Whole genome sequencing-based characterization of extensively drug resistant (XDR) strains of Mycobacterium tuberculosis from Pakistan

Zahra Hasan a,*, Asho Ali b,c, Ruth McNerney d, Kim Mallard d, Grant Hill-Cawthorne e,f, Francesc Coll d, Mridul Nair e, Arnab Pain e, Taane G. Clark d, Rumina Hasan b

a Department of Pathology and Microbiology, The Aga Khan University, Karachi, Pakistan
b Department of Pathology and Microbiology, Aga Khan University Hospital, Karachi, Pakistan
c School of Nursing and Midwifery, Aga Khan University Hospital, Karachi, Pakistan
d Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
e Pathogen Genomics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
f Sydney Emerging Infections and Biosecurity Institute and School of Public Health, Sydney Medical School, University of Sydney, NSW 2006, Australia

A R T I C L E I N F O

Article history:
Received 21 October 2014
Accepted 26 October 2014
Available online xxxx

Keywords:
Extensively drug resistant (XDR)
Mycobacterium tuberculosis
Pakistan

A B S T R A C T

Objectives: The global increase in drug resistance in Mycobacterium tuberculosis (MTB) strains increases the focus on improved molecular diagnostics for MTB. Extensively drug-resistant (XDR) – TB is caused by MTB strains resistant to rifampicin, isoniazid, fluoroquinolone and aminoglycoside antibiotics. Resistance to anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs), in particular MTB genes. However, there is regional variation between MTB lineages and the SNPs associated with resistance. Therefore, there is a need to identify common resistance conferring SNPs so that effective molecular-based diagnostic tests for MTB can be developed. This study investigated used whole genome sequencing (WGS) to characterize 37 XDR MTB isolates from Pakistan and investigated SNPs related to drug resistance.

Methods: XDR-TB strains were selected. DNA was extracted from MTB strains, and samples underwent WGS with 76-base-paired end fragment sizes using Illumina paired-end HiSeq2000 technology. Raw sequence data were mapped uniquely to H37Rv reference genome. The mappings allowed SNPs and small indels to be called using SAMtools/BCFtools.

Results: This study found that in all XDR strains, rifampicin resistance was attributable to SNPs in the \textit{rpoB} RDR region. Isoniazid resistance-associated mutations were primarily related to katG codon 315 followed by \textit{inhA} S94A. Fluoroquinolone resistance was attributable to \textit{gyrA} 91–94 codons in most strains, while one did not have SNPs in either \textit{gyrA} or \textit{gyrB}. Aminoglycoside resistance was mostly associated with SNPs in \textit{rrs}, except in 6 strains. Ethambutol resistant strains had \textit{embB} codon 306 mutations, but many strains did not have this present. The SNPs were compared with those present in commercial assays such as LiPA Hain MDRTBsl, and the sensitivity of the assays for these strains was evaluated.

http://dx.doi.org/10.1016/j.ijmyco.2014.10.050

© 2014 Published by Elsevier Ltd. on behalf of Asian-African Society for Mycobacteriology.
Conclusions: If common drug resistance associated with SNPs evaluated the concordance between phenotypic and genotypic testing, the results would be rifampicin (100%), isoniazid (89%), fluoroquinolones (95%), aminoglycoside (81%) and ethambutol (61%). This work highlights the importance of expanded targets for drug resistance detection in MTB isolates.

© 2014 Published by Elsevier Ltd. on behalf of Asian-African Society for Mycobacteriology.