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An improved meshless local Petrov–Galerkin (MLPG) method is presented and applied to
calculate the two-dimensional unsteady state heat conduction problems. In this method,
the moving Kriging interpolation is employed instead of the traditional MLS approximation
to construct the MLPG shape functions which possess Kronecker delta function property
and thus make it easy to implement essential boundary conditions and then, the Heaviside
step function is used as the test function over a local sub-domain. Since no mesh is needed
either for integration of the local weak form, or for construction of the shape functions, the
presently developed MLPG method is a truly meshless method. Several examples are per-
formed to illustrate the accuracy and efficiency of the present method. A good agreement
can be found among the proposed, analytical and finite element methods.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Many engineering and science problems are associated with transient heat transfer problems and in such problems the
temperature varies with respect to time, such as boilers, air-conditioning equipment and encapsulation. Therefore, the anal-
ysis of transient heat transfer is very important. These transient heat conduction problems are classically described by a par-
tial differential equation associated with a set of boundary conditions and initial conditions. Analytical solutions to these
boundary value and initial value problems are usually very limited. Over the past few decades, various numerical methods
such as finite difference method (FDM), finite element method (FEM) and the boundary element method (BEM) have been
well established and successfully applied to heat conduction problems [1]. Even though the methods mentioned above are
very effective for these problems, they have been reported to have their own limits [2].

In recent years, meshless or element free methods have been developed as alternative numerical approaches in effort to
eliminate known shortcomings of the mesh-based methods [3]. The main advantage of these methods is to approximate the
unknown field by a linear combination of shape functions built without having recourse to a mesh of the domain. Instead,
nodes are scattered in the domain and a certain weight function with a local support is associated with each of these nodes.
Therefore, they are prime methods for certain class of problems such as crack propagation problems, dynamic impact prob-
lems, nonlinear thermal analysis and so on [4–7].

To date, some meshless methods have been applied to simulate transient heat conduction problems. The element-free
Galerkin (EFG) method have been reported for solving composite heat transfer problems [8,9], unsteady and nonlinear heat
transfer problems [10,11]. Cheng et al. used reproducing kernel particle method (RKPM) to analysis steady and unsteady heat
conduction problems [12]. The MLPG method originated by Atluri and Zhu [13] has been successfully applied in heat
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conduction problems [14–16]. Sladek et al. used the MLPG method to analyze transient heat conduction problems in non-
homogeneous functionally graded materials (FGMs) [17]. Qian et al. analyzed transient heat conduction problems in a thick
functionally graded plate by using MLPG method [18]. Peng and Cheng developed the boundary element-free method
(BFEM) to analyze steady heat conduction problems [19]. Among all the meshless methods, the MLPG method has been
widely used in solving heat conduction problems due to: (1). the use of local weak formulation of the problem; (2) no back-
ground mesh for integration of weak forms. However, there exists an inconvenience because of the difficulty in implement-
ing some essential boundary conditions; the shape functions based on the MLS approximation lack the Kronecker’s delta
property [20].

In order to eliminate this shortcoming of the MLS shape functions, the moving Kriging interpolation technique, which has
the Kronecker delta function and consistency property, can be employed instead of the traditional MLS approximation to
construct the meshless shape functions. Gu has firstly proposed the moving Kriging interpolation and has successfully devel-
oped a new moving Kriging interpolation-based EFG for solving one-dimensional steady-state heat conduction problems
[21]. Later, the meshless methods based on the moving Kriging interpolation have also been developed and studied, for
example, the element-free Galerkin method using moving Kriging interpolation [22,23], the meshless local Kriging method
[24–32], and the boundary node method based on the moving Kriging interpolation [33].

The present study is motivated by the promising applications of the moving Kriging interpolation in meshless methods
and presents an improved MLPG method for transient heat conduction problems. This method uses the moving Kriging inter-
polation techniques to construct meshless shape functions for a set of randomly distributed points. The local weak form of
partial differential equations (PDEs) is derived by the weighted residual formulation based on a simple shaped local domain.
Additionally, in implementation of the local weak form, the Heaviside step function is used as the test function. In the end,
three numerical examples will be shown to demonstrate the performance of the proposed method.

2. Moving Kriging shape function

2.1. Moving Kriging interpolation

Similar to the MLS approximation, the moving Kriging approach can be extended to any sub-domain Xx # X. From Ref.
[21], the field variable u(x) in the problem domain X can be approximated by uh(x). For any sub-domain, the local approx-
imation can be defined as follows:
uhðxÞ ¼ ½pTðxÞAþ rTðxÞB�u; ð1Þ
or
uhðxÞ ¼
Xn

k

/kðxÞuk; ð2Þ
where the moving Kriging shape function /k(x) is defined by
/kðxÞ ¼
Xm

j

pjðxÞAjk þ
Xn

i

riBik; ð3Þ
matrixes A and B are known by the following equations
A ¼ ðPT R�1PÞ�1PT R�1; ð4Þ
and
B ¼ R�1ðI� PAÞ; ð5Þ
where I is a unit matrix and vector p(x) is the polynomial with m basis functions
pðxÞ ¼

p1ðxÞ
p2ðxÞ

..

.

pmðxÞ

8>>>><
>>>>:

9>>>>=
>>>>;
; ð6Þ
For the matrix P with size n �m, values of the polynomial basis functions (6) at the given set of node are collected.
P ¼

p1ðx1Þ p2ðx1Þ � � � pmðx1Þ
p1ðx2Þ p2ðx2Þ � � � pmðx2Þ

..

. ..
. . .

. ..
.

p1ðxnÞ p2ðxnÞ � � � pmðxnÞ

2
66664

3
77775; ð7Þ
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and vector r(x) in Eq. (1) is also given by
rðxÞ ¼

Rðx1; xÞ
Rðx2; xÞ

..

.

Rðxn; xÞ

8>>>><
>>>>:

9>>>>=
>>>>;
: ð8Þ
R(xi, xj) is the correlation function between any pair of nodes located at xi and xj.
Many functions can be used as a correlation function R(xi, xj), however, a simple and frequently used correlation function

is the Gaussian function
Rðxi; xjÞ ¼ exp �hr2
ij

� �
; ð9Þ
in which
rij ¼ xi � xj

�� ��; ð10Þ
and h > 0 represents a value of the correlation parameter used to fit the model. In addition, the correlation matrix R[R(xi, xj)]
is also given in an explicit form
R½Rðxi; xjÞ� ¼

1 Rðx1; x2Þ � � � Rðx1; xnÞ
Rðx2; x1Þ 1 � � � Rðx2; xnÞ

..

. ..
. . .

. ..
.

Rðxn; x1Þ Rðxn; x2Þ � � � 1

2
66664

3
77775: ð11Þ
The partial derivatives of shape function can be easily obtained as
/k;x ¼
@/kðxÞ
@x

¼
Xm

j

@pjðxÞ
@x

Ajk þ
Xn

i

@riðxÞ
@x

Bik; ð12aÞ

/k;y ¼
@/kðxÞ
@y

¼
Xm

j

@pjðxÞ
@y

Ajk þ
Xn

i

@riðxÞ
@y

Bik: ð12bÞ
2.2. Correlation parameter h vs. shape functions

The effect of the correlation parameter h vs. the shape functions is studied in this section. Considering a support domain
X = [0,1] in one dimension with five uniformly distributed points of [0, 0.25, 0.5, 0.75, 1]. The values of the shape functions
and the first-order derivatives, which are evaluated at x = 0.5 using several typical chosen values of correlation factor on a
bound of 0.1–500, is shown in Fig. 1.

Obviously, the quality of the shape function is heavily influenced by the correlation parameter h. In order to get ‘optimal’ h
for meshless method, in our study, we found that the ‘optimal’ h is dependent on the number of nodes in the compact sup-
port, empirical formula is obtained as
h ¼ x=h2
; ð13Þ
where x is a constant, h is the average distance of the nodes in the support domain. It is a good choice to take x = 0.03 � 0.2.
In this paper, x = 0.1 is studied.

2.3. Desirable properties of moving Kriging interpolation

It can be found from the Fig. 1(a) that the shape functions possess the delta function property, namely
/kðxjÞ ¼
1 ðk ¼ j; k; j ¼ 1;2; . . . ;nÞ
0 ðk–j; k; j ¼ 1;2; . . . ; nÞ

�
: ð14Þ
The other important property of the moving Kriging shape functions is the consistency property [21]
Xn

k¼1

/kðxÞ ¼ 1; ð15aÞ

Xn

k¼1

/kðxÞxk ¼ x: ð15bÞ
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Fig. 1. The quality of (a) shape functions and (b) first-order derivatives of the shape function.
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3. The MLPG formulation of transient heat conduction

Consider a two-dimensional transient heat conduction problem for a stationary medium on a domain X bounded by C,
the governing equation is
qc
@T
@t
¼ @

@x
kx
@T
@x

� �
þ @

@y
ky
@T
@y

� �
þ Q ; ð16Þ
where T(x, y, t) is the temperature field, t is time, q is the density of material, c is the specific heat, kx and ky are the thermal
conductivities in the x- and y-directions, respectively, Q is the heat generation per unit volume. The initial conditions and the
boundary conditions of the problem are
Tðx; y;0Þ ¼ T0 in X; ð17aÞ
T ¼ �T on C1; ð17bÞ
kx
@T
@x

nx þ ky
@T
@y

ny ¼ q on C2; ð17cÞ
kx
@T
@x

nx þ ky
@T
@y

ny ¼ hðTa � TÞ on C3; ð17dÞ
where C1, C2 and C3 are the Dirichlet boundary, the Neumann boundary and the Robin boundary, respectively. nx and ny are
direction cosines, h is the heat transfer coefficient, Ta is the surrounding medium temperature and q is the boundary heat
flux.



10048 B. Dai et al. / Applied Mathematics and Computation 219 (2013) 10044–10052
The local weak form is constructed over a sub-domain Xs bounded by Cs. The local sub-domains overlap each other, and
cover the whole problem domain X. They could be of any geometric shape and size. For simplicity, they are taken to be of
circular shape or rectangular shape. Using the local weighted residual method, the generalized local weak form of Eq. (16)
can be written as
Z

Xs

w qc
@T
@t
� @

@x
kx
@T
@x

� �
� @

@y
ky
@T
@y

� �
� Q

� 	
dX ¼ 0; ð18Þ
where w is the test function.
Using the divergence theorem in Eq. (18), the following form can be obtained as
Z

Xs

w qc
@T
@t
� Q

� �
dXþ

Z
Xs

kx
@T
@x

@w
@x
þ ky

@T
@y

@w
@y

� �
dX�

Z
Cs

w kx
@T
@x

nx þ ky
@T
@y

ny

� �
dC ¼ 0: ð19Þ
In order to simplify Eq. (19), the test function w is chosen such that they eliminate or simplify the domain integral on Xs.
This can be accomplished by using the Heaviside step function
w ¼
1; x 2 Xs

0; x R Xs

�
: ð20Þ
Using the Heaviside step function as the test function and the natural boundary condition defined by Eq. (17), the local
weak form (19) can be rewritten as
Z

Xs

qc
@T
@t

dXþ
Z

Cs3

hTdC ¼
Z

Xs

QdXþ
Z

Cs1

qdCþ
Z

Cs2

qdCþ
Z

Cs3

hTadC; ð21Þ
where Cs1 is a part of the local boundary Xs over which no boundary conditions are specified, Cs2 is the intersection of C2

and the boundary Cs, Cs3 is the intersection of C3 and the boundary Cs.
In the transient heat conduction, temperature T is a function of both the spatial coordinates and time. It can be rewritten

as
Tðx; tÞ ¼
Xn

k

/kðxÞTkðtÞ: ð22Þ
Substituting the temperature expression in Eq. (22) into the local weak form (21), the discrete equation for all nodes is
given as
C _TðtÞ þ KTðtÞ ¼ PðtÞ; ð23Þ
in which
CIJ ¼
Z

Xs

qc/JdX; ð24Þ

KIJ ¼
Z

C3

h/JdC; ð25Þ

PðtÞI ¼
Z

Xs

QdXþ
Z

C2

qdCþ
Z

C3

hTadC: ð26Þ
Using backward difference technique for time approximation, for any time step, Eq. (23) can be written as
Cþ 1
2

KDt
� �

Tnþ1 ¼ PDt þ C� 1
2

KDt
� �

Tn: ð27Þ
4. Numerical examples

4.1. Dirichlet problem of a square domain

In order to investigate the accuracy of the present method, we consider the transient heat conduction problem in a square
domain L � L with the Dirichlet boundary conditions on all the sides. The basic parameters used in the computation are
length of each edge L = p mm, mass density q = 103 kg/m3, specific heat c ¼ 103 J=ðkg �� CÞ, thermal conductivities
kx ¼ ky ¼ 103 W=ðm �� CÞ. The Dirichlet boundary conditions are assumed to be zero. The initial temperature on all the sides
are assumed as
Tðx; y;0Þ ¼ 10 sinðxÞ sinðyÞ;
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the exact solution is given as follows:
Tðx; y; tÞ ¼ 10 sinðxÞ sinðyÞe�2t :
As shown in Fig. 2 and 121 uniformed nodes are used to discretize the problem domain. In the computation, the param-
eters of the influence domain and sub-domain are taken as a = 4.0 and b = 0.5, respectively. We have used the length of the
time steps Dt = 0.02 s. The comparison of the numerical results obtained by the present method with the exact solution of
the temperature at y = p/2 is shown in Fig. 3 at different times. Fig. 4 shows the comparison of numerically computed time
evolution of the temperature at two points A (p/4, p/4) and B (p/2, p/2) with the exact solutions. It can be seen that the re-
sults obtained by the present method have a good agreement with the exact solutions.

4.2. Mixed problem of a square domain

In this example, the transient heat conduction problem is considered in the square domain as in the previous example
(L = 100 mm). The basic parameters taken in the computation are mass density q = 103 kg/m3, specific heat
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c ¼ 103 J=ðkg �� CÞ, thermal conductivities kx ¼ ky ¼ 1:6� 104 W=ðm �� CÞ. The initial temperature is assumed to be zero. The
top and bottom of the square domain are thermally insulated and the Dirichlet boundary conditions are assumed on the lat-
eral sides at t > 0 as
Tð100; y; tÞ ¼ 0�C;

Tð0; y; tÞ ¼ TH½1� cosðxtÞ�;
where TH ¼ 10 �C, x ¼ p=100 rad=s.
The discretization of the problem domain with 121 nodes is shown in Fig. 5. In the computation, the parameters of the

influence domain and sub-domain are taken as a = 4.0 and b = 0.5, respectively. We have used the length of the time steps
Dt = 0.125 s. The comparison of the numerical results obtained by the present method and the finite element method (Ansys
soft) is shown in Fig. 6, where the time evolution of the temperature at two points A (10, 50) and B (50, 50)is presented.

4.3. Mixed problem of a rectangular prism

In the last example, the transient heat conduction problem with heat exchange is considered in the rectangular prism
domain 2L � L (L = 10 mm). The initial temperature is assumed to be 20 �C. The top and bottom of the rectangular domain
are thermally insulated, the external temperatures of the left and the right edges are assumed to be 100 �C. The basic param-
eters taken in the computation are mass density q = 103 kg/m3, specific heat c = 103 J/(kg �C), heat transfer coefficient
h ¼ 1600 W=ðm2 �� CÞ, thermal conductivities kx ¼ ky ¼ 16 W=ðm �� CÞ

231 uniformed nodes are used to discretize the problem domain, as in Fig. 7. In the computation, the parameters of the
influence domain and sub-domain are taken as a = 4.0 and b = 0.5, respectively. We have used the length of the time steps
Dt = 0.01 s. Table 1 shows the comparison of numerically computed the values of the temperature at three points A (0, 0), B
(5, 5) and C (10, 0) with the exact solutions at different times. It can be seen that the results obtained by the present method
is better than the FEM’s [34].
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Table 1
The temperature and relative error by the present method and FEM.

Time Node Exact Present FEM

Temperature Error (%) Temperature Error (%)

1.0 A 22.304 22.330 0.117 21.340 4.32
B 27.456 27.474 0.066 26.342 4.06
C 46.384 46.369 0.032 45.236 2.47

2.0 A 29.344 29.446 0.348 28.261 3.69
B 35.776 35.768 0.022 34.641 3.17
C 53.928 53.894 0.063 52.934 1.84

3.0 A 37.232 37.307 0.201 36.162 2.87
B 42.944 42.974 0.070 41.849 2.55
C 59.072 59.048 0.041 58.271 1.36
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5. Conclusions

A new formulation of improved MLPG method has been successfully applied to the transient heat conduction problems in
this paper. The main attractive feature of the proposed approach is in the use of the moving Kriging interpolation as the trail
function, therefore, the essential boundary conditions can be enforced as the FEM, and the Heaviside step function as the test
function of the local weighted residual method, it does not involve any domain integral for constructing the stiffness matrix.
Some test problems were studied by the proposed scheme and compared with analytical solutions and FEM. It is shown that
the results are complete agreement and the proposed solution technique is quite efficient.
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