Rapid and simultaneous genotypic detection of Rifampin-Isoniazid and Ethambutol resistant *Mycobacterium tuberculosis* by use of MAS-PCR

Leyla Sahebi a,1, **Khalil Ansarin** a,* **Safar Farajnia** b, **Amir Monfaredan** e, **Maryam Seyyedi** a, **Saied Dastgiri** c, **Parviz Mohajeri** d, **Kamaleddin Jadidian** d

a Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Science, Tabriz, Iran
b Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
c Tabriz Health Services Management Research Centre, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
d Kermanshah University of Medical Sciences, Department of Microbiology, Kermanshah, Iran
e Department of Hematology, Faculty of Medicine, Tabriz Branch, Islamic Azad University of Tabriz, Iran

A R T I C L E I N F O

Article history:
Received 21 October 2014
Accepted 26 October 2014
Available online xxxx

Keywords:
Multiple drug resistance
Multiplex polymerase chain reaction
Mycobacterium tuberculosis

A B S T R A C T

Aims and objectives: This study aims to identify common mutations leading to Isoniazid (INH), Rifampin (RMP) and Etambutol (EMB) resistance using Multiplex Allele-Specific Polymerase Chain Reaction (MAS-PCR).

Method: In a cross-sectional study during 2012–2013, 257 patients with smear-positive pulmonary tuberculosis residing in five frontier west and north-west provinces of Iran were evaluated in respect of common point mutations leading to resistance to tree first-line drugs.

Results: The overall frequency of mutations was 37 out of which 8 mutations were related to katG 315, 26 mutations pertained to rpoB 516, 526 and 531 and 3 mutations related to emb B. The rpoB single, double and triple mutations were found in 45.3%, 42.3% and 15.4% of rpoB, respectively. Frequency of patients with mutation to katG and at least one rpoB codon was 7 cases (2.7%) at the same time. In this study 60.0% of INH-resistant and 83.3% of RMP-resistant isolates were detected by MAS-PCR technique. Mutation odds were higher in females and in patients with a history of anti-TB drug use.

Conclusion: The MAS-PCR is a relatively rapid, sustainable, efficient and accurate technique for detection of drug resistance in tuberculosis. This highlights also the role of mutation at inhA, ahp and oxy R genes in the creation of IHN resistance which may be the causative factor in the remainder of cases.

© 2014 Published by Elsevier Ltd. on behalf of Asian-African Society for Mycobacteriology.