Dengue virus infections: comparison of methods for diagnosing the acute disease

Celina de Oliveira Poersch, Daniela Parada Pavoni, Mario H. Queiroz, Luana de Borba, Samuel Goldenberg, Claudia Nunes Duarte dos Santos, Marco Aurélio Krieger

Abstract

Background: The control of dengue depends solely on the control of the insect vector and efficient diagnosis of human cases as no vaccines or specific treatments are currently available. Existing diagnostic methods for suspected clinical cases are complicated by the short duration of viremia and by serological cross-reactivity with epitopes from other flaviviruses.

Objectives: To evaluate PCR-based tests (nested reverse transcription (RT)-PCR and real-time RT-PCR) for the detection and serotyping of dengue virus and compare the results with those obtained with a widely used immunological test (IgM antibody capture ELISA–MAC-ELISA).

Results and conclusions: The PCR-based methods were more effective in the first few days of infection, whereas the MAC-ELISA became more sensitive 5 or 6 days after disease onset. These results suggest that the best method for dengue diagnosis is a combination of PCR-based and immunological tests. Real-time RT-PCR was more sensitive than the nested RT-PCR approach. Furthermore, it was rapid, reproducible and highly specific, making it a potential method for the diagnosis of dengue fever.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Dengue virus; Diagnosis; Nested RT-PCR; Real-time RT-PCR

1. Introduction

Dengue is the most important arbovirus in terms of numbers of humans affected. It constitutes a serious public health problem in many subtropical and tropical regions where environmental conditions allow the proliferation of insect vectors. Aedes aegypti is the main vector of dengue virus and is present in most countries between latitudes 35°N and 35°S. More than 2.5 billion people living in these areas are at the risk of dengue (World Health Organization, 1997). Dengue virus affects over one hundred million people per year, causing approximately 24,000 deaths (Gubler, 1998). No safe vaccines or specific treatments are currently available.

The hyperendemicity in many regions of the world has increased the occurrence of more severe forms of dengue fever (DHF, dengue hemorrhagic fever and DSS, dengue shock syndrome). In Brazil, the number of dengue virus infections is dramatically increasing every year and recent estimates suggest that more than one million cases occurred in the past 2 years in this country (Fundação Nacional de Saúde, 2003), representing more than 80% of the cases recorded in the America. Three of the four existing serotypes have been found in 23 out of 26 Brazilian States (Fundação Nacional de Saúde, 2003).

The control of the disease depends solely on the control of the vector and the availability of diagnostic services in transmission areas. As the symptoms of dengue are very similar to those of other fever-causing illnesses, the availability of dengue-specific laboratory diagnostic tests is of utmost importance. Serological tests, such as MAC-ELISA (IgM antibody-capture enzyme-linked immunosorbent assay), are among the most widely used. Nevertheless, they cannot consistently provide a diagnosis during the acute-phase of the
illness and they do not identify the dengue virus serotype. Hence, they are mainly useful for the detection of dengue at later times, especially following the 7th day after onset of symptoms, when the immune response, which decreases the viral load, can be effectively detected. The main way of diagnosing dengue during the early stages of infection is to isolate the virus by cell culture or by reverse transcription (RT)-PCR (World Health Organization, 1997). Due to the long time (usually more than 7 days) required for cell culture-based tests, several RT-PCR protocols for dengue diagnosis have been developed in the past decade. These methods might eventually replace the traditional cell culture method as the gold standard for viral detection (Deubel et al., 1990; Harris et al., 1998; Henchal et al., 1991; Lanciotti et al., 1992; Morita et al., 1991; Seah et al., 1995). Very recently, real-time RT-PCR assays for the detection and quantification of dengue virus have also been described (Callahan et al., 2001; Drosten et al., 2002; Houng et al., 2000; Laue et al., 1999; Shu et al., 2002; Wang et al., 2002; Warrillow et al., 2002).

Here, we evaluate and compare a two-step nested RT-PCR protocol reported by Lanciotti et al. (1992), two TaqMan-based serotype-specific real-time RT-PCR assays for the detection of dengue virus serotypes 1 and 2, a SYBR Green I-based serotype-specific assay for the detection of dengue virus serotype 3, a previously published TaqMan-based group-specific real-time RT-PCR able to detect all four dengue serotypes (Drosten et al., 2002), and a MAC-ELISA test.

2. Materials and methods

2.1. Human serum samples

Serum samples were collected from 50 individuals with suspected dengue fever (based on epidemiological and clinical aspects) and from nine healthy individuals (negative controls). Sera were collected between 2001 and 2003 by the Public Health Services of the States of Paraná and Santa Catarina in Brazil. Of the 50 putative positive sera, 23 were collected between 0 and 3 days, 13 between 4 and 6 days and 14 at least 7 days after the onset of symptoms. The nine negative control sera were collected from healthy individuals who had never presented symptoms of dengue infection and had always lived in the city of Curitiba where no dengue epidemic has ever occurred. Three of the nine negative individuals were vaccinated against yellow fever virus around 7 days before blood collection and two were positive for hepatitis C virus (HCV). Paired serum samples (collected at least 7 days apart) from 10 patients from Rio de Janeiro, were also analyzed.

2.2. Preparation of positive controls

Two prototype strains (DEN-1 Hawaii, DEN-2 Jamaica (M20558)) and one local isolate of DEN-3 virus were propagated in Aedes albopictus C6/36 cells. Viral titers were determined by the focus-forming assay (Després et al., 1993). Negative human serum samples were spiked with four-fold serial dilutions (from 8.78×10^5 focus-forming units/ml (FFU/ml) to 0.21 FFU/ml) of quantified viruses prior to RNA preparation and used as positive controls and to determine the detection limits of the PCR assays.

2.3. Preparation of RNA

RNA was extracted from 140 μl serum samples and eluted in 60 μl using the QI Amp viral RNA mini kit (Qiagen) according to the manufacturer’s instructions, and stored at −70 °C.

2.4. Oligonucleotide design

To design primers and probes for the serotype-specific assays, the complete genome sequences of dengue virus available in GenBank were aligned using the CLUSTAL X software (Thompson et al., 1997). The most conserved regions were selected, and primers and corresponding probes designed using the Primer Express Sequence Design Software (Applied Biosystems). Primer and probe sequences for the group-specific assay were obtained from Drosten et al. (2002). All the probes were labeled with 5-carboxyfluorescein (FAM) at the 5’ end and with 6-carboxy-N,N,N’,N’-tetramethylrhodamine (TAMRA) at the 3’ end. The oligonucleotide sequences are listed in Table 1.

2.5. Real-time RT-PCR

One-step real-time RT-PCR assays were performed in the ABI PRISM 7000 Sequence Detection System (Applied Biosystems). Samples were assayed in a 25 μl reaction mixture containing 5 μl of extracted RNA from the sample and the recommended concentration of MultiScribe enzyme plus RNase Inhibitor and TaqMan Universal RT-PCR Master Mix or SYBR Green Master Mix (Applied Biosystems). All reactions contained 200 nM of the specific primers; the TaqMan-based assays contained 300 nM of the corresponding probe. The PCR conditions were as follows: a 30-min RT step at 48 °C, 10-min at 95 °C, followed by 40 cycles of 95 °C for 15 s and 60 °C for 60 s. For the SYBR Green I-based assay, a melting curve analysis was performed following the amplification, to ensure that the correct product had been obtained by checking its specific melting temperature (T_m). Melting curve analysis consisted of an incubation in which the temperature is increased from 60 °C to 96 °C at a rate of, approximately, 1 °C/40 s with continuous reading of fluorescence.

2.6. Nested RT-PCR

A two-step nested RT-PCR was performed as described by Lanciotti et al. (1992), except that the origi-
Table 1

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Sequence</th>
<th>Genomic region</th>
<th>GenBank reference number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEN1-forward</td>
<td>5′-GCT GA T GCT GGT GAC ACC A T-3′</td>
<td>E (907–926)</td>
<td>AF311958</td>
</tr>
<tr>
<td>DEN1-reverse</td>
<td>5′-TCG ACG AAG TCT CTG TTG CCT A T-3′</td>
<td>E (950–972)</td>
<td>AF311958</td>
</tr>
<tr>
<td>DEN1-probe</td>
<td>5′-CCC ACG CA T CGC A TG GCC A T-3′</td>
<td>E (929–948)</td>
<td>AF311958</td>
</tr>
<tr>
<td>DEN2-forward</td>
<td>5′-ACC ATA GGA AGC ACA CAT TCC C-3′</td>
<td>E (864–885)</td>
<td>AF489932</td>
</tr>
<tr>
<td>DEN2-reverse</td>
<td>5′-CAA CUC ATT GTC ATT GAA GGA A-3′</td>
<td>E (925–943)</td>
<td>AF489932</td>
</tr>
<tr>
<td>DEN2-probe</td>
<td>5′-AGG GCC TTG A TT TTC A TC TTA CTG ACA GC-3′</td>
<td>E (888–916)</td>
<td>AF489932</td>
</tr>
<tr>
<td>DEN3-forward</td>
<td>5′-CCC ATC CAT GAC AAT GAG AGT T-3′</td>
<td>E (979–999)</td>
<td>AF317645</td>
</tr>
<tr>
<td>DEN3-reverse</td>
<td>5′-TCA ACC CAC GTA GCT CCT GA T-3′</td>
<td>E (979–999)</td>
<td>AF317645</td>
</tr>
<tr>
<td>DENgroup-forward</td>
<td>5′-GGA TAG ACC AGA GA T CCT GCT GT-3′</td>
<td>NCR (10646–10668)</td>
<td>AF311958</td>
</tr>
<tr>
<td>DENgroup-reverse1</td>
<td>5′-CAT TCC ATT TTC TGG CCT TC-3′</td>
<td>NCR (10693–10712)</td>
<td>AF311958</td>
</tr>
<tr>
<td>DENgroup-reverse2</td>
<td>5′-CAA TCC ATC TTC TGG GGG CCT TC-3′</td>
<td>NCR (10607–10626)</td>
<td>AF375822</td>
</tr>
<tr>
<td>DENgroup-probe</td>
<td>5′-CAG CAT TCC AGG CAC AGT A-3′</td>
<td>NCR (10674–10693)</td>
<td>AF311958</td>
</tr>
</tbody>
</table>

* Drosten et al. (2002).

2.7. Viral isolation and immunofluorescence assay

Viral isolation was performed using C6/36 cell cultures as described by Gubler et al. (1984). Cells were harvested and viruses were identified with serotype-specific anti-dengue monoclonal antibodies and fluorescein isothiocyanate-conjugated goat anti-mouse antibody.

2.8. Serological test

All samples were evaluated with the MAC-ELISA kit (Bio-Manguinhos, Fundação Oswaldo Cruz, Brazil), following the recommended guidelines.

3. Results

3.1. Sensitivity of real-time and nested RT-PCR

Sensitivity of real-time and nested RT-PCR assays was evaluated by testing triplicate RNA samples extracted from four-fold dilutions of known amounts of stock viruses spiked into normal human sera. The detection limit for the TaqMan and SYBR Green I-based assays, considered as the lowest level at which viral RNA was detected and remained within the range of linearity of a standard curve with a minimum correlation coefficient of 0.99, was 53.6 FFU/ml for all the serotype- and group-specific assays (Table 2). Given the volume of serum used for RNA extraction (140 μl), the volume of eluted RNA (60 μl) and the volume of extracted RNA used in the assays (5 μl), the detection limit corresponds to 0.625 FFU/reaction. The detection limit of the nested RT-PCR assay was equal to that of the serotype-specific real-time assay for DEN-2, and higher than those of the serotype-specific real-time assays for DEN-1 and DEN-3 (5 and 10 FFU/reaction, respectively). This indicates that the real-time RT-PCR, including the serotype-specific assays developed in this work, is more sensitive than the nested RT-PCR.

3.2. Specificity of real-time and nested RT-PCR

The stock DEN-1, -2, and -3 viruses were used to verify that the PCR-based assays could reliably detect and differentiate between the three dengue virus serotypes analyzed in this study. Four normal human serum samples, three serum samples from patients vaccinated against the yellow fever virus and two from HCV-positive patients were used as negative controls. Purified yellow fever virus (YF-17DD, vaccine strain) was also used as control virus for flavivirus cross-reactivity analysis. All the assays were specific with no cross-reactivity observed (Table 2). None of the assays were able to amplify the RNA extracted from yellow fever-vaccinated individuals, HCV-positive patients, negative human serum samples or from YF vaccine strain.

Table 2

<table>
<thead>
<tr>
<th>Sensitivity and specificity of the PCR-based assays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay</td>
</tr>
<tr>
<td>Detection limit (FFU/vol. tested)</td>
</tr>
<tr>
<td>DEN-1</td>
</tr>
<tr>
<td>DEN-2</td>
</tr>
<tr>
<td>DEN-3</td>
</tr>
<tr>
<td>DEN-group</td>
</tr>
</tbody>
</table>
Table 3

Comparison between real-time RT-PCR assays and cell culture method for detection and serotyping of dengue virus in acute-phase sera from dengue confirmed casesb

<table>
<thead>
<tr>
<th>Serotype</th>
<th>Number of positive samples detected by virus isolation</th>
<th>Serotype-specific real-time RT-PCR</th>
<th>Group-specific real-time RT-PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEN-1</td>
<td>1</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>DEN-2</td>
<td>5</td>
<td>5</td>
<td>–</td>
</tr>
<tr>
<td>DEN-3</td>
<td>4</td>
<td>4</td>
<td>–</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

a Serum samples collected before the 7th day after disease onset.

b Confirmed cases based on seroconversion.

3.3. Evaluation of real-time RT-PCR for the detection of dengue virus RNA

To evaluate the real-time RT-PCR assays in the clinical diagnosis of dengue virus RNA, two serum specimens (acute and convalescent) from 10 patients were analyzed by serotype- and group-specific assays and by serology. All acute-phase samples (collected 1–3 days after the onset of symptoms) were IgM-negative and all convalescent-phase samples (collected between days 15 and 18) were IgM-positive. Dengue virus RNA could be demonstrated in all early serum samples by both the serotype- and group-specific assays and in none of the late samples. The results of the real-time RT-PCR assays were compared to the results of immunofluorescence test. The serotype agreement between these two methods was 100% (Table 3).

3.4. Comparison of real-time RT-PCR and nested-RT-PCR

Fifty serum samples from patients with suspected dengue fever were tested in duplicate by real-time and by nested RT-PCR. Serum samples were subdivided according to the sampling time after the onset of symptoms. The results are shown in Table 4. Both the group-specific and one of the serotype-specific real-time assays were positive for 17 of the 50 putative positive cases, showing a good correlation between these two assays. The nested RT-PCR was positive for only 4 of the 50 samples, corroborating our previous observation that this assay is less sensitive than the real-time RT-PCR.

The serotype agreement for real-time assays with the nested method was 100%.

3.5. Comparison of the PCR-based methods and the serological test

The serum panel was assayed for anti-dengue antibodies by using the MAC-ELISA kit (Bio-Manguinhos, Fundação Oswaldo Cruz, Brazil). Sera displaying reactivity below the cut-off threshold were considered as negative. The results obtained with MAC-ELISA, nested-RT-PCR and real-time RT-PCR were compared (Table 4). Real-time RT-PCR only detected viral RNA in two of the seven MAC-ELISA-positive samples collected in the first 6 days after disease onset. No viral RNA could be detected in the seven samples positive for anti-dengue IgM antibodies obtained after the 6th day.

4. Discussion

In the last 60 years, the distribution and severity of dengue have dramatically increased, accordingly, it is presently considered the most important human arbovirus (Gibbons and Vaughn, 2002). Diagnosis of dengue infection during the initial phase of the illness is essential for the treatment of patients and for the effective control of dengue outbreaks (World Health Organization, 1997). Dengue diagnosis is conventionally based on the detection of virus-specific antibodies or the isolation and identification of virus from patients sera. Due to the technical difficulties associated with viral isolation in cell culture, PCR-based methods are being increasingly used for the early detection and typing of dengue viruses (reviewed by Gubler, 1998; Vorndam and Kuno, 1997). Here, we compared the performances of group (Drosten et al., 2002) and newly developed serotype-specific real-time RT-PCR assays with those of a nested RT-PCR protocol (Lanciotti et al., 1992) and a traditional serological test for the diagnosis of dengue infection.

Real-time RT-PCR was more sensitive, detecting more than four times as many acute-phase samples (collected before the 7th day after disease onset) as the nested RT-PCR. In addition, post-PCR processing and the second round of amplification make the nested RT-PCR protocol time-consuming, prone to false-positive results due to carryover
References

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple se-

