the total quantity, excluding waste oil, does not exceed 25 gal or 95 L), a generator will face the following situations:

1. The generator may register as a very small quantity generator, and/or obtain a USEPA-ID;
2. No recycling permit is required for the generator; registration is sufficient;
3. The generator may treat spent fixer for reclaiming the silver at the site of generation, or the generator may ship the spent fixer waste offsite with a licenced hazardous waste transporter or a State-approved precious metal transporter and recycling facility, or self-transport up to 55 gal at a time to another generator or a receiving facility;

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Identification of Hazardous Wastes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical waste</td>
<td>Waste number</td>
</tr>
<tr>
<td>A. Spent solvents</td>
<td></td>
</tr>
<tr>
<td>Ethyl alcohol, isopropanol</td>
<td>D001</td>
</tr>
<tr>
<td>Methylene chloride, Trichloroethylene</td>
<td></td>
</tr>
<tr>
<td>Ethyl benzene</td>
<td>F003</td>
</tr>
<tr>
<td>B. Ink/paint wastes</td>
<td>D001</td>
</tr>
<tr>
<td>C. Ink/paint wastes containing metals such as:</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>D007</td>
</tr>
<tr>
<td>Lead</td>
<td>D008</td>
</tr>
<tr>
<td>D. Etch and acid baths</td>
<td>D002</td>
</tr>
<tr>
<td>E. Spent photographic wastes Containing silver</td>
<td>D011</td>
</tr>
</tbody>
</table>

Copyright ©2004 by Marcel Dekker, Inc. All Rights Reserved.
4. If the generator transports to another generator or an authorized facility, the generator must obtain a receipt for the generator’s waste and retain records for a minimum of three years.

If more than 25 gal (95 L) of hazardous waste, including spent fixer, is generated in a month, the generator will face different situations:

1. The generator needs an USEPA-ID number and must use a manifest if it ships its waste offsite and may use a licensed hazardous waste transporter or a precious metal transporter and recycling facility;

2. The generator can use a recovery device directly connected by pipe to the film processor at the site of generation (no recycling permit is required: operation can begin within 10 days of the receipt of the application if applicant does not hear from the State); and

3. The generator must meet the concentration limits of the local sewer authority if discharging the waste to a sewer system is intended, or obtain a groundwater discharge permit from the State Division of Water Pollution Control if the generator discharges to a septic system or other groundwater disposal. If the waste or its pretreated effluent meets silver concentration limits of less than 5 mg/L of silver, the waste or the effluent is not classified as a hazardous waste.

11.14.3 A Case History for Disposal of Photographic Wastes by a Large Quantity Generator (LQG)

A graphic arts company in Farmingdale, New York, produced four wastewater streams at Outfall Nos. 001, 002, 003, and 004, as shown in Figure 1.

<table>
<thead>
<tr>
<th>Outfall</th>
<th>Wastewater flow (gal/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>2000 (average)</td>
</tr>
<tr>
<td>002</td>
<td>30,000 (average)</td>
</tr>
<tr>
<td>003</td>
<td>5000 (average)</td>
</tr>
<tr>
<td>004</td>
<td>5000 (average)</td>
</tr>
</tbody>
</table>

Note: 1 gal/day = 3.785 L/day.

The four wastewater streams discharged at Outfall Nos. 001, 002, 003, and 004 were photographic process wastewater, cooling water (noncontact), sanitary waste A, and sanitary waste B, respectively. A State Pollutant Discharge Elimination System (SPDES) discharge permit was issued to the company in compliance with the Environmental Conservation Law of
New York State [13] and the Federal Clean Water Act, as amended. Specifically, the company was authorized to discharge its treated effluents from the company’s facility to a nearby receiving water. Table 5 indicates the final effluent limitations and monitoring requirements specified by the SPDES discharge permit.

The company was required to take samples and measurements to meet the monitoring requirements at the outfall location Nos. 001, 002, 003 and 004, as indicated in Figure 1.

The photographic wastewater from the company was collected for treatment in accordance with the technologies described by Bober et al. [57] before being discharged to a State-approved receiving water.

A small quantity of wastewater containing extremely toxic pollutants, however, was held and hauled by an approved scavenger.

11.14.4 A Case History for Disposal of Photographic Wastes by a Very Small Quantity Generator (VSQG)

Environmental Situations

A small printing company in Lenox, Massachusetts, United States, produced 24 gal/month (91 L/month) of industrial wastewater mainly consisting of the following two spent chemicals:

- Spent Kodak ultratek fixer and replenisher were accumulated (3 parts water per 1 part fixer dilution; about 100 gal or 378.5 L accumulated); and
- Spent Kodak ultratec developer and replenisher were accumulated (1 part water per 5 parts developer; about 100 gal or 378.5 L accumulated).

The MSDS of both diluted spent chemicals were obtained from the chemical supplier for review by the company’s consulting engineer. The following are the chemical descriptions and disposal methods from the MSDS:

- Kodak ultratek fixer and replenisher. This chemical formulation has a high biological oxygen demand, and it is expected to cause significant oxygen depletion in aquatic systems. It is expected to have a low potential to affect aquatic organics. It is expected...
to have a moderate potential to affect secondary waste treatment microorganisms. It is expected to have a moderate to high potential to affect the germination and growth of some plants. The components of this chemical formulation are biodegradable and are not likely to bioconcentrate. If diluted with a large amount of water, this chemical formulation released directly or indirectly into the environment is not expected to have a significant impact.

- Kodak ultratec developer and replenisher. This formulation is a strongly alkaline aqueous solution, and this property may cause adverse environmental effects. It has a low biological oxygen demand and is expected to cause little oxygen depletion in aquatic systems. It is expected to have a high potential to affect aquatic organisms

Table 5 Final Effluent Limitations and Monitoring Requirements Specified by the New York State SPDES Discharge Permit

During the period April 1, 1981, to April 1, 1986, the discharges from the permitted facility shall be limited and monitored by the permittee as specified below:

<table>
<thead>
<tr>
<th>Outfall number</th>
<th>Effluent parameter</th>
<th>Discharge limitations other units (specify)</th>
<th>Monitoring requirements measurement sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Daily avg.</td>
<td>Daily max.</td>
</tr>
<tr>
<td>001</td>
<td>Process flow, photographic waste</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, total – monitor only</td>
<td>10 mg/L</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Cadmium, total – monitor only</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Dissolved solids, total chemical oxygen demand</td>
<td>1000 mg/L</td>
<td>150 mg/L</td>
</tr>
<tr>
<td></td>
<td>Color, units – monitor only</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Iron, total</td>
<td>0.6 mg/L</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Phenols</td>
<td>0.002 mg/L</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Zinc, total</td>
<td>5.0 mg/L</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>pH Units – Range</td>
<td>6.5–8.5</td>
<td>–</td>
</tr>
<tr>
<td>002</td>
<td>Cooling water, noncontact – no chemical treatment allowed</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>003</td>
<td>Sanitary wastes only</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>004</td>
<td>Sanitary wastes only</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Notes:
1. All wastewater discharge from the printing plate process are held and hauled by an approved scavenger.
2. Approximate flows are as follows:

<table>
<thead>
<tr>
<th>Outfall</th>
<th>Flow (gal/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>2000</td>
</tr>
<tr>
<td>002</td>
<td>30,000</td>
</tr>
<tr>
<td>003</td>
<td>5000</td>
</tr>
<tr>
<td>004</td>
<td>5000</td>
</tr>
</tbody>
</table>
and a moderate potential to affect secondary waste treatment microorganisms and the germination and growth of some plants. The organic components of this chemical formulation are readily biodegradable and are not likely to bioconcentrate. The direct instantaneous discharge to a receiving body of water of an amount of this chemical formulation that will rapidly produce, by dilution, a final concentration of 0.1 mg/L or less is not expected to cause an adverse environmental effect. After dilution with a large amount of water, followed by a secondary waste treatment, the chemicals in this formulation are not expected to have any adverse environmental impact.

Both spent chemicals were analyzed by a certified laboratory. The analytical data of the two spent chemicals were:

- Spent Kodak ultratek fixer and replenisher (i.e., spent fixer): COD = 161,000 mg/L, silver = 1384 mg/L, total solid = 6%; and
- Spent Kodak ultratek developer and replenisher (i.e., spent developer): COD = 103,000 mg/L, silver = 0 mg/L.

The company produced less than 100 kg (220 lb or approximately 25 gal) of hazardous waste a month. Accordingly, it was eligible to be registered as a very small quantity generator (VSQG).

To qualify as a VSQG, the company owner notified the Massachusetts Department of Environmental Protection (DEP) on a two-part registration form, which listed the types of hazardous waste generated, the amount of each in gallons per month, and the proposed disposal, treatment, storage, and/or recycling destination of the waste.

The owner’s registration was effective as soon as it was received by the State. Renewal would occur after one year.

As a VSQG, the company had never accumulated more than 165 gal (624.5 L) at any one time. As a registered VSQG, the company’s owner also tried four different treatment and disposal methods for his hazardous wastes.

Options for Recycling, Treatment, and POTW Discharge
Initially the owner tried to recycle or treat his wastes, because the process described in his registration was acceptable to the Massachusetts DEP. It appeared that the silver in the spent fixer had to be removed, and the remaining pollutants were mainly biodegradable organics. Four silver removal methods were considered by the owner [58].

Chemical Recovery Cartridge Metallic Replacement method
In this method, a metal (usually iron) in a chemical recovery cartridge (CRC) reacts with the silver thiosulfate in the spent fixer and goes into solution. The less active metal (silver) settles out as a solid. To bring the silver into contact with the iron, the spent fixer is passed through the CRC container, which is filled with steel wool. The steel wool provides the source of iron to replace the silver. The main advantages of this CRC method are the very low initial cost (cartridges cost about US$60) and the simplicity of installation; only a few simple plumbing connections (shown in Fig. 2) are required.

The main disadvantages, compared to the electrolytic method, are that the silver is recovered as a sludge, making it more difficult to determine the exact amount recovered. The recovered sludge containing silver requires more refining processes than the plate silver obtained...
from electrolytic methods, if silver recovery and silver refining are both intended. Also, CRCs
cannot be reused. They must be replaced when they are exhausted.

In summation, the silver chemical recovery cartridge method (Fig. 2) can achieve silver
recovery efficiencies of greater than 90%. However, it is difficult to achieve this level of
recovery consistently, making it an unreliable choice if the operator needs to meet low
silver discharge limits. Another problem with the chemical recovery cartridge method is that
as silver is recovered, the steel wool becomes soluble, producing iron levels in the effluent as
high as 3000 mg/L. Iron is regulated to levels well below those concentrations by many sewer
codes.

Electrolytic Silver Recovery Method

In this method, the silver-bearing solution is passed between two electrodes through which a
controlled direct electric current flows as shown in Figure 3. Silver plates out on the cathodes as
almost pure metal.

The advantages of the electrolytic method is that silver is recovered in an almost pure
form, making it easier to handle and less costly to refine. With careful monitoring, it also permits
fixer reuse for some processes. It also avoids the need to store and replace cartridges, as with the

Figure 2 Chemical recovery cartridges (CRCs). (Courtesy of Eastman Kodak Co., NY.)

Figure 3 Electrolytic cells plus CRCs. (Courtesy of Eastman Kodak Co., NY.)
metallic replacement method. Recovery efficiency is typically 93–97%, and by maintaining the correct mix of processing effluent, can be as high as 99%.

The disadvantages of electrolytic methods are the difficulty in reducing silver in the effluent to very low levels, and the careful monitoring required to avoid silver sulfide formation. Initial capital investment is high. None of these disadvantages is a serious deterrent. The concentration that can be achieved depends on how low the current density can be set with the unit. As the silver concentration gets lower, the current density can be set lower to prevent silver sulfide from forming. With low current densities, a large cathode area is needed to achieve the necessary silver recovery rate. In order to reduce the residual silver concentration in the electrolytic cell effluent further, at least one CRC is used for finally polishing the electrolytic cell effluent (Fig. 3).

Conventional Ion-Exchange Method
There are two ion-exchange methods that have been used in photoprocessing laboratories to recover silver from dilute solutions: conventional ion exchange (Fig. 4) and in situ ion exchange (Fig. 5). With both of these ion-exchange methods, the silver is removed by pumping it through a column of anion-exchange resin. The difference between the two ion-exchange methods is the regeneration step.

In the conventional ion-exchange method (Fig. 4), the silver is removed from the resin by regenerating it with thiosulfate solution. The silver is then removed from the regenerant by running it through an electrolytic cell. The greatest advantage of using the conventional ion-exchange method for silver recovery is that the operator can reduce the silver in the processing effluent to very low levels (0.1–2 mg/L). In areas that strictly regulate the discharge of silver, it may be the only recovery method that is satisfactory.

The conventional ion-exchange method also has some major disadvantages, such as the high capital investment (both an ion-exchange unit and an electrolytic unit are needed), and the increased complexity of operation (only a few high-volume laboratories have used this method successfully). However, it remains an option for those laboratories that must meet strict limits on
the amount of silver discharged. It is also critical that the operator dilutes the concentrate with the proper amount of wash water prior to ion-exchange treatment; too high a thiosulfate concentration in the solution being treated will cause silver to leak through the column.

In Situ Ion Exchange Method

With the in situ ion-exchange method (Fig. 5), dilute sulfuric acid is used to precipitate the silver in the resin beads as silver sulfide instead of removing it with regenerant. The resin that is inside the ion exchange unit is used for many cycles without a loss in capacity. When the resin eventually loses its capacity to recover silver, or when there is sufficient silver to make recovery worthwhile, it is sent to a silver refiner who incinerates it to remove the silver. This may occur after between six months and a year.

The advantages of using the in situ ion exchange method for silver recovery is similar to that of using the conventional ion exchange method. The disadvantages of the in situ method are that it requires a greater capital investment, and more chemical handling than with either chemical recovery cartridges or electrolytic cells. Also, the pH of the spent regenerant must be adjusted as it is discharged from the columns to prevent the formation of sulfur dioxide, and to be sure the discharge meets the local sewer codes.

Ion-exchange methods are not recommended to be used by VSQG to recover silver from spent fixers or bleach-fixes. They are suitable only for recovering silver from dilute solutions, like washwater, or a combination of fixer, bleach-fix, and washwater.

Electrolytic Cell Plus In Situ Ion-Exchange Method

Figure 6 illustrates a combined system involving the use of both the electrolytic cell and the in situ ion-exchange unit. The combined system (Fig. 6) produces an excellent effluent with lower residual silver in comparison with the chemical recovery cartridge method (Fig. 2), electrolytic silver recovery method (Fig. 3), the conventional ion-exchange method (Fig. 4), and
the in situ ion exchange (Fig. 5). The disadvantage of the combined system is its high capital and operating costs.

Hydroxide Precipitation Method
In this method, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, or sodium aluminate can be fed to the spent fixer for precipitation of silver ions as insoluble silver hydroxide precipitates. Figure 7 indicates that the residual silver concentration in the hydroxide precipitation treated effluent can be about 1 mg/L at pH 12 [19].

The advantage of this method is its low cost. Its disadvantages are: (a) the residual silver concentration in the treated effluent (about 1 mg/L at pH 12) may exceed the local regulatory agency’s effluent limit on silver; (b) the hydroxide sludges produced in the hydroxide precipitation method require further thickening and dewatering treatment and final disposal; and (c) refining silver from the precipitated silver hydroxide sludges is difficult [87].

Sulfide Precipitation Method
In this method, sodium sulfide, potassium sulfide, and/or ferrous sulfide can be dosed to the spent fixer during mixing at an alkaline pH range, for precipitation of silver ions as insoluble silver sulfide precipitates [87]. Figure 7 [19,59] indicates that the residual silver concentration in the sulfide precipitation treated effluent can be below 10^{-9} mg/L in the entire alkaline range, and can be as low as 10^{-12} mg/L at pH 10.5.

There are two advantages for this method: (a) the capital and operating costs are low; and (b) silver removal efficiency is extremely high. There are a few disadvantages for the method: (a) the sulfide sludges produced in the sulfide precipitation method require further thickening and dewatering treatment, and final disposal; (b) refining of silver from the precipitated silver sulfide sludges is not easy; and (c) hydrogen sulfide toxic gas may be produced from the sulfide precipitation process system if the pH of the spent fixer is controlled in an acid range by accident.
Process Comparison and Selection

Selection of a suitable method for silver removal depends on many factors; what processes the company uses, what volume of wastes the company produces, what kind of training and technical knowledge the company’s personnel has, whether the company wants to reuse the company’s fixer or bleach-fix, how much the company wants to spend for recovery equipment, and what the environmental concerns are, such as how strict the effluent discharge limits are. Just considering these factors makes choosing a silver recovery method very much an individual decision for each company.

Table 6 summarizes the silver removal efficiencies of the various process methods identified above. The silver concentration that can be discharged to a treatment plant or to a receiving body of water is often regulated even though silver in photographic effluent is in a form

Table 6 Typical Silver Concentrations in Effluent After Recovery

<table>
<thead>
<tr>
<th>Recovery method</th>
<th>Silver concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical recovery cartridges (CRCs)</td>
<td>10–20</td>
</tr>
<tr>
<td>Electrolytic (with tailing CRCs)</td>
<td>1–5</td>
</tr>
<tr>
<td>In situ ion exchange</td>
<td>0.1–2</td>
</tr>
<tr>
<td>Conventional ion exchange</td>
<td>0.5–2</td>
</tr>
<tr>
<td>Electrolytic (with tailing in situ ion exchange)</td>
<td><0.1–2</td>
</tr>
<tr>
<td>Hydroxide precipitation</td>
<td>1–5</td>
</tr>
<tr>
<td>Sulfide precipitation</td>
<td><0.1</td>
</tr>
</tbody>
</table>
that is not harmful. Therefore, cost is only one of the primary considerations in choosing the company’s silver-recovery method.

The company had considered all silver recovery options. The main factor was the company’s processing volume. Other economic considerations were the price of silver and operating and refining costs. If the company’s processing volume were to be high, the company would probably want to make frequent cartridge replacements or set aside a large amount of storage area for spent and replacement cartridges. Although initial capital investment with electrolytic recovery cells was higher than with chemical recovery cartridges, there would not be the recurring cost of equipment replacement. If the company were to use an electrolytic cell, the company’s refining costs for the recovered silver would be much lower than with other methods because the silver-plated out would usually be more than 95% pure.

If the company were a large-volume operation, the in situ ion exchange would also be an option. The company could use this method for primary treatment. The company could also use it to tail an electrolytic unit if the company were first to dilute the discharge from the electrolytic cell with washwater. Using this method would enable the company to recover the maximum amount of silver and to minimize the amount of silver discharged. It would require a greater capital investment and more chemical handling than with electrolytic cells or chemical recovery cartridges in accordance with the information from Kodak Company [58].

However, the company’s wastewater volume was actually very low, and chemical recovery cartridges, hydroxide precipitation tanks, and sulfide precipitation tanks become reasonable choices for silver recovery. Chemical recovery cartridges and the two types of precipitation tanks were all very simple to install. The costs for purchasing, installing, operating, and monitoring this equipment are very low compared with other methods.

In comparison with the silver recovery/removal efficiencies of the chemical recovery cartridge (CRC) method, the hydroxide precipitation method, and the sulfide precipitation method shown in Table 6, the two precipitation methods appeared to be a better choice than the CRC method.

Considering the silver removal efficiencies of the various process methods in Table 6 (the lower the residual silver concentration in effluent after treatment, the higher the silver removal efficiency), the company’s local code limits for silver, the ease of process operation, the safety, the costs, the volume of waste production, and the silver content in the spent fixer, the company finally selected the hydroxide precipitation method as the first-stage treatment, and the sulfide precipitation method as the second-stage treatment for silver removal from the spent fixer. It should be noted, however, that sulfide precipitation alone would have been sufficient. After silver was significantly removed from the spent fixer, both the treated spent fixer and the untreated spent developer were mixed together, forming a pretreated combined wastewater for possible discharge to a POTW. The analytical data of the pretreated combined wastewater are: COD = 132,000 mg/L; silver = <0.1 mg/L; and pH = 9.5. At this stage, the pretreated combined wastewater was no longer considered to be hazardous because it contained only a high concentration of biodegradable organics in terms of 132,000 mg/L of COD.

It is important to note that if the precipitation tanks were hard-piped and connected to the company’s processing units, the pretreated combined wastewater would not be considered to be a hazardous waste legally, and would be allowed to be discharged into the POTW without any legal problems. The precipitation tanks of the company, however, were not hard-piped to the company’s processing units. An application for a Permit for Sewer System Extension or Connection was then officially filed at the local town of Lenox, Massachusetts, by the consulting engineer, on behalf of the company. It was proposed that a permit be issued by the town and the State for the company to discharge a design flow ranging from 5 gpd (average) to 20 gpd (maximum) of the aforementioned pretreated combined wastewater into an existing Lenox
POTW system (1 gpd = 3.785 L/day). It should be noted that actual company’s wastewater flow was only 24 gal/month (90.84 L/month). The average sewage flow of the Lenox POTW was 0.4 MGD (1514 m³/day), and the BOD/COD ratio of the waste was determined to be 0.65. If a permit were issued to the company for discharging the pretreated wastewater to the Lenox POTW, an increase in silver concentration would be negligible, and an increase in BOD in the Lenox POTW would only be by about 1 mg/L during discharging of the pretreated wastewater at an instantaneous flow as high as 5 gpm (18.93 L/min). Besides, the organics in the pretreated wastewater were biodegradable in accordance with the MSDS. Under normal situation, a sewer discharge permit could have been granted because the company’s pretreated wastewater would not adversely affect the normal operation of biological wastewater treatment at the Lenox POTW. The town of Lenox was too small to have a licenced engineer to handle the legal case. The company was advised by the town to haul their small quantity of pretreated wastewater to the nearby city of Pittsfield’s POTW for disposal because there was an agreement between the town and the city.

The transportation of the pretreated wastewater from the company to the city, which was only 6 miles away, had to comply with all government rules and regulations because the pretreated wastewater was legally considered to be a hazardous waste, although technically it was not. The company faced a transportation problem because of its high cost.

Option of Transporting Wastes to Another Generator
The company could transport its untreated wastewaters or pretreated wastewater(s) to another generator who is in compliance with the regulations and who will count the company’s waste as part of another generator’s waste. Another generator, J.F. Co., Inc., was found in Springfield, Massachusetts, which was about 80 miles away from the company. J.F. Co., Inc., agreed to accept the spent Kodak Ultratec Fixer and Replenisher (i.e., the spent fixer) containing 1400 mg/L silver for silver recovery at a cost to the Lenox Company of US$2.00 per gallon, delivered to J.F. Co., Inc., in Springfield. While the cost quoted for disposal of the spent fixer was reasonable, the company in Lenox faced two other problems: (a) the spent developer containing no silver but a high concentration of dissolved organic carbon (DOC) still needed to be disposed of; and (b) the Lenox company, which was the original generator, would have to take full responsibility for whatever the actions were to be taken by the other generator, which was not well-known in the field.

The company was discouraged by the option.

Option of Transporting Wastes to a Licenced Facility
The company in Lenox also had an option to transport its wastes to a licenced treatment, storage or disposal facility, or permitted recycling facility, with the facility’s permission. There were many licenced facilities in Massachusetts that were willing to accept the company’s spent fixer and spent developer for final disposal.

As a registered VSQG, the company might transport its own hazardous waste under the following conditions: (a) the company transports only the waste that is generated on its premises (no problem); (b) the company does not transport more than 55 gal or 208.2 L at one time (no big problem but time consuming); (c) the company does not transport incompatible wastes in the same shipment (no problem); (d) the company’s waste is in containers that are tightly sealed, labeled as “HAZARDOUS WASTE,” with the name of the waste and the type of hazard, and are tightly secured to the vehicle (no problem); (e) the company keeps a copy of its registration as a VSQG in the vehicle while transporting its waste (no problem); (f) the company is in compliance with all USDOT and Massachusetts Department of Public Safety requirements (a problem to
VSQG); and (g) in the event of a spill or leak of hazardous waste that may threaten humans or the environment, the company shall notify the Massachusetts DEP or the State Police (no problem).

The company’s official Massachusetts DEP assigned SIC number was 2751. The two wastewater classifications and waste numbers were as follows: (a) spent fixer: waste number is D011, classified as “toxic”; and (b) spent developer: no waste number, classified as “corrosive,” neutralization is recommended but not required before transportation.

If the company decided not to use a licenced transporter but would be transporting its own wastes, the company did not need an USEPA-ID number or manifest form. The company must, however, keep a record of the type and quantity, as well as the date, method of transport, and treatment/disposal of its waste(s). The company would need proof of the receipt of the waste by the treatment/disposal facility. The company or its consulting engineer must keep receipts or manifests of waste shipped and records of waste analysis for at least three years, or for the duration of any enforcement action by the Massachusetts DEP.

Apparently this option was technically and economically feasible for the small company in Lenox. Unfortunately small (SQG) or very small (VSQG) generators similar to this Lenox company simply cannot find out the latest USDOT requirements, the Massachusetts Department of Public Safety requirements, the Massachusetts Department of Environmental Protection requirements by themselves without hiring a consulting engineer. The State regulatory agency(s) should provide more technical assistance to VSQG and SQG, whenever possible.

Option of Using a Licenced Transporter and Facility

The company’s owner finally decided to use a licenced transporter and a licenced facility for transportation, treatment, and disposal of its untreated wastes, even though the option of recycling, treatment, POTW discharge, and the option of self-transportation to a licenced facility were equally feasible. The licenced transporter and the licenced facility can be owned by two different firms or by one firm. In this particular case, the company in Lenox, which was a VSQG, selected an environmental service company in Albany, New York, which was a licenced transporter as well as a licenced facility. The costs for picking up, transporting, and disposing of six 55 gal drums of photographic developer and fixer solution in 1991 are documented in Table 7.

The prices given in Table 7 were based upon the following conditions:

- Free and easy access for the transporter/facility personnel to work site;
- Applicable taxes and state regulatory fees are not included in quoted process;
- A fuel usage surcharge of half of 1% will be added to the invoice total to cover rising fuel cost;

Table 7 Costs for Picking Up, Transporting and Disposing of Chemicals

<table>
<thead>
<tr>
<th>Method</th>
<th>Waste material</th>
<th>Container</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Picking up for disposal</td>
<td>Spent Kodak ultratec developer and replenisher</td>
<td>55 gal drum</td>
<td>$145/drum</td>
</tr>
<tr>
<td>B. Picking up for disposal</td>
<td>Spent Kodak ultratek fixer and replenisher</td>
<td>55 gal drum</td>
<td>$130/drum</td>
</tr>
<tr>
<td>C. Transportation of drum to the Massachusetts disposal facility (maximum 6 drums per load)</td>
<td></td>
<td></td>
<td>US$300.00/load</td>
</tr>
</tbody>
</table>
• Waste material conforms to waste profile sheets;
• All drums are centrally located and DOT approved;
• Drums are in shippable condition; and
• Transportation rate allows one hour for loading time; additional time required will be billed at US$75.00 per hour.

11.15 RECYCLING OF HAZARDOUS INDUSTRIAL WASTES AS WASTE-DERIVED FUELS

11.15.1 Introduction and Objective

Southdown, Inc., Houston, TX, engages in the cement, ready-mixed concrete, concrete products, construction aggregates, and hazardous waste management industries throughout the United States. According to Southdown, they are making a significant contribution to both the environment and energy conservation through the utilization of waste-derived fuels as a supplemental fuel source. Cement kiln energy recovery is an ideal process for managing certain organic hazardous wastes. The burning of wastes or hazardous wastes as supplemental fuel in the cement and other industries is their engineering approach.

By substituting only 15% of its fossil fuel needs with solid hazardous waste fuel, a modern dry-process cement plant with an annual production capacity of 650,000 tons of clinker can save the energy equivalent of 50,000 barrels of oil (or 12,500 tons of coal) a year. Southdown typically replaces 10–20% of the fossil fuels it needs to make cement with hazardous waste fuels.

By using hazardous waste fuels, the nation’s hazardous waste (including infectious waste) problem can be at least partially solved economically.

11.15.2 Cement Kiln Energy Recovery System

The cement kiln is a long, inclined cylinder that can be hundreds of feet in length and up to 15 ft in diameter. Raw materials, such as limestone, clay, sand, and a small amount of iron-containing substances enter at one end and cement clinker, the product, exits at the other. Material temperatures required to make cement clinker must be maintained at a minimum of 2450°F while gas temperatures inside the kiln can reach 3500°F. During operation, the kiln slowly rotates to ensure a thorough blending and “cooking” of the raw materials. These raw materials are heated using fossil fuels (about 85%) along with hazardous waste fuels (about 15%) in the huge kiln at such high temperature until they chemically combine to become marble-sized nodules called “clinker.” The clinker is then mixed with gypsum and ground to a fine powder to make cement. Cement, in turn, is a key ingredient in concrete, which is a vital component of the world’s roads, buildings, houses, and offices.

Cement kilns manage destruction of organics in hazardous waste through a high-temperature combustion. This involves heating the waste to a sufficient temperature, keeping it in the kiln for enough time, and providing the waste with sufficient oxygen. Because this method destroys organic chemical wastes, such as paint thinners, printing inks, and industrial cleaning solvents, combustion has become the preferred method of managing them and utilizing their BTU value. The conditions in the kiln ensure, and U.S. Environmental Protection Agency (USEPA) regulations require, that 99.99% or more of organic hazardous wastes are destroyed, that is, converted to carbon dioxide and water vapor.

Exhaust gases leaving the kiln pass through highly efficient air pollution control devices such as baghouse filters or electrostatic precipitators. The high temperatures required to make cement destroy 99.99% or more of the organic hazardous wastes. The content of hydrocarbons...
and carbon monoxide in stack emissions is monitored to ensure that the combustion process is optimized. When combustion is efficient, emission of carbon monoxide is minimized and hydrocarbons disappear. In this way, operators are assured that a destruction efficiency of 99.99% or more is always maintained and that they stay within the stringent limits on emissions set by USEPA, which has identified ten metals that must be controlled. The list includes antimony, arsenic, barium, beryllium, cadmium, chromium, lead, mercury, silver, and thallium. All cement kilns that want to recycle hazardous waste as fuels will have to meet stringent limits on emissions of these metals.

11.15.3 Cement Kiln Monitoring and Control

Under the newly adopted federal regulations for facilities using hazardous waste fuels, cement kilns must comply with stringent testing and permitting requirements before they can recycle the wastes. These procedures ensure that cement companies wanting to recycle hazardous wastes as fuel will do so safely. Those facilities unable to meet the rigorous RCRA standards will not be allowed to burn hazardous waste fuel. Under the USEPA BIF rule (“Burning Hazardous Waste in Boilers and Industrial Furnaces”), cement kilns recycling hazardous waste as fuel are now perhaps the most regulated form of thermal treatment. Major components of the regulatory approach include monitoring and control – allowing operators to detect problems in the process and control the system on a continuing basis. This ensures the process always stays within a safe window of operating conditions – and that emissions always remain within the strict limits prescribed by USEPA.

Under USEPA’s BIF rule, manufacturers are required to closely monitor numerous conditions in the kiln and to observe limits on the following aspects of the process: (a) the maximum feed rate of hazardous waste fuel; (b) the maximum feed rate of metals from both raw materials and fuels; (c) the maximum feed rate of chlorine from raw materials and fuels; (d) the maximum feed rate of raw materials; (e) the maximum temperature at the inlet to the air pollution control devices; (f) the maximum concentration of carbon monoxide and total hydrocarbons in the flue gas; (g) the maximum temperature in the combustion zone or minimum temperature at the kiln inlet; and (h) any decrease of pressure at the baghouses or any decline in the strength of the electric field of electrostatic precipitators (both are types of air pollution control devices).

Cement manufacturers use a number of quality control measures. Key among these is careful selection of fuels for recycling. Fuels that contain metals above specified levels, for instance, will be rejected. For that reason, each shipment of fuel is carefully analyzed to determine its ingredients. If the fuel fails to meet predetermined specifications, it will not be used.

There are two primary sources of controls on recycling hazardous waste fuels in cement kilns. First, cement kiln operations are tightly regulated on both the Federal and State level. These regulations cover everything from the transportation of the fuel to the conditions that must be maintained in the kiln. Using USEPA’s new, highly sensitive Toxicity Characteristics Leaching Procedure (TCLP), scientists have confirmed that the chemical reactions that must take place in order to make cement prevent unacceptable concentrations of metals from being released from cement or the concrete. Second, because the chemistry of cement-making is both sensitive and precise, manufacturers cannot afford to put anything into their kilns that could produce variations in the clinker. If they did, the cement would not meet the rigorous, industry-wide product quality standards set by the American Society of Testing and Materials (ASTM). ASTM specifies tests and test methods [60] to ensure uniform controls on cement producers nationwide. Before the product can be called Portland cement, tests must show it has the
required chemical composition. It also must pass tests measuring physical qualities, such as strength and particle fineness. In this way, product quality is assured regardless of what raw materials or fuels are used.

11.15.4 Permit System for Process Operation, Waste Transportation, and In-Plant Waste Handling

All cement kilns burning hazardous waste fuels will have to obtain a permit from USEPA and local regulatory agencies. Because the permitting process can be lengthy, cement kilns already burning hazardous wastes will be subject to regulation almost immediately under what is known as “interim status.” Interim status is a standard regulatory approach used when new regulations are approved under RCRA to bring existing facilities under the new regulations without delay.

Trucks transporting hazardous wastes to cement kilns are regulated by Federal and State transportation agencies. This means they are controlled every step of the way. All trucks must meet U.S. Department of Transportation standards, which require all hazardous wastes to be transported under strict conditions in specially designed containers. State transportation agencies test and licence truck drivers to ensure they understand the precautions required with these fuels.

Both Federal and State regulations under the RCRA specify storage and handling requirements designed to ensure safe operations. For example, the facilities for unloading, storing, and transporting hazardous wastes to the kiln are built with government-approved systems designed to prevent sparks and accidental fires. Such areas are also designed to meet or exceed Federal and State standards for environmental safety, including secondary containment in the unlikely event of a spill.

11.15.5 Health Effects and Risks

Because cement kilns effectively destroy more than 99.99% of organic chemical wastes and emissions are tightly controlled by the BIF rule and other regulations, only minute amounts of organic compounds are emitted and testing has indicated that these emissions are independent of fuel type. In fact, organic emissions are sometimes reduced through the use of waste fuels. The quantity is so small that it does not present a perceptible increase in risks to public health or the environment. Cement kiln exhaust gases typically contain less than one-tenth of the hydrocarbons present in automobile exhaust gases.

Because cement kilns are so good at destroying organic chemical wastes, emissions of dioxins – or any other type of products of incomplete combustion (PIC) – are so low they pose no danger to the environment. In the case where some of the hazardous waste fuels used contain toxic dioxin, the cement kiln temperatures of 1650°F will destroy dioxins in less than one second. Because cement kilns operate at much higher temperatures (at least 2450°F), and because the burning wastes have an average residence time in the kiln of at least two seconds, any dioxins are destroyed. However, dioxin waste is never accepted by Southdown for use in its cement kilns.

Cement made with hazardous waste fuels contains essentially the same amount of metals as cement made using traditional fossil fuels, such as coal, coke, or oil. Also, tests show cement made with hazardous waste fuels has essentially identical leaching characteristics as those of cement produced solely with traditional fuels. This means the metals are no more likely to leach out of the cement made using hazardous waste fuels than if it were made using coal, coke, or oil.

The TCLP tests are performed by subjecting samples to a much harsher environment than would be encountered in natural surroundings. The samples of concrete are pulverized to maximize exposure to the acid used. Next, a particularly harsh solution of acetic acid is
employed. Acid can leach out much higher concentrations of metals than liquids to which concrete is normally exposed, such as rain or groundwater. Finally, the amount of acid solution used is very large in comparison to the amount of concrete.

Health risks to residents near cement kilns may actually decrease when hazardous waste fuels are used. This is because the permit needed to recycle hazardous waste fuels requires more stringent emissions controls than those for cement kilns using only fossil fuels. Also, fossil fuels contain natural impurities that are reduced or no longer emitted when some types of hazardous waste fuels are used.

11.15.6 Southdown Experience in Waste Fuel Selection

Production of high-quality cement and compliance with environmental regulations are Southdown’s top priorities. Therefore, great care is taken to ensure that only those wastes that can be safely recycled and that are compatible with the cement manufacturing process are used. Cement production requires fuels with a high energy value. Waste materials that provide enough heat include such familiar items as paint thinners, printing inks, paint residues, and industrial cleaning solvents. Cement kilns can also help alleviate one of the most difficult solid waste problems – scrap tires, which take up valuable landfill space. Tires (also known as “tire-derived fuel”) can be used as an efficient fuel in cement kilns.

Before Southdown accepts any waste materials for recycling as fuel, a chemical analysis must be performed to identify their chemical composition. Wastes that cannot be blended to meet standards for content, heat value, and compatibility with cement production are not accepted. For instance, cement cannot be made with fuels that have a high chlorine content.

Both fossil fuels and hazardous waste fuels used in Southdown cement kilns contain metals. The raw materials (limestone, clay, sand) used to make cement clinker also contain metals. In fact, certain metals, such as iron and aluminum, are essential components of the final product. While metals cannot be destroyed, the Southdown cement kiln process effectively manages them in the following ways: (a) cement kiln operators limit emissions by carefully restricting the metals content in wastes accepted for recycling; (b) dust particles containing metals are returned to the kiln through closed-loop mechanisms, where metals are chemically bonded into the cement clinker; (c) particles not returned to the kiln are captured in state-of-the-art pollution control devices; and (d) small amounts are emitted from the stack in quantities strictly limited by USEPA’s BIF rule.

Electrostatic precipitators and baghouses are used to catch dust particles containing metals. Electrostatic precipitators use an electrical field to remove the particles. Baghouses use fiberglass filters, similar to vacuum cleaner bags, to catch them. The majority of these particles, called cement kiln dust (CKD), are trapped by this equipment and returned to the kiln for incorporation into the cement clinker. Under USEPA’s BIF rule, Southdown tests its cement kiln dust to judge whether it is hazardous. If the CKD does not meet the standards set under the BIF rule, it must be disposed of in accordance with USEPA’s strict hazardous waste regulations. For that reason, Southdown does not accept fuels that would cause the waste CKD to fail this test.

11.15.7 Southdown Experience in Product Quality Monitoring

A concrete made from Southdown cement is called a “Southdown concrete.” Even under the TCLP testing extreme conditions, the amount of metals that leached out of the Southdown concrete were many orders of magnitude below the standards set by USEPA. In many cases the levels were, in fact, below the limits of detection for the test. One historical use of Southdown concrete has been for pipes used to transport drinking water. Drinking water is routinely tested to
show that it meets Federal standards for a wide variety of contaminants, including metals. If metals leaching from the concrete pipes were a concern after many years of use, either USEPA or another recognized scientific organization would have sounded a warning.

The water distribution system in the city of Dayton, OH, uses Southdown concrete water mains to deliver water to its citizens. Routine sampling and testing of Dayton’s water supply by the city’s Department of Water consistently shows that the levels of metals are well below the Ohio EOA Community Drinking Water Standards, and that these levels have remained constant throughout a nine-year testing period from 1982 to 1990. Because metal leaching has not occurred, there is no reason for concern over the safety of Southdown concrete pipes to transport drinking water.

REFERENCES

5. Massachusetts DEP. Massachusetts Hazardous Waste Information for Medical Offices; Massachusetts Department of Environmental Protection: Boston, MA, 1988.
6. Massachusetts DEP. Large Quantity Generator Fact Sheet; Massachusetts Department of Environmental Protection: Boston, MA, 2000.
7. Massachusetts DEP. Small Quantity Generator Fact Sheet; Massachusetts Department of Environmental Protection: Boston, MA, 2000.
8. Massachusetts DEP. Application for an USEPA Identification Number; Massachusetts Department of Environmental Protection: Boston, MA, 1992.

60. ASTM. ASTM Standards on Environmental Site Characterization; ASTM, 2002; 1827 p.
68. NRC. Zinc; Committee on Medical and Biological Effects of Environmental Pollutants, National Research Council, National Academy of Sciences, prepared for the U.S. Environmental Protection Agency: Washington, DC, 1978; USEPA-600/1-78-034.