Mumps vaccine effectiveness in primary schools and households, the Netherlands, 2008

Bianca E.P. Snijders¹,², *, Alies van Lier¹, Jan van de Kassteele³, Ewout B. Fanoy¹,⁴, Wilhelmina L.M. Ruijs¹,⁴, Folkwin Hulshof⁴, Annet Blauwhof⁵, Marten Schipper³, Rob van Binnendijk¹, Hein J. Boot¹, Hester E. de Melker¹, Susan J.M. Hahné¹

¹ Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
² Pallias Health Research and Consultancy, Rotterdam, the Netherlands
³ Expertise Centre for Methodology and Information Services, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
⁴ Municipal Health Service, the Netherlands

A R T I C L E I N F O
Article history:
Received 29 November 2011
Received in revised form 9 February 2012
Accepted 14 February 2012
Available online 27 February 2012

Keywords:
Mumps
Vaccine effectiveness
Cross-sectional study
Children
Household contacts

A B S T R A C T
To estimate the mumps vaccine effectiveness (VE) during a large genotype D mumps outbreak, we conducted a cross-sectional study in eight primary schools and associated households in the Netherlands. Questionnaires were used to collect information on the occurrence of mumps. Multivariate analyses were used to estimate VE. Among schoolchildren we estimated the VE against mumps. Among household contacts where the schoolchild was the index case we estimated the VE against mumps and against mumps infectiousness. In total 1175 children and 2281 household contacts participated in the study. The mumps attack rate among schoolchildren was 17%. The mumps VE in schoolchildren was 92% [95% confidence interval (CI) 83–96%] and 93% [85–97%] for one and two doses of the measles, mumps, rubella (MMR) vaccine, respectively. The adjusted mumps VE among household contacts was 67% [65–95%] and 11% [4–88%] against mumps and mumps infectiousness, respectively. Our study indicates that the mumps component of the MMR vaccine offered adequate protection against mumps among schoolchildren. The relatively low VE among household contacts is of concern.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Before introduction of routine childhood vaccination, mumps was a common childhood infection. It is caused by the mumps virus, and is characterized by swelling of the parotid gland. Complications include meningitis, (epididymo-)orchitis, oophoritis, pancreatitis, deafness and encephalitis [1,2].

Mumps vaccination was introduced in the Netherlands in 1987, using the measles, mumps rubella (MMR) combination vaccine, which contains the Jeryl Lynn mumps vaccine strain [3]. From 2006 onwards, also the RIT4385 vaccine strain, which is derived from the Jeryl Lynn strain, was incidentally used due to supply shortages [4]. The uptake of the first MMR vaccination (MMR-I) is high in the Netherlands (>95% from birth cohort 1993 onwards) while the uptake of the second MMR-II vaccination is slightly lower (93%) than the World Health Organization (WHO) target, i.e. 95% [5,6].

Mumps has been a notifiable disease from 1976 to 1998, and from December 1st, 2008 onwards [4].

Following introduction of MMR vaccination in 1987, the incidence of mumps notifications and hospitalizations declined dramatically [7]. In 2004, a genotype G mumps outbreak occurred in the Netherlands at an international school, with an attack rate of 12% among students vaccinated according to the Dutch schedule [8]. The high rate of vaccine failure raised concerns about the effectiveness of mumps vaccination in the Netherlands.

In August 2007, a genotype D mumps outbreak was detected mainly among residents of low vaccination coverage areas, the so-called Bible Belt. In this area, an important part of the population refrains from vaccination due to Orthodox Protestant, religious concerns [9].

This outbreak allowed us to study mumps vaccine effectiveness (VE). To maximize the information regarding vaccine effects obtained from this study, we combined different methods to estimate VE [10]. By combining a household and school study design, we assessed the VE against mumps in the context of a defined and undefined exposure setting, respectively. Furthermore, we assessed the VE against mumps infectiousness by comparing secondary attack rates in households of vaccinated and unvaccinated cases.
2. Methods

2.1. Design and study population

The study population consisted of children attending primary schools and their household contacts. Schools were eligible when they had at least one laboratory confirmed mumps case or more than one clinical mumps case. We aimed to include schools with a broad range of vaccine coverages to allow studying the effect of mumps incidence on the VE. Parents of the schoolchildren were asked to fill out a questionnaire asking information on the child’s vaccination status, occurrence of mumps, and if so date of onset and whether the child was the first mumps case in the household, complications, and information on household contacts (vaccination status and mumps history since September 2007). A mumps case was defined by an affirmative answer (by parental report) to the question: “Has your child had mumps after September 2007?” Symptoms of mumps were described as ‘a sudden, painful swelling of one or both cheeks caused by an infection of salivary glands’. Children who were vaccinated more than twice were excluded. For VE estimations children who reported to have had mumps before September 2007 were excluded. The study was approved by the medical ethics committee of the University Medical Centre Utrecht. Written informed parental consent was requested to allow retrieval of information on participants’ vaccination status from the national Dutch vaccination register.

To estimate the VE for mumps vaccination (one or two doses) with a precision of 10% and a power of 80%, we aimed to include 2700 children in 13 primary schools. Hereby we assumed the vaccine coverage to be 50%, the VE to be at least 70% [11,12], the response rate to be 75% and the attack rate in vaccinated to be 10%. The latter was based on observations made during a mumps outbreak at an international school [8].

To define the vaccination status we used individual information registered in the national Dutch vaccination register (“Praeventis”). For 69 pupils (6%) we could not obtain information on vaccination status from this register (66 no informed consent, 3 unknown vaccination status in register). For these children we used the self-reported vaccination status (vaccinated/not vaccinated), whereby assuming for vaccinated children that one dose was received when the child was aged <8.75 years, and two doses when the age was ≥8.75 years).

In schoolchildren, we assessed the VE against mumps. In households where a child attending one of the participating schools was the first mumps case in the household, we assessed the VE against mumps and the VE against mumps infectiousness.

The VE against mumps in schoolchildren for one and two doses of mumps vaccine compared to zero doses was estimated as \(VE = 1 - \frac{RR}{1} \) – the relative risk (RR), whereby the RR was estimated by fitting a Poisson regression model with mumps as outcome variable and vaccination status as central determinant. The model was fitted by Generalized Estimating Equations (GEE), where school was included as cluster variable. Possible confounders were age, attack rate, and mumps cases (yes/no) in the household of the participant occurring prior to the onset of mumps in the participant. A 10% difference between crude and adjusted log RR was considered as suggestive for confounding. We also considered interactions of these possible confounders with vaccination status. We performed a backward model selection (using the Wald test), where non-significant (\(p = 0.05 \)) and non-confounding variables were dropped from the model.

The VE against mumps in households where the schoolchild was the first mumps case was estimated as \(VE = 1 - \frac{SAR_{vaccinated \ contacts}}{SAR_{unvaccinated \ contacts}} \), whereby the SAR (secondary attack rate) included all mumps cases in household contacts where mumps occurred after mumps in the index case.

Table 1

<table>
<thead>
<tr>
<th>Schoolchildren</th>
<th>(N)</th>
<th>Mumps cases</th>
<th>VE</th>
<th>ve(^a)</th>
<th>95% CI(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unvaccinated</td>
<td>351</td>
<td>183</td>
<td>52%</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>One dose of MMR</td>
<td>484</td>
<td>13</td>
<td>2.7%</td>
<td>95%</td>
<td>92%-96%</td>
</tr>
<tr>
<td>Two doses of MMR</td>
<td>301</td>
<td>7</td>
<td>2.3%</td>
<td>90%</td>
<td>93%-97%</td>
</tr>
<tr>
<td>Household contacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unvaccinated</td>
<td>87</td>
<td>44</td>
<td>51%</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>Vaccinated</td>
<td>19</td>
<td>3</td>
<td>16%</td>
<td>69%</td>
<td>67%-95%</td>
</tr>
<tr>
<td>Unvaccinated index case</td>
<td>90</td>
<td>44</td>
<td>49%</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>Vaccinated index case</td>
<td>16</td>
<td>3</td>
<td>19%</td>
<td>62%(^c)</td>
<td>113%-4 to 88%</td>
</tr>
</tbody>
</table>

\(^a\) aVE=adjusted vaccine effectiveness. The VE in schoolchildren the VE was adjusted for possible confounders: age, attack rate, and mumps cases (yes/no) in the household of the participant occurring prior to the onset of mumps in the participant. The estimated VE in household contacts was adjusted for both age and the vaccination status of the index case. The estimated VE against infectiousness in household was adjusted for age and the vaccination status of household contacts. The VE against infectiousness in household was estimated as \(VE = 1 - \frac{SAR_{vaccinated \ index \ case}}{SAR_{unvaccinated \ index \ case}} \). This VE was also estimated twice: adjusted for age and adjusted for age and the vaccination status of the household contact.

Results

We included eight primary schools with vaccination coverages ranging from 34% to 93% in our study. These schools included 1741 children, of whom 1175 participated (response rate 68%, range by school 36–91%). One child who was vaccinated three times was excluded. For estimations of the VE, three additional children who reported to have had mumps before September 2007 were excluded.

Half of the included participants were male (\(n = 593 \) (50.5%)). The median age of the included participants was eight years (range 3–13 years). Among these were 203 mumps cases (attack rate (AR) 17%). The AR ranged from 1.5% to 51.3% by school. Of the mumps cases, 7% (\(n = 14 \)) visited a GP because of mumps symptoms and 1% (\(n = 2 \)) were admitted to hospital for mumps related complications. Reported complications were meningitis (\(n = 1 \)), pancreatitis (\(n = 1 \)), orchitis (\(n = 1 \)), persistent fever (\(n = 1 \)), swollen throat and severe headache (\(n = 1 \)), otalgia (\(n = 2 \)) and otitis (\(n = 1 \)). The AR for mumps was highest in the oldest (10–13 years) schoolchildren, but the difference with the youngest (3–5 years) was not significant (20.5% versus 14.9%; \(p = 0.07 \)).

In total, 67.9% (\(n = 795 \)) of the participants were vaccinated with MMR, of whom 61.8% once and 38.2% twice. Most frequently reported reasons for non-vaccination among 372 non-vaccinated participants were religious belief (\(n = 328 \); 88.2%), choice for alternative medicine (\(n = 14 \); 3.8%), concerns about adverse events (\(n = 51 \); 13.7%) and/or other reasons (\(n = 31 \); 8.3%).

The mumps AR among unvaccinated children was 52.1% versus 2.7% and 2.3% for children vaccinated with 1 and 2 doses of MMR, respectively. The estimated VE in schoolchildren for one and two dose(s) of MMR was 92% (95% confidence interval (CI) 83–96%, Table 1) and 93% (95% CI 85–97%, Table 1), respectively. Age was not
a confounder, and no significant interactions between the effect of vaccination status and school vaccine coverage or age were found.

For 603 participants information was available regarding their household contacts. This included 2281 household contacts born after 1978. Of these, 126 were present in households where the participant of the study was the first mumps case. For 106 of these, representing 41 households, we had complete information on mumps vaccination status and occurrence of mumps.

In households where the schoolchild was the first mumps case, the secondary attack rate (SAR) among vaccinated household contacts was 16% (3/19); the SAR among unvaccinated household contacts was 51% (44/87). The estimated VE in household contacts adjusted for age was 70% (95% CI 19–93%) and adjusted for both age and the vaccination status of the index case was 67% (95% CI –65% to 95%, Table 1).

The SAR for household contacts of vaccinated index cases was 19% (3/16). The SAR for household contacts of unvaccinated index cases was 49% (44/90). The estimated VE against infectiousness in household contacts adjusted for age was 65% (95% CI 1–92%) and adjusted for age and the vaccination status of household contacts was 11% (95% CI 1–4% to 88%, Table 1).

4. Discussion

During a large genotype D mumps outbreak in the Netherlands between August 2007 and May 2009, we assessed effectiveness of prior mumps vaccination in a cross-sectional study of eight primary schools and their associated households. We found that mumps vaccination was highly effective to protect against mumps in schoolchildren (VE 92% and 93% for one and two doses of mumps vaccine, respectively). Among household contacts of a schoolchild with mumps, the estimated VE was considerably lower (67% after adjustment for age and for the vaccination status of the index case).

There may be several explanations for our finding that the VE against mumps among household contacts was lower than that among school children. First, our estimate of the mumps VE in schoolchildren may be overestimated since unvaccinated children were more frequently exposed to mumps (in and outside of school) than vaccinated children, and hence benefited less from herd-immunity than vaccinated children. This is quite likely, since unvaccinated individuals are more likely to mix with other unvaccinated individuals as vaccination status is determined by socio-religious factors.

This bias is less likely to have affected the VE estimated in households with at least one mumps case, as this represents a defined exposure setting. However, surprisingly, adjusting for the presence of household contacts with mumps did not significantly affect the estimate of the VE in schoolchildren. Another explanation is that the intensity of exposure in the household setting is much higher than in schools, generally leading to a lower estimated VE. Becker et al. [13] propose different methods of estimating VE in households that may be less affected by these biases. Furthermore, we cannot exclude that secondary mumps cases within a household setting are not due to the index household case but were acquired outside the family setting. Difference in attack rates due to external acquired infections in households of vaccinated vs. unvaccinated primary cases may have influenced our estimated VE.

To our knowledge, our study is the first study to estimate a VE against infectiousness (11% (CI –4% to 88%)). Adjusting for vaccination status of the household contact lowered the VE estimate considerably (from 65 to 11%), consistent with a protective effect of vaccination against mumps. Although the precision of our estimate is limited, it suggests vaccinated cases with mumps are somewhat less infectious than unvaccinated cases with mumps. This is consistent with results of laboratory studies of our group, whereby it was shown that vaccinated mumps cases excreted fewer viruses than unvaccinated cases [14].

Our study compares favorably with other studies assessing the mumps VE as we collected not only data on individuals but also on their household contacts, allowing us to study different vaccine effects. This increases the usefulness of the study, as more defined estimates facilitate applying the results to different populations and outbreaks. Because the response rate was high, the possibility of non-responders bias was limited.

Our study had several limitations. The VE estimates in schoolchildren and household contacts were based on the clinical disease of mumps only, so we were not able to identify effects of the vaccine in protecting against asymptomatic mumps. Another limitation is that for some subgroup analyses the number of cases was small, resulting in wide confidence intervals for particularly the VE estimates in the household contacts. Furthermore, for the household contacts we did not collect information on the number of doses of mumps vaccination. Also, we did not collect the date of onset of mumps for all household contacts of participants. Lacking this information, our SARs included tertiary and later cases. We speculate this may overestimate the SAR particularly in unvaccinated households, where there is a higher incidence than in vaccinated households. Hence, this may have resulted in an overestimation of the VE in households.

Several other studies have reported mumps vaccine effectiveness estimates against clinical mumps. Dayan and Rubin [15] reported in a literature review that the effectiveness of prior vaccination with one dose of vaccine ranged from 73% to 91% for the Jeryl Lynn Strain. The VE after two doses of MMR was reported in three outbreaks and ranged from 91% to 95% [15]. Cohen et al. [11] found a VE of 88% (95% CI 93–96%) for 1 dose, which is lower compared to our estimate. However, the VE for 2 doses of MMR was comparable with our findings (95% CI 93–96%) [11]. In contrast to the study in the UK we did not find evidence for waning immunity which is probably due to a smaller age range in our study.

In conclusion, our results suggest that vaccinated children were adequately protected against mumps during the genotype D mumps outbreak in 2007–2009 in the Netherlands. However, a considerable part of that may have been due to vaccinated children benefiting more from herd-immunity effects than unvaccinated children. The relatively low mumps vaccine effectiveness in the high exposure settings of households is of remaining concern, and requires further study.

Acknowledgments

We thank the Municipal Health Services of “Midden-Nederland”, “Zeeland”, “Rivierenland”, “Eemland” and all participating schools for their cooperation in the fieldwork of this study. We also thank Michiel van Boven, Robert Kohl and Françoise van Heiningen of the National Institute for Public Health and the Environment for their useful comments and help during the set up of the study. Last but not least, we thank all parents and schoolchildren who participated in the study.

References

