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Abstract

The purpose of this review paper is to present the techniques, advances, problems and likely future developments in numerical

modelling for rock mechanics. Such modelling is essential for studying the fundamental processes occurring in rocks and for rock

engineering design. The review begins by explaining the special nature of rock masses and the consequential difficulties when

attempting to model their inherent characteristics of discontinuousness, anisotropy, inhomogeneity and inelasticity. The rock

engineering design backdrop to the review is also presented. The different types of numerical models are outlined in Section 2,

together with a discussion on how to obtain the necessary parameters for the models. There is also discussion on the value that is

obtained from the modelling, especially the enhanced understanding of those mechanisms initiated by engineering perturbations. In

Section 3, the largest section, states-of-the-art and advances associated with the main methods are presented in detail. In many cases,

for the model to adequately represent the rock reality, it is necessary to incorporate couplings between the thermal, hydraulic and

mechanical processes. The physical processes and the equations characterizing the coupled behaviour are included in Section 4, with

an illustrative example and discussion on the likely future development of coupled models. Finally, in Section 5, the advances and

outstanding issues in the subject are listed and in Section 6 there are specific recommendations concerning quality control, enhancing

confidence in the models, and the potential future developments.
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1. Introduction

The purpose of this Journal Review Article is to
present the techniques, advances, problems and likely
future developments in numerical modelling for rock

mechanics. In this Section, the review is prefaced by
noting the special nature and idiosyncracies of rock
masses—and hence some of the difficulties associated
with capturing the rock reality in the numerical
models. The utility of numerical modelling in providing
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understanding for rock engineering design and con-
struction is also explained. Finally, we note here the
scope and content of the Review with its emphasis on
summarizing trends and providing an extensive litera-
ture source.

1.1. Special nature of rock masses

The reason for the general difficulty in modelling rock
masses, by whatever numerical method, is that rock is a
natural geological material, and so the physical or
engineering properties have to be established, rather
than defined through a manufacturing process. The rock
mass is largely Discontinuous, Anisotropic, Inhomoge-
neous and Not-Elastic (DIANE), (Harrison and Hud-
son, 2000) [1]. Rock masses are under stress and
continuously loaded by dynamic movements of the
upper crust of the Earth, such as tectonic movements,
earthquakes, land uplifting/subsidence, glaciation cycles
and tides. A rock mass is also a fractured porous
medium containing fluids in either liquid or gas phases,
e.g. water, oil, natural gases and air, under complex in
situ conditions of stresses, temperature and fluid
pressures. The complex combination of constituents
and its long history of formation make rock masses a
difficult material for mathematical representation via
numerical modelling.
In relation to the generally discontinuous nature of

rock masses, the photograph of a blasted rock surface in
Fig. 1 highlights the fact that rock masses contain
through-going pre-existing fractures,1 as well as frac-
tures introduced by the excavation process.
Most of the fractures visible in Fig. 1 are pre-existing

natural fractures. Although these rock fractures have
occurred naturally through geological processes, their
formation is governed by mechanical principles, as
illustrated by the three main sets of fractures that, in this
case, are mutually orthogonal and divide the rock mass
into cuboids. The fractures are most often clustered in
certain directions resulting from their geological modes
and history of formation. One of the main tasks of
numerical modelling in rock mechanics is to be able to
characterize such mechanical discontinuities in a com-
puter model—either explicitly or implicitly—the so-
called ‘material conceptualization’. Additionally, the
interaction between the rock mass and the engineering
structure has to be incorporated in the modelling
procedure for design, so that consequences of the
construction process have also to be characterized.
To adequately represent the rock mass in computa-

tional models, capturing such fracturing and the
complete DIANE nature of the rock mass, plus the

consequences of engineering, it is necessary to be
able to include the following features during model
conceptualization:

* the relevant physical processes and their mathema-
tical representations by partial differential equations
(PDEs), especially when coupled thermal, hydraulic
and mechanical processes need to be considered
simultaneously;

* the relevant mechanisms and constitutive laws with
the associated variables and parameters;

* the pre-existing state of rock stress (the rock mass
being already under stress);

* the pre-existing state of temperature and water
pressure (the rock mass is porous, fractured, and
heated by a natural geothermal heat gradient or man-
made heat sources)

* the presence of natural fractures (the rock mass is
discontinuous);

Fig. 1. Surface of a blasted rock mass, illustrating that pre-existing

fractures can divide the rock mass into discrete blocks, and that the

interaction between the rock mass and the engineering processes also

needs to be modelled for the engineer to have a predictive capability

for design purposes. Note the ‘half-barrels’ of the blasting boreholes.

1The word ‘fracture’ is used in this Article to indicate natural breaks

in the rock continuum, e.g. faults, joints, bedding planes, fissures.

Thus, the term ‘fracture’ is used here as a synonym for ‘discontinuity’.
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* variations in properties at different locations (the
rock mass is inhomogeneous);

* variations of properties in different directions (the
rock mass is anisotropic);

* time/rate-dependent behaviour (the rock mass is
not elastic and may undergo creep or plastic
deformation);

* variations of properties at different scales (the rock
mass is scale-dependent);

* the effects resulting from the engineering perturba-
tions (the geometry is altered).

The extent to which these features can actually
be incorporated into a computer model will depend on
the physical processes involved and the modelling tech-
nique used; hence, both the modelling and any subse-
quent rock engineering design will contain subjective
judgements.
Rock engineering projects are becoming larger and

more demanding in terms of the modelling require-
ments, one of which, for example, may be to include
coupled thermo-hydro-mechanical (THM) behaviour
into the model. A truly fully coupled model (including
extra processes, such as chemistry) requires complete
knowledge of the geometrical and physical properties
and parameters of the fractured rock masses. Thus, the
challenge is to know how to develop an adequate model.
The model does not have to be complete and perfect: it
only has to be adequate for the purpose.
For these reasons, rock mechanics modelling and rock

engineering design are both a science and an art. They

rest on a scientific foundation but require empirical
judgements supported by accumulated experiences
through long-term practices. This is the case because
the quantity and quality of the supporting data for rock
engineering design and analysis can never be complete,
even though they can be perfectly defined in models.

1.2. Rock mechanics modelling for rock engineering

design and construction

Some form of predictive capability is necessary in
order to coherently design an engineered structure,
whether it be on the rock mass surface or within the
underground rock mass, and whether it be for civil
engineering addressed in this CivilZone review or for
mining, petroleum or environmental engineering. The
predictive capability is achieved through a variety of
modelling methods. Even if one simply adopts the same
design as a previously constructed structure, the rock
mass condition is generally site-specific and one should
use a computer model adopted for the specific site
conditions to ensure that the rock mass is likely to
behave in similar fashion.
As rock mechanics modelling has developed for the

design of rock engineering structures with widely
different purposes, and because different modelling
methods have been developed, we now have a wide
spectrum of modelling approaches. These can be
presented in different ways: the categorization into eight
approaches based on four methods and two levels, as
illustrated in Fig. 2, is from (Hudson, 2001) [2].

Use of
pre-existing 

standard
methods

Analytical
methods,

stress-based

Basic numerical
methods, FEM,

BEM, DEM, 
hybrid

Extended 
numerical 
methods,

fully-coupled 
models

Precedent type 
analyses and 
modifications

Rock mass
classification,
RMR, Q, GSI

Database
expert

systems, &
other systems

approaches 

Integrated 
systems

approaches,
internet-based

Objective

Construction

Site
Invest-
igation

Level 1
 1:1 mappi ng

Level 2
Not 1:1 mapping

Design based on forward analysis Design based on back analysis

Method A Method B Method C Method D

Fig. 2. Four basic methods, two levels and hence eight different approaches to rock mechanics modelling and rock engineering design, from

Hudson [2].
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The modelling and design work starts with the
objective, the top box in Fig. 2. Then there are the eight
modelling and design methods in the main central box.
The four columns represent the four main modelling
methods:

* Method A: Design based on previous design
experiences,

* Method B: Design based on simplified models,
* Method C: Design based on modelling which
attempts to capture most relevant mechanisms, and

* Method D: Design based on ‘all-encompassing’
modelling.

There are two rows in the large central box in Fig. 2.
The top row, Level 1, includes methods in which there is
an attempt to achieve one-to-one mechanism mapping
in the model. In other words, a mechanism which is
thought to be occurring in the rock reality and which is
to be included in the model is modelled directly, such as
explicit stress–strain relations. Conversely, the lower
row, Level 2, includes methods in which such mechan-
ism mapping is not direct. The consequences of, for
example, the constitutive models and associated para-
meters may well be contained within the four modelling
and design methods in Level 2, but one cannot explicitly
identify the relation within the methodologies, e.g. in the
rock mass classification techniques.
Some supporting rock mass characterization para-

meters will be obtained from site investigation, the left-
hand box. Then the rock engineering design and
construction proceeds, with a feedback loop to the
modelling from construction.
An important point is that in rock mechanics and

engineering design, having insufficient data is a way of
life, rather than a simple local difficulty, and that is why
the empirical approaches (i.e. classification systems)
have been developed and are still required. Therefore,
we will also be discussing the subject of parameter
representability associated with sample size, repre-
sentative elemental volume (REV), homogenization/
upscaling, because these are fundamental problems
associated with modelling, and are relevant to the
ABCD method categories in Fig. 2.

1.3. Scope of this review

The use of computers makes significant contributions
to all the eight modelling and design methods in Fig. 2;
however, the specific numerical methods and ap-
proaches that are being reviewed here are used directly
in Methods 1C and 1D. Also, there is concentration
on the actual numerical methods (rather than com-
puting per se or design per se) and discussion on the
rock mass characterization issues related to the numer-
ical methods. Highlighted are the techniques, advances,

coupled mechanisms, technical auditing and the
ability to present the content of the modelling, the
outstanding issues, and the future of this type of
modelling. In short, highlighted is the special contribu-
tion that numerical models are currently making to rock
mechanics.
Because the focus of this Review is on the modelling

concepts, the associated special features of modelling
rock fractures, the main development milestones, typical
application requirements, development trends, and out-
standing issues of importance and difficulty, special
attention is paid to Section 3 for alternative formula-
tions in each of the modelling methods, noting the
potentials for rock mechanics problems. It is hoped
that this treatment will provide readers with a compre-
hensive presentation of the state-of-the-art of numerical
analysis in rock mechanics in general, and civil
engineering applications in particular—in terms of
historical background, presents status and likely future
trends.

2. Numerical methods in rock mechanics

Before considering the details and advances in the
specific numerical modelling methods (presented in
Section 3), an introduction is provided here to the
methods and there is discussion on the continuum vs.
discrete approaches. Also considered is the character-
ization of rock masses which is necessary to provide
input to the numerical models, and there is illustration
of how enhanced understanding is obtained through the
use of such models.

2.1. Numerical methods for modelling continuous and

discontinuous rock masses

In numerical modelling of engineering problems,
some problems can be represented by an adequate
model using a finite number of well-defined components.
The behaviour of such components is either well known,
or can be independently treated mathematically. The
global behaviour of the system can be determined
through well-defined inter-relations between the indivi-
dual components (elements). One typical example of
such discrete systems is a beam structure. Such problems
are termed discrete and the discrete representation and
solution of such systems by numerical methods are
usually straightforward.
In other problems, the definition of such independent

components may require an infinite sub-division of the
problem domain, and the problem can only be treated
using the mathematical assumption of an infinitesimal

element, implying in theory an infinite number of
components. This usually leads to differential equations
to describe the system behaviour at the field points. Such
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systems are termed continuous and have infinite degrees
of freedom. To solve such a continuous problem
by numerical methods using digital computers, the
problem domain is usually subdivided into a finite
number of sub-domains (elements) whose behaviour
is approximated by simpler mathematical descriptions
with finite degrees of freedom. These sub-domains
must satisfy both the governing differential equa-
tions of the problem and the continuity condition at
their interfaces with adjacent elements. This is the so-
called discretization of a continuum. It is an approx-
imation of a continuous system with infinite degrees of
freedom by a discrete system with finite degrees of
freedom.
The continuity referred to here is a macroscopic

concept. The continuum assumption implies that at all
points in a problem domain, the materials cannot be
torn open or broken into pieces. All material points
originally in the neighbourhood of a certain point in the
problem domain remain in the same neighbourhood
throughout the deformation or transport process. Of
course, at the microscopic scale, all materials are
discrete systems. However, representing the microscopic
components individually is intractable mathematically
and unnecessary in practice.
The individual components (elements) of a discrete

system are usually treated as continuous. Their proper-
ties may either be obtained from laboratory tests if
the components are indeed continuous and macro-
scopically homogeneous, such as elastic beam structures,
or be mathematically derived from homogenization
processes if the components themselves are heteroge-
neous or/and fractured, such as the fractured rock
masses we are considering here. The concepts of
continuum and discontinuum are therefore not absolute
but relative and problem-specific, depending especially
on the problem scales. This is particularly true for
rock mechanics problems. For example, a block of
rock isolated by large fractures zones may be treated
as one of many block components in a computer
model, but the block itself may contain a large num-
ber of smaller fractures that cannot be explicitly
represented if the problem is to be tractable. Homo-
genization is then needed to derive the equivalent
continuum properties of such blocks, which are then
functions of the geometry of the contained fracture
systems and physical properties of the intact rock matrix
and the fractures.
The fractured rock mass comprising the Earth’s

upper crust is a discrete system. Closed-form sol-
utions do not exist for such geometries and num-
erical methods must be used for solving practical
problems. Due to the differences in the under-
lying material assumptions, different numerical methods
have been developed for continuous and discrete
systems.

The most commonly applied numerical methods for
rock mechanics problems are:

Continuum methods

* the Finite Difference Method (FDM),
* the Finite Element Method (FEM), and
* the Boundary Element Method (BEM).

Discontinuum methods

* Discrete Element Method (DEM),
* Discrete Fracture Network (DFN) methods.

Hybrid continuum/discontinuum models

* Hybrid FEM/BEM,
* Hybrid DEM/DEM,
* Hybrid FEM/DEM, and
* Other hybrid models.

The FDM is a direct approximation of the governing
PDEs by replacing partial derivatives with differences at
regular or irregular grids imposed over problem domains,
thus transferring the original PDEs into a system of
algebraic equations in terms of unknowns at grid points.
The solution of the system equation is obtained after
imposing the necessary initial and boundary conditions.
This method is the oldest member in the family of
numerical methods, one that is widely applied and is the
basis of the explicit approach of the DEMs.
The FEM requires the division of the problem

domain into a collection of sub-domains (elements) of
smaller sizes and standard shapes (triangle, quadrilat-
eral, tetrahedral, etc.) with fixed number of nodes at the
vertices and/or on the sides—the discretization. Trial
functions, usually polynomial, are used to approximate
the behaviour of PDEs at the element level and generate
the local algebraic equations representing the behaviour
of the elements. The local elemental equations are then
assembled, according to the topologic relations between
the nodes and elements, into a global system of algebraic
equations whose solution then produces the required
information in the solution domain, after imposing the
properly defined initial and boundary conditions. The
FEM is perhaps the most widely applied numerical
method in engineering today because its flexibility in
handling material heterogeneity, non-linearity and
boundary conditions, with many well developed and
verified commercial codes with large capacities in terms
of computing power, material complexity and user-
friendliness. (It is also the basis of the implicit approach
of the DEM.) Due to the interior discretization, the
FDM and FEM cannot simulate infinitely large
domains (as sometimes presented in rock engineering
problems, such as half-plane or half-space problems)
and the efficiency of the FDM and FEM will decrease

L. Jing / International Journal of Rock Mechanics & Mining Sciences 40 (2003) 283–353288



with too high a number of degrees of freedom, which are
in general proportional to the numbers of nodes.
The BEM, on the other hand, requires discretization

at the boundary of the solution domains only, thus
reducing the problem dimensions by one and greatly
simplifying the input requirements. The information
required in the solution domain is separately calculated
from the information on the boundary, which is
obtained by solution of a boundary integral equation,
instead of direct solution of the PDEs, as in the FDM
and FEM. It enjoys greater accuracy over the FDM and
FEM at the same level of discretization and is also the
most efficient technique for fracture propagation analy-
sis. It is also best suited for simulating infinitely large
domains due to the use of fundamental solutions of the
PDEs in such domains.
The DEM for modelling a discontinuum is relatively

new compared with the three methods described above
and focuses mostly on applications in the fields of
fractured or particulate geological media. The essence of
the DEM is to represent the fractured medium as
assemblages of blocks formed by connected fractures in
the problem domain, and solve the equations of motion
of these blocks through continuous detection and
treatment of contacts between the blocks. The blocks
can be rigid or be deformable with FDM or FEM
discretizations. Large displacements caused by rigid
body motion of individual blocks, including block
rotation, fracture opening and complete detachments
is straightforward in the DEM, but impossible in the
FDM, FEM or BEM.

Fig. 3 illustrates the discretization concepts of the
FDM/FEM, BEM and DEM for fractured rocks.
An alternative DEM for fluid flow in fractured rock

masses is the DFN method that simulates fluid flow
through connected fracture networks, with the matrix
permeability either ignored or approximated by simple
means. The stress and deformation of the fractures are
generally ignored as well. This method is conceptually
attractive for simulating fluid flow in fractured rocks
when the permeability of the rock matrix is low
compared to that of the fractures, and has wide
applications in groundwater flow for civil engineering,
reservoir simulation in petroleum engineering and heat
energy extraction in geothermal engineering.
An important difference between the continuum and

discrete methods is the treatment of displacement
compatibility conditions. In the continuum methods,
the displacement compatibility must be enforced be-
tween internal elements, which is automatic in the cases
of the FDM and BEM, but for the FEM it is maintained
by keeping constant element-node connectivity topology
and consistent orders of the trial (shape) functions
between the neighbouring elements. However, displace-
ment compatibility is not required between blocks in the
DEM, and is replaced by the contact conditions between
blocks with specially developed constitutive models for
point contacts or fractures.
The complete decoupling of rigid body motion mode

and continuous deformation mode of individual blocks
is usually adopted in DEM through the co-rotation
scheme. The rigid body motion does not produce strains

(a) (b)

joint
element

faultsjoints

(c) (d)

region 1

region 2

region 3

region 4
block

block

element of 
displacement
discontinuity discontinuity

Regularized

Fig. 3. Representation of a fractured rock mass shown in (a), by FDM or FEM shown in (b), BEM shown in (c), and DEM shown in (d).
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inside the blocks, but it does produce displacements of
blocks, often of large scale. In the continuum approach,
the rigid body motion mode of deformation is generally
not included because it does not produce strains in the
elements. Therefore, a continuous system reflects mainly
the ‘‘material deformation’’ of the system and the
discrete system reflects mainly the ‘‘member (unit, or
component) movement’’ of the system.
The choice of continuum or discrete methods depends

on many problem-specific factors, but mainly on the
problem scale and fracture system geometry. Fig. 4 illus-
trates the alternative choices for different fracture
circumstances in rock mechanics problems. Continuum
approaches should be used for rock masses with no frac-
tures or with many fractures, the behaviour of the latter
being established through equivalent properties established
by a homogenization process (Fig. 4a and d). The
continuum approach can be used if only a few fractures
are present and no fracture opening and no complete block
detachment is possible (Fig. 4b). The discrete approach is
most suitable for moderately fractured rock masses where
the number of fractures too large for continuum-with-
fracture-elements approach, or where large-scale displace-
ments of individual blocks are possible (Fig. 4c).
Modelling fractured rocks demands high performance

numerical methods and computer codes, especially
regarding fracture representations, material heterogeneity
and non-linearity, coupling with fluid flow and heat
transfer and scale effects. It is often unnecessarily
restrictive to use only one method, even less one code,
to provide adequate representations for the most sig-
nificant features and processes: hybrid models or multiple
process codes are often used in combination in practice.
There are no absolute advantages of one method over

another, as is explained further in the later part of this

review. However, some of the disadvantages inherent in
one type can be avoided by combined continuum-
discrete models, termed hybrid models. In 1984, Lorig
and Brady [3] presented an early computational scheme
in which the far-field rock is modelled as a transversely
isotropic continuum using the BEM and the near-field
rock as a set of discrete element blocks defined by rock
fractures. This type of hybrid BEM-DEM is shown in
Fig. 5. The complex rock mass behaviour caused by
fractures and matrix non-linearity in the near-field of the
excavation can be efficiently handled by the DEM or
FEM, surrounded by a BEM representation of the far-
field region with linear material behaviour without
fractures. The basis for such simple representation of
the far-field is the fact that the gradients of variation
of the physical variables, such as stress, displacement or
flow, decrease rapidly with distance from the excavation.
Therefore, if the interface between the near-field

(a) (b)

(c) (d)

Persistent
discontinuities

Sets of discontinuities

continuum continuum

Fig. 4. Suitability of different numerical methods for an excavation in a rock mass: (a) continuum method; (b) either continuum with fracture

elements or discrete method; (c) discrete method; and (d) continuum method with equivalent properties.

Continuum for the far-field 

Discontinuum 
for the near field

Boundary elements

excavation

on the interface
Boundary elements
on the outer boundary

Fig. 5. Hybrid model for a rock mass containing an excavation—using

the DEM for the near-field region close to the excavation and the BEM

for the far-field region.
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FEM/DEM region and far-field BEM region is far
enough from the excavation, the BEM representation
will provide an accurate enough representation to model
the effects of the far-field on the near-field.
The ‘model’ and the ‘computer’ now provide essential

support for rock mechanics analyses and understanding.
The numerical methods and computing techniques assist
in formulating conceptual models and mathematical
developments to integrate and unify diverse geological,
mechanical, hydraulic and thermal phenomena, whose
interactions would not otherwise be revealed otherwise.
Moreover, such developments and progress in computer
methods for rock engineering will continue because they
are mainly stimulated by the prospect that they will
provide the information that cannot be obtained by
experiments, because conducting large-scale in situ
experiments is most often not possible.
In fact, full verification of computer models by

experiments in rock mechanics is not possible: this is
because the complete geometry and properties of the
fractured rock mass components will never be comple-
tely known, and so verifications/validations can only be
partial. Working with uncertainty and variability (about
processes, properties, parameters, loading conditions
and histories, initial and boundary conditions, etc.)
becomes a way of life in rock engineering, requiring
clarification of source information, understanding the
significance of assumptions, studying propagation paths
relating to the assumptions and their mathematical
treatment.
Clearly defined mathematical approaches do exist to

describe, analyse, and model uncertainties and error
propagation, but their application in mathematical and
computer models for rock engineering is still difficult—
simply because we do not have a reference point for
making judgements, except for broad empirical judge-
ments. Modelling errors may be found as a result of the
failure of rock engineering structures or accidents, but
conceptual failures and modelling mistakes may be
hidden under the thick blanket of the operational
success of structures. Model reliability and credibility
are always relative, subjective and case-dependent. This
current lack of a rigorous treatment of uncertainty in
rock engineering may well be a major reason why many
practising engineers, and even researchers, remain
uncertain about the validity and hence applicability of
mathematical models and computer methods.

2.2. Characterization of rock masses for numerical

methods

For the different types of numerical modelling
methods described in Section 2.1, the modelling is
linked to generic or specific rock masses by the
boundary and initial conditions and the rock properties.
For example, the elastic modelling of a tunnel excava-

tion at a specific location requires a knowledge of the in
situ rock stress state and the elastic properties of the
rock. If the modelling is to incorporate the main
components of the rock reality—the fractures, inhomo-
geneity, anisotropy and inelasticity, including failure—a
more extensive model and a more extensive rock mass
characterization are required. The scale effect is a
related and additional problem, especially where frac-
tures are affecting the rock mass properties (da Cunha,
1990, 1993; Amadei, 2000) [4,5,6].
Some of the rock characterization problems are as

follows:

* the in situ rock stress is not easy to characterize over
the region to be modelled;

* rock properties measured in the laboratory may not
represent the values on a larger scale;

* rock properties cannot be measured directly on a
large scale;

* rock properties may have to be estimated from
empirical characterization techniques;

* the uncertainty in the rock property estimates is not
easy to quantify.

These problems do not mean that we cannot supply
the necessary rock characterization parameters but they
do mean that the whole issue of rock characterization
in relation to numerical methods must be carefully
considered. Needless to say, the use of different
numerical models will require different types of rock
property characterization. Thus, the question of
whether the numerical modelling is successful in
capturing the rock reality relates to both the type of
numerical model and the associated rock property
characterization.
Other connected issues are:

* is it necessary to explicitly represent the fractures or
can equivalent properties be used, i.e. discontinuum
vs. continuum models?

* to what extent is it necessary to simulate all the
operating mechanisms, i.e. to use a 1:1 mechanism
mapping approach, cf. Level 1 vs. Level 2 in Fig. 2?

* how can the combined numerical modelling techni-
que and rock characterization method be calibrated?

* how can the rock characterization method be
technically audited to provide some guidance on
whether it is an adequate procedure?

These issues are discussed in Section 5.

2.3. Enhanced understanding provided by numerical

methods

The purpose of numerical modelling in rock me-
chanics is not only to provide specific values of, say,
stress and strain, at specific points but is also to enhance
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our understanding of the processes involved, particu-
larly the changes that result from the perturbations
introduced by the engineering. For example, we can use
different numerical models based on linear elasticity to
estimate the rock stress changes that occurs as a result of
tunnelling. We can answer the question ‘What is the
maximal compressive stress in the wall of a tunnel after
excavation?’ However, enhanced understanding comes
from a numerical demonstration of the progressive
change in stresses throughout the full stress path from
the original natural rock stress state to the final
disturbed stress state. The illustration in Fig. 6 shows
the variation in the three-dimensional (3-D) stress state
ahead of an advancing tunnel face and provides much
more information than just the before and after values
Eberhardt (2001) [7]. Also, the effects of engineering
actions, such as the time when support is introduced,
can be studied more coherently.
Similarly, enhanced understanding comes from study-

ing the development of all the processes that occur in
rock masses as a result of engineering actions. Some of
the advantages of numerical modelling in this context
are the ability to:

* study rock mechanics processes from beginning to
end,

* conduct sensitivity analyses rapidly,
* conduct numerical experiments for design and con-
struction options,

* develop qualitative understanding through quantita-
tive evaluation,

* establish to what extent 1:1 mapping of mechanisms
and properties is necessary.

An example of studying the development of a
fundamental failure mechanism with a numerical code
is given in Fig. 7 where the development of fracturing
during the uniaxial compression of a rock specimen is
shown (Hazzard and Young, 2000, [8]). This is a good
example of a numerical model being able to illustrate the
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Fig. 6. Variation in the 3-D stress state along the roof line of an advancing tunnel face, from Eberhardt (2001) [7].

Fig. 7. Use of the Particle Flow Code (PFC) to model progressive

failure and acoustic emission in the uniaxial compression test (from

Hazzard and Young, 2001 [8]).
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progressive failure mechanism. This approach can be
applied to modelling the rock mass response to
engineering actions in different field circumstances,
leading to enhanced understanding and hence enabling
the engineer to design more coherently.

3. Numerical techniques for rock mechanics:

states-of-the-art

3.1. Finite Difference Methods

3.1.1. Basic concepts

The FDM is the oldest numerical method to obtain
approximate solutions to PDEs in engineering, espe-
cially in fluid dynamics, heat transfer and solid
mechanics. The basic concept of FDM is to replace
the partial derivatives of the objective function (e.g.
displacement) by differences defined over certain spatial
intervals in the coordinate directions, Dx; Dy; Dz; which
yields a system of algebraic simultaneous equations of
the objective functions at a grid (mesh) of nodes over the
domain of interest (Fig. 8a) (Wheel, 1996 [9]). Solution
of the simultaneous algebraic system equations, incor-
porating boundary conditions defined at boundary
nodes, will then produce the required values of the
objective function at all nodes, which satisfy both
the governing PDFs and specified boundary conditions.
The conventional FDM utilizes a regular grid of nodes,
such as a rectangular grid as shown in Fig. 8a.
Using a standard FDM scheme, the so-called 5-point

difference scheme (Fig. 8b), the resultant FDM equation
at grid node ði; jÞ will be expressed as combinations of
function values at its four surrounding nodes. For a
Navier equation of equilibrium for elastic solids in 2-D,
the FDM equation of equilibrium at point ði; jÞ is given
as

ui;j
x ¼ a1u

i�1;j
x þ a2u

i;j�1
x þ a3u

i;jþ1
x þ a4u

iþ1;j
x

þ a5u
iþ1;jþ1
x þ a6F

i;j
x ;

ui;j
y ¼ b1u

i�1;j
y þ b2u

i;j�1
y þ b3u

i;jþ1
y þ b4u

iþ1;j
y

þ b5u
iþ1;jþ1
y þ b6F

i;j
y ; ð1Þ

where coefficients ak and bkðk ¼ 1; 2;y; 6Þ are functions
of the grid intervals Dx and Dy; and the elastic
properties of the solids, and Fi;j

x and Fi;j
y are the body

forces lumped at point ði; jÞ; respectively. Assembly of
similar equations at all grid points will yield a global
system of algebraic equations whose solution can be
obtained by direct or iterative methods. FDM schemes
can also be applied in the time domain with properly
chosen time steps, Dt; so that function values at time t

can be inferred from values at t � Dt:
The fundamental nature of FDM is the direct

discretization of the governing PDEs by replacing the
partial derivatives with differences defined at neighbour-
ing grid points. The grid system is only a convenient way
of generating objective function values at sampling
points with small enough intervals between them, so
that errors thus introduced are small enough to be
acceptable. No local trial (or interpolation) functions
are employed to approximate the PDE in the neighbour-
hoods of the sampling points, as is done in FEM and
BEM. It is therefore the most direct and intuitive
technique for the solution of the PDEs. The conven-
tional FDM with regular grid systems does suffer from
shortcomings, most of all in its inflexibility in dealing
with fractures, complex boundary conditions and
material inhomogeneity. This makes the standard
FDM generally unsuitable for modelling practical rock
mechanics problems. However, significant progress has
been made in the FDM so that irregular meshes, such as
quadrilateral grids (Perrone and Kao, 1975, [10]) and
the Voronoi grids (Brighi et al., 1998, [11]) can also be
used. Although such irregular meshes can enhance the
applicability of the FDM for rock mechanics problems,
however, the most significant improvement comes from
the so-called Control Volume or Finite Volume
approaches.
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Fig. 8. (a) Regular quadrilateral grid for the FDM and (b) irregular quadrilateral grid for the FVM (after Wheel, 1995 [9]).
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3.1.2. Finite volume approach of FDM and its application

to stress analysis

The Finite Volume Method (FVM) is also a direct
approximation of the PDEs, but in an integral sense. An
elastostatics problem with body O; is divided into a finite
number, N ; of internal contiguous cells of arbitrary
polyhedral (or polygonal in 2-D cases) shape, called
Control Volumes (CV) Ok with boundary Gk of unit
outward normal vector nk

i ; k ¼ 1; 2;y;N: The bound-
ary Gk of CV Ok is comprised of a number, Mk;
polygonal side (faces or line segments), Gp

k; p ¼
1; 2;y;Mk; Gk ¼ ,Mk

p¼1G
p
k: Assuming isotropic, linear

elasticity and using Gauss’ divergence theorem, the
Navier–Cauchy equation of equilibrium in terms of
stress can be rewritten in terms of displacement as

XN

k¼1

XMk

p¼1

Z
Gp

k

tk
i dGþ

Z
Ok

fi dO

" #

¼
XN

k¼1

XMk

p¼1

Z
Gp

k

sk
ijn

p
j dGþ Fk

x

" #
¼ 0; ð2Þ

where Fk
i ¼ rgiV

k is the body force vector of the CV of
volume Vk lumped at its centre, r is the material density
and gi is the body force intensity vector, such as gravity
acceleration.
The task is to formulate the integrals into algebraic

functions of the displacements at nodes defining the
boundary sides Gp

k of Ok; which vary with different grid
schemes. For an unstructured quadrilateral grid system
(Fig. 8b), a typical cell P ðCVÞ; with its centre at node P;
has four sides ðij; jk; kl; liÞ and four nodes ði; j; k; lÞ;
surrounded by eight neighbouring cells with centre
nodes I ; J;y;O: The integral terms in Eq. (2) for the
cell P are written in terms of displacement variables at
the centres of cells [9], written as

Apup
x þ

X
r

Aru
r
x þ Bpup

y þ
X

r

Bru
r
y þ F K

x ¼ 0;

Cpup
y þ

X
r

Cru
r
y þ Dpup

x þ
X

r

Dru
r
x þ FK

y ¼ 0; ð3Þ

where coefficients Ap;Ar;Bp;Br;Cp;Cr;Dp;Dr are func-
tions of the cell geometry and the elastic properties of
the solids, with r ¼ 1; 2;y; 8 running through the eight
surrounding cells.
This formulation of FVM with displacement variables

at cell centres is called the cell-centred scheme of the
FVM. If, on the other hand, the nodal displacement
variables are kept as the system unknowns and the
displacements at the cell centres are replaced by a
combination of nodal displacements defining the cells,
the scheme is called the vertex-centred scheme of the
FVM. It is also possible to consider different material
properties in different cells in the FVM, in similar ways
as in the FEM. The FDM/FVM approach is therefore

as flexible as FEM in handling material inhomogeneity
and mesh generation.
As a branch of the FDM, the FVM can overcome the

inflexibility of the grid generation and boundary
conditions in the traditional FDM with unstructured
grids of arbitrary shape. It has similarities with the
FEM and is also regarded as a bridge between FDM
and FEM, as pointed out in Selim (1993) and Fallah
et al. (2000) [12,13]. A FVM model can be readily
constructed using a standard FEM mesh, as shown in
Bailey and Cross (1995) [14]. Similar examples of FVM
for non-linear stress analysis with elasto-plastic and
visco-plastic material models is given in Fryer et al.
(1991) [15].
With proper formulations, such as static or dynamic

relaxation techniques, no global system of equations in
matrix form needs to be formed and solved in the FDM/
FVM approach. The formation and solution of the
equations are localized, which is more efficient for
memory and storage handling in the computer imple-
mentation. This also provides the additional advantage
of more straightforward simulation of complex consti-
tutive material behaviour, such as plasticity and
damage, without iterative solutions of predictor–correc-
tor mapping schemes that must be used in other
numerical methods using global matrix equation sys-
tems, as in the FEM or BEM. The FDM/FVM
approaches are therefore specially suited to simulate
non-linear behaviour of solid materials. The reason
is its special advantage of no-matrix-equation-solving
formulation and data structure, so that integration of
non-linear constitutive equations is a straightforward
computer implementation step, rather than iterative
prediction-mapping integration loops required in FEM.
This is one of the main attractiveness of FVM such
as demonstrated in Winkins (1963) and Taylor et al.
(1995) [16,17]. At present, the most well-known compu-
ter codes for stress analysis for non-linear rock
engineering problems using the FVM/FDM approach
is perhaps the FLAC code group (ITASCA, 1993) [18],
with a vertex scheme of triangle and/or quadrilateral
grids.

3.1.3. Fracture and non-linear analyses with FDM/FVM

Explicit representation of fractures is not easy in
FDM/FVM because the finite difference schemes in
FDM and interpolations in FVM require continuity of
the functions between the neighbouring grid points.
During the early development of FVM approaches, it is
possible to represent weakness zones of certain thickness
as collections of cells of different materials, which are
not permitted to have openings or to be detached from
their neighbouring cells. However, it is possible today to
have special ‘‘fracture elements’’ in FVM models as in
FEM, such as reported in Granet et al. (2001) and
Caillabet et al. (2000) [19,20] for fluid flow in deformable
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porous media. On the other hand, the FDM/FVM
models have been used to study the mechanisms of
macroscopic fracturing processes, such as shear-band
formation in the laboratory testing of rock and soil
samples (Fang, 2000; Martino et al., 2002) [21,22], slope
stability (Kourdey et al., 2001) [23] and glacial dynamics
(Marmo and Wilson, 2001) [24]. This is achieved as a
process of material failure or damage propagation at the
grid points or cell centres, without creating fracture
surfaces in the models.
Another important improvement of FVM over

the classical FDM is the use of unstructured meshes,
such as triangles, arbitrary quadrilaterals, or Vorinoi
grids (Mishev, 1998) [25]. This advantage, plus the
flexibility of the FVM approach in material models
and boundary condition enforcement, ensures that
the FDM/FVM is still one of the most popular
numerical methods in rock engineering, with applica-
tions covering almost all aspects of rock mechanics, e.g.
slope stability, underground openings, coupled hydro-
mechanical or THM processes, rock mass characteriza-
tion, tectonic process, and glacial dynamics. The most
comprehensive coverage in this regard can be seen in
Detournay and Hart (1999) [26]. The late developments
in fundamentals and computer formulations can be seen
in Benito et al. (2001), Oñate et al. (1994), Lahrmann
(1992), Demirdmi!c and Muzaferija (1994) Demirdmi!c
et al. (2000), Jasak and Weller (2000) and Cocchi (2000)
[27–33].

3.2. Finite Element Method and related methods

3.2.1. Basic concepts

Although the concept of domain discretization can be
traced back to Courant (1943), and Prager and Synge
(1947) [34,35], the ground-breaking work in FEM
development is described in Turner et al. (1956) [36]
when triangle elements were first invented for structural
analysis (Clough, 1960, [37]) when the term FEM was
first used for plane stress problems, and in Argyris
(1960) [38] presenting the matrix method for structural
analysis, and describing the duality of force and
displacement transformations and the virtual work
principle. The method was rapidly adopted and pro-
moted in many scientific and engineering fields, as
illustrated by the text books of Zienkiewicz (1977) and
Bathe (1982) [39,40].
Indeed, the FEM has been the most popular

numerical method in engineering sciences, including
rock mechanics and rock engineering. Its popularity is
largely due to its flexibility in handling material
inhomogeneity and anisotropy, complex boundary
conditions and dynamic problems, together with mod-
erate efficiency in dealing with complex constitutive
models and fractures, i.e. the DIANE features. All these
merits were very appealing to researchers and practising

engineers alike during early development in the 1960s
and 1970s when the main numerical method in
engineering analysis was the FDM with regular grids.
Since then, the FEM method has been extended in many
directions.
Basically, three steps are required to complete an

FEM analysis: domain discretization, local approxima-
tion, and assemblage and solution of the global matrix
equation. The domain discretization involves dividing
the domain into a finite number of internal contiguous
elements of regular shapes defined by a fixed number of
nodes (e.g., triangle elements with three nodes in 2-D
and brick elements with eight nodes in 3-D). A basic
assumption in the FEM is that the unknown function, ue

i

over each element, can be approximated through a trial
function of its nodal values of the system unknowns, u

j
i ;

in a polynomial form. The trial function must satisfy the
governing PDF and is given by

ue
i ¼

XM

j¼1

Niju
j
i ; ð4Þ

where the Nij are often called the shape functions (or
interpolation functions) defined in intrinsic coordinates
in order to use Gaussian quadrature integration, and M

is the order of the elements. Using the shape functions,
the original PDF of the problem is replaced by an
algebraic system of equations written

XN

i¼1

½Ke
ij�fue

j g ¼
XN

i¼1

ðf e
i Þ or Ku ¼ F; ð5Þ

where matrix ½Ke
ij� is the coefficient matrix, vector fue

j g is
the nodal value vector of the unknown variables, and
vector ff e

i g is comprised of contributions from body
force terms and initial/boundary conditions.
For elasticity problems, the matrix ½Ke

ij� is called the
element stiffness matrix given by

½Ke
ij � ¼

Z
Oi

ð½Bi�½Ni�Þ
T½Di�½Bj� dO; ð6Þ

where matrix ½Di� is the elasticity matrix and matrix ½Bi�
is the geometry matrix determined by the relation
between the displacement and strain. The global
stiffness matrix K is banded and symmetric because
the matrices ½Di� are symmetric. Material inhomogeneity
in FEM is most straightforwardly incorporated by
assigning different material properties to different
elements (or regions). To enforce the displacement
compatibility condition, the order of shape functions
along a common edge shared by two elements must be
the same, so that no displacement discontinuity occurs
along and across the edge.
‘‘Infinite elements’’ have also been developed in FEM

to consider the effects of an infinite far-field domain on
the near-field behaviour, most notably the ‘‘infinite
domain elements’’ of Beer and Meck (1981) [41] and the
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‘‘mapped infinite elements’’ of Zienkiewicz et al. (1983)
[42], with focus on geo-mechanical applications. The
original concept was proposed by Bettess (1977) [43] for
fluid mechanics problems. An infinite element formula-
tion with body force terms was given recently by Cheng
(1996) [44] with the emphasis also on geotechnical
problems. The mapped infinite elements are simply
implemented using special shape functions that project
boundary nodes at infinite distances in one or two
directions, where the displacements are either zero or
have prescribed values. Additional nodes are needed at
the imaginary infinite locations. The infinite domain
element technique does not require additional infinite
nodes, but requires a ‘‘decay function’’ to describe the
manner in which the displacements vary from mesh
boundary to infinity. The shape functions used in the
infinite element formulations are singular at the
‘‘infinite’’ nodes.
Because rock mechanics is one of the most stimulating

fields for development of numerical methods—with
many special challenges, such as fractures, property
heterogeneity and anisotropy, material and geometrical
non-linearity, and scale and time effects—much FEM
development work and application has been specifically
oriented towards rock mechanics problems, as illu-
strated in the publications of Owen and Hinton (1980),
Naylor et al. (1981), Pande et al. (1990), Wittke (1990),
and Beer and Watson (1992) [45–49]. The FEM has been
the most widely applied numerical methods for rock
mechanics problems in civil engineering because it was
the first numerical method with enough flexibility for
treatment of material heterogeneity, non-linear deform-
ability (mainly plasticity), complex boundary condi-
tions, in situ stresses and gravity. A typical recent
development is given in Tang et al. (1998) [50] for
simulating fracturing processes in inhomogeneous rocks
with FEM. Also, the method appeared in the late 1960s
and early 1970s, when the traditional FDM with regular
grids could not satisfy these essential requirements for
rock mechanics problems. It out-performed the conven-
tional FDM because of these advantages.

3.2.2. Fracture analysis with the FEM

Representation of rock fractures in the FEM has been
motivated by rock mechanics needs since the late 1960s,
with the most notably contributions from Goodman
et al. (1968), Goodman (1976), Zienkiewicz et al. (1970),
Ghaboussi et al. (1973), Katona (1983), Desai et al.
(1984) [51–56].
Assuming that the contact stresses and relative

displacements along and across the rock fractures of a
theoretical zero thickness (Fig. 9a) follow a linear
relation with constant normal and shear stiffness, Kn

and Ks; Goodman et al. (1968) [51] proposed a ‘joint
element’ which can be readily incorporated into an FEM
process, with its local equilibrium equation given by

kGuG ¼ fG; ð7Þ

where the matrix kG is a symmetric matrix with its
entries defined by the normal and shear stiffness, the
element’s length and its orientation to the global
coordinate system, respectively. The vector uG ¼
ðui

x; u
i
y; u

j
x; u

j
y; u

k
x; u

k
y ; u

l
x; u

l
yÞ
T is the nodal displacement

vector of the four nodes (i; j; k and l) defining the joint
element (Fig. 9b) and vector fG:
The above formulation, the well-known ‘Goodman

joint element’ in rock mechanics literature, has been
widely implemented in FEM codes and applied to many
practical rock engineering problems. Also, it has been
extended to consider peak and post-peak behaviour in
the shear direction. However, its formulation is based on
continuum assumptions—so that large-scale opening,
sliding, and complete detachment of elements are not
permitted. The displacements of a joint element are of
the same order of magnitude as its neighbouring
continuum elements, allowing the displacement compat-
ibility condition to be kept along and across the joint
elements. Because of the zero thickness of the joint
element, numerical ill-conditioning may arise due to
large aspect ratios (the ratio of length to thickness) of
joint elements.
Zienkiewicz et al. (1970) [53] proposed a six-node

fracture element with two additional nodes in the

(a) (c)

(b) (d)
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Fig. 9. Fracture elements in FEM by (a) Goodman et al. (1968) [51], (b) Ghaboussi et al. (1973) [54], (c) Zienkiewicz et al. (1970) [53] and

(d) Buczkowski and Kleiber (1997) [60].
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middle section of the element, and a small thickness
(Fig. 9c). The elements can, therefore, be curved.
The formulation may be seen as a ‘degenerate’ ordinary
solid element of narrow thickness, and is subject to
numerical ill-conditioning when the aspect ratio is too
large.
Using the relative displacements between the two

opposite surfaces of fractures as the independent system
unknowns, Ghaboussi et al. (1973) [54] proposed an
FEM joint element based on the theory of plasticity
(Fig. 9b). The use of the relative displacement compo-
nents across and along the fractures of finite thickness
reduces the number of unknowns of the fracture
elements by half, defined at two nodes instead of four
nodes as in Goodman’s joint elements. A finite thickness
t is also used. The normal and shear strain components
of the element are defined as the corresponding ratios of
relative normal and shear displacements over the
fracture thickness. An elasto-plastic relation between
the normal and shear stresses and the normal and shear
strains of the fracture element is formulated and can be
implemented in the usual manner for continuum FEM
analysis. This formulation is more robust in terms of
numerical ill-conditioning as compared with those
proposed in Goodman et al. (1968) and Zienkienwicz
et al. (1970) [51,53], due to the use of the relative
displacements.
The ‘thin-layer’ elements developed by Desai et al.

(1984) [56] are also based on a continuum assumption;
these are a solid element with a specially developed
constitutive model for contact and frictional sliding.
The fracture element formulation in FEM has also

been developed with interface element models in contact
mechanics, using the FEM approach, instead of the
continuum solid element approximation as mentioned
above. Katona (1983) [55] developed an FEM interface
element model defined by mating pairs of nodes, without
using the normal and shear stiffness parameters, and
with three states—sticking, slipping and opening—based
on the Coulomb friction law. A similar approach was
further discussed in Wang and Yuan (1997) [57]. In
Gens et al. (1989, 1995) [58,59] 3-D FEM interface
models simulating the behaviour of rock fractures were
developed using the theory of plasticity. Based on the
same principles, recent work by Buczkowski and Kleiber
(1997) [60] considered orthotropic friction for contact
interface elements in the FEM based on the theory of
plasticity.
The FEM interface models described above present

significant improvements over the early joint element
models through a more systematic consideration of the
kinetic and thermodynamic constraints, but they are still
limited to the small displacement assumptions in the
FEM with the consequence that large-scale movements
across and along fracture elements are not possible.
Despite these efforts, the treatment of fractures and

fracture growth remains the most important limiting
factor in the application of the FEM for rock mechanics
problems, especially when large number of fractures
needs to be represented explicitly. The FEM suffers
from the fact that the global stiffness matrix tends to be
ill-conditioned when many fracture elements are in-
corporated. Block rotations, complete detachment and
large-scale fracture opening cannot be treated because
the general continuum assumption in FEM formula-
tions requires that fracture elements cannot be torn
apart.
When simulating the process of fracture growth, the

FEM is handicapped by the requirement of small
element size, continuous re-meshing with fracture
growth, and conformable fracture path and element
edges. This overall shortcoming makes the FEM less
efficient in dealing with fracture problems than its BEM
counterparts.
However, special algorithms have been developed in

an attempt to overcome this disadvantage, e.g. using
discontinuous shape functions (Wan, 1990) [61] for
implicit simulation of fracture initiation and growth
through bifurcation theory.
A special class of FEM, often called ‘enriched FEM’,

has been especially developed for fracture analysis
with minimal or no re-meshing, as reported in
Belytschko and Black (1999), Belytschko et al. (2001),
Daux et al. (2000), Duarte et al. (2000, 2001), Dolbow
et al. (2000), Jirasek and Zimmermann (2001a, b),
Mo.es et al. (1999) and Sukumar et al. (2000) [62–71].
The basic concept is direct representation of the
objective function (such as displacements) with arbitrary
discontinuities and discontinuous derivatives in FEM,
but without need for the FEM meshes to conform to the
fractures and no need for re-meshing for fracture
growth.
The treatment of fractures is at the element level. The

surfaces of the fractures are defined by assigned distance
functions so that their representation requires only
nodal function values, represented by an additional
degree of freedom in the trial functions, a jump function
along the fracture and a crack tip function at the tips.
The motions of the fractures are simulated using the
level sets technique (Stolarska et al., 2001) [72]. Fig. 10a
illustrates the non-conformal fracture-mesh relation in
this technique with an arbitrary fracture intersecting a
regular mesh, where circled nodes are ‘enriched’ with
additional jump functions and squared nodes are
‘enriched’ with additional crack tip functions. On the
other hand, the regular elements intersected by the
fractures are changed into general polygons (Fig. 10b)
and quadrature of the weak form in elements requires
that these polygons be subdivided into standard FEM
elements (such as triangles, Fig. 10c for numerical
integration (Mo.es et al., 1999; Belytschko et al., 2001)
[70,71]. In Belytschko et al. (2001) [63], the enriched
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method was applied to a tunnel stability analysis with
fractures simulated as displacement discontinuities.
The ‘enriched’ FEM with jump functions and crack

tip functions has improved the FEM’s capacity in
fracture analysis. Coupled with the FEM’s advantage
in dealing with material heterogeneity and non-linearity,
this makes the ‘enriched’ FEM suitable for non-linear
fracture analysis. One such example is the so-called
‘generalized finite element method’ (GFEM), which was
developed based on the partition of unity principle
(Duarte et al., 2000; Strouboulis et al., 2000, 2001) [73–
75]. The mesh in GFEM is independent of the geometry
of the domain of interest and therefore can be regular
regardless of the object geometry. Fractures can be
simulated by their surrounding nodes ‘enriched’ by jump
functions and crack tip functions (Fig. 11a). This greatly
simplifies the meshing tasks.
The GFEM is in many ways similar to the so-called

‘manifold’ method except for the treatment of fractures
and discrete blocks (Shi, 1991, 1992; Chen et al., 1998)
[76–78]. The manifold method uses the truncated
discontinuous shape functions to simulate the fractures
and treat the continuum bodies, fractured bodies and
assemblage of discrete blocks in a unified form, and is a
natural bridge between the continuum and discrete
representations.

The method is formulated using a node-star covering
system for constructing the trial functions (Fig. 11b). A
node is associated with a covering—star, which can be a
standard FEM mesh (Fig. 11c) or generated using least-
square kernel techniques with general shapes. The
integration, however, is performed analytically using
Simplex integration techniques.
Like GFEM, the manifold method can also have

meshes independent of the domain geometry, and
therefore the meshing task is greatly simplified and
simulation of the fracturing process does not need re-
meshing. The technique has been extended for
applications to rock mechanics problems with large
deformations and crack propagation (Wang et al.,
19971a, 1997b) [79,80]. Most of the publications are
included in the series of proceedings of the ICADD2

symposia (Li et al., 1995; Salami and Banks, 1996;
Ohnishi, 1997; Amadei, 1999) [81–84].

3.2.3. Meshless (meshfree) methods

Besides the fracture analysis problem, the traditional
FEM suffers from other shortcomings, especially the
‘locking’ effects and high demand for mesh generation.

(a) (b) (c)

Fig. 10. (a) Representation of an arbitrary fracture in a regular FEM mesh with nodes enriched by jump functions (circled nodes) or crack tip

functions (squared nodes) (after Mo.es et al., 1999) [70]; (b) Details of rectangular elements intersected by a fracture, thus forming polygons; and

(c) triangularization of polygons into triangle elements for quadrature integration (after Belytschko et al., 2001) [63].

 a)   b) C1C2

C3

0

1

(a) (b) (c)

Fig. 11. (a) A regular non-conformal mesh of GFEM with ‘enriched’ nodes surrounding a fracture; (b) general coverings in the manifold method;

and (c) manifold method coverings with a standard triangular FEM mesh and shape functions (after Chen et al., 1998 [78]).

2 ICADD (acronym for International Conference on Analysis of

Discontinuous Deformation).
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There are two types of ‘locking’ effects in FEM:
numerical locking and element locking. ‘Numerical
locking’ is the phenomenon by which numerical
approximation deteriorates near some limiting
values of material properties (Arnold, 1981; Babu$ska
and Suri, 1992; Suri, 1996) [85–87], or special geometry
limits. Typical examples are the Poisson’s ratio for
elasticity problems when the value of Poisson’s ratio is
near 0.5, and shear locking for shells and plates when
the thickness of the shells and plates is reduced to a
small amount (Bucalen and Bathe, 1995) [88]. Proper h-,
p- or hp-convergence measures need to be taken to
avoid such locking effects and ensure solution conver-
gence (Babu$ska and Suri, 1990; Chilton and Suri, 1997)
[89,90].
The ‘element locking’ in FEM is the numerical

instability and can be caused by local mesh distortions,
such as large aspect ratios of elements under highly
concentrated loads, especially in dynamic large defor-
mation analysis. The mesh generation is a demanding
task in applying FEM for practical problems with
complex interior structures and exterior boundaries. The
meshes must be detailed enough to ensure proper
representation of the problem geometry, solution con-
vergence and result accuracy; yet they should also
enable the computations to be completed in an
economically reasonable time. These conflicting issues
are problem-specific and must be balanced carefully
between resolution and resources. The problem is
critical when dealing with 3-D problems with complex
geometry.
Although commercial software is available for fully or

semi-automatic generation of FEM meshes (as pre-
processor) and for results evaluation and presentation
(as post-processor), it is still up to the engineers and
analysts as code users to address the issues of mesh
resolution, result accuracy and computing resources.
Mesh generation usually takes a much longer time than
the actual calculations—because it depends almost
entirely on judgement and experience, rather than
theoretical guidance. A number of trial-and-error cycles
are often needed to settle the issues properly.
The most common method for improving the solution

convergence and avoiding locking effects is by succes-
sively increasing mesh resolution, i.e. increasing the
number of elements. This is called the h-convergence
approach. A different approach, called p-convergence, is
to increase the order of the trial (shape) functions, i.e.
increasing node numbers per element while maintaining
a constant element numbers. The combination of the
two approaches is the hp-convergence approach in
FEM, and is built into many commercial FEM codes.
The aim is to avoid the ‘hourglass’ phenomenon due
mainly to too low an order of trial functions, and
achieve a robust solution convergence rate (Oden, 1990;
Babu$ska and Suri, 1990) [91,89].

Significant progress has been made in the last decade
in the ‘meshless’ (or ‘meshfree’, ‘element-free’) method,
which is closely related to FEM. In this approach, the
trial functions are no longer standard but generated
from neighbouring nodes within a domain of influence
by different approximations, such as the least-square
technique (Belytschko et al., 1996) [92]. The requirement
for mesh generation is only generation and distribution
of discrete nodes, without fixed element-node topologi-
cal relations as in the FEM. A large number of different
meshless formulations have been developed over the
years. Most notable among them are:

* ‘‘Smooth particle hydrodynamics’’ method (SPH)
(Monaghna, 1988; Randles and Libersky, 1996)
[93,94];

* ‘‘Diffuse element method’’ by Nayroles et al. (1992)
[95];

* ‘‘Element-free Galerkin method’’ (EFG) (Belytschko
et al., 1994) [96];

* ‘‘Reproducing kernel particle methods’’ (RKPM)
(Liu et al., 1995, 1996; Chen et al., 1996) [97–99];

* ‘‘Moving least squares reproducing kernel method’’
(MLSRK) (Liu et al., 1997) [100];

* ‘‘hp-cloud method’’ (Duarte and Oden, 1996; Liszka
et al., 1996) [101,102];

* ‘‘Partition of unity method’’ (PUM) (Melenk and
Babu$ska, 1996) [103];

* ‘‘Local Petrov–Galerkin’’ (MLPG) and ‘‘local
boundary integral equation’’ (LBIE) methods (Atluri
and Zhu, 1998; Atluri et al., 1999) [104,105];

* ‘‘Method of finite spheres’’ (De and Bathe, 2000)
[106];

* ‘‘Finite point method’’ (Oñate et al., 1996; Sulsky and
Schreyer, 1996) [107,108];

* ‘‘Natural element method’’ (NEM) (Sukumar et al.,
1998) based on a Voronoi tessellation of a set of
nodes [109].

Naturally, the main advantage of the meshless
approaches is the much reduced demand for meshing
compared with standard FEM and FDM/FVM for both
continuous and fractured bodies. They can still be
viewed as classes of weighted residual techniques in
computational mechanics like FEM and BEM, and are
performed with three key operations: interpolation
using trial (shape) functions; integration to derive
governing algebraic equations; and solution of the final
system equations. There are basically three interpolation
techniques: wavelets, moving least-square functions, and
the partition of unity or hp-clouds. The moving least-
square techniques are special cases of the partition of
unity. The interpolation functions produced using these
techniques are non-polynomial functions and this makes
the integration of the weak form more demanding
compared with standard FEM.
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Another shortcoming of many meshless approaches is
the difficulty in enforcement of essential boundary
conditions. The Kronecker delta function property in
the FEM/BEM shape functions ensures that the
essential boundary functions are met efficiently. How-
ever, in many meshless methods, the generated inter-
polation functions do not have the Kronecher delta
property at nodes, and special techniques must be
applied to overcome this difficulty, such as coupling
with FEM at boundaries (Krongauz and Belytschko,
1996) [110], Lagrange multipliers (Belytschko et al.,
1994) [96], penalty factors (Atluri and Zhu, 1998)
[104], etc.
The early meshless formulations, such as diffuse

elements, EFG, hp-clouds, PUM, RKPM, and MLSPK
are not true meshless techniques because a background
mesh (cell) structure is still needed for integration,
although not for interpolation. An example of such a
cell–node structure in EFG is given in Fig. 12a. The
discretization is therefore not adequately ‘free’.
The finite point method uses a weighted least-square

interpolation (therefore no element structure needed)
and point collocation (thus by-passing the elements for
integration), and therefore is a true meshless formula-
tion. However, care needs to be taken in the choice of
collocation points to ensure correct solutions of the
derived equations. Similar formulations are also re-
ported by Zhang et al. (2001) [111].
The MLPG and LBIE methods are true meshless

techniques without using background meshes for either
interpolation or integration. The trial functions are
generated using moving least squares, partition of unity
or Shepard functions with the shapes of circles,
rectangles or ellipse at the bases. The test functions are
the same as the trial functions for the MLPG and the
fundamental solutions for the LBIE, respectively, over
their respective support and neighbouring nodes of
influences (Fig. 12b). The integration is performed over

sub-domains defining the supports for the test functions
(Ote in Fig. 12b) or their intersections. A panel factor is
used in MLPG to ensure the satisfaction of the essential
boundary conditions.
The finite sphere method (De and Bathe, 2000) [106]

may be viewed as a special class of MLPG with circular
support domain shapes. The difference between the
MLPG and the method of finite spheres is the numerical
integration scheme. The method of finite spheres uses
Gaussian product rules on 2-D annuli and annular
sectors with a larger number of integration points
compared with the FEM. A similar development by
Atluri and Li (2001) [112], called the finite cloud
method, uses the combined point collocation and fixed
least-square kernel technique for constructing interpola-
tion functions.
The meshless approach greatly simplifies the task of

mesh generation in FEM since no fixed elements are
required and largely eliminates the element locking
effect, with the cost of more computational effort in
generating numerically the trial functions over the
selected node clusters. From the pure computing
performance point of view, it has not yet outperformed
the FEM techniques, but it has potential for civil
engineering problems in general, and rock mechanics
applications in particular, due to its flexibility in
treatment of fractures, as reported by Zhang et al.
(2000) [113] for analysis of jointed rock masses with
block-interface models, and Belytschko et al. (2000) [114]
for fracture growth in concrete. Its development was
stimulated largely for simulating the mechanics of
fractured rocks—because of the latter’s unusual com-
plexity in geometry and behaviour of the hosted
fractures. A contact-detection algorithm using the
meshless technique was also reported by Li et al. (2001)
[115] that may pave the way to extending the meshless
technique to discrete block system modelling. The
concept was also extended to the BEM (see Section 3.3).

Crack

Shadow
Cell

Node

Domain of
influence

Quadrature point

Support of a node and its
 nodes of influence for
 trial functions

Node j

 Node i

ste  =Γ∂Ω 

i
teΩ

j
trΩ

ste  =∩Γ  ∂Ω Γ

(a) (b)

Fig. 12. (a) The cell-and-node structure of the EFG meshless method (Belytschko et al., 1994) [96]; and (b) node and support structure in MLPG and

LBIE where symbols Oi
te and Oj

tr indicate the support domains of nodes i and j; respectively, and @Ote indicates the boundaries of the support
domains.
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3.3. Boundary Element Methods

3.3.1. Basic concepts

Unlike the FEM and FDM methods, the BEM
approach initially seeks a weak solution at the global
level through an integral statement, based on Betti’s
reciprocal theorem and Somigliana’s identity. For a
linear elasticity problem with domain O; boundary G of
unit outward normal vector ni; and constant body force
fi; for example, the integral statement is written as

cijuj þ
Z
G

t
ijuj dG ¼
Z
G

u

ij tj dGþ

Z
G

qu

ij

qn
fj dG; ð8Þ

where uj and tj are the displacement and traction vectors
on the boundary G; the terms u


ij and t
ij are called
displacement and traction kernels. The term cij is called
the free term determined by the local geometry of the
boundary surfaces, cij ¼ 1 when the field point is inside
the domain O:
The solution of the integral Eq. (8) requires the

following steps:
(1) Discretization of the boundary G with a finite

number of boundary elements. For 2-D problems, the
elements are 1-D line segments which may have one
node at the centre of the element (constant element), two
nodes at the two ends of the line segment (linear
elements) or three nodes with two end nodes and one
central node (quadratic elements). Let N denote the
total number of boundary elements. The boundary
integral equation then is re-arranged into a sum of local
integrals over all elements

cijuj þ
XN

k¼1

Z
Gk

t
ijuj dG ¼
XN

k¼1

Z
Gk

u

ijtj dG

þ
XN

k¼1

Z
Gk

qu

ij

qn
fj dG: ð9Þ

(2) Approximation of the solution of functions locally
at boundary elements by (trial) shape functions, in a
similar way to that used for FEM. The difference is that
only 1-D shape functions with intrinsic coordinate
�1pxp1 is needed for 2-D BEM problems, and 2-D
shape functions with two intrinsic coordinates �1pxp1
and �1pZp1 are needed for 3-D problems. The
displacement and traction functions within each element
are then expressed as the sum of their nodal values of the
element nodes:

ui ¼
Xm

k¼1

Nkuk
i ; ti ¼

Xm

k¼1

Nktk
i ; ð10Þ

where m is the element order (=1, 2 or 3 for 2-D
problems, for example), and uk

i and tk
i are the nodal

displacement and traction values at node k; respectively.

Substitution of Eqs. (10) into (9) and for

Tij ¼
Z
Gk

t
ijNj dG; Uij ¼
Z
Gk

u

ijNj dG;

Bi ¼
Z
Gk

fj

qu

ij

qn
dG ð11Þ

Eq. (8) can be written in matrix form as

½Tijðl; kÞ�
ð2N�2NÞ

fujðkÞg
ð2N�1Þ

¼ ½Uijðl; kÞ�
ð2N�2NÞ

ftjðkÞg
ð2N�1Þ

þ fBiðkÞg
ð2N�1Þ

; ð12Þ

where i; j ¼ 1; 2 for 2-D and 1, 2, 3 for 3-D problems,
respectively, l; k ¼ 1; 2; y; N ; and

Tijðl; kÞ ¼ cijdlk þ
Z
Gk

t
ijNj dG: ð13Þ

(3) Evaluation of the integrals Tij ; Uij and Bi with point

collocation method by setting the source point P at all

boundary nodes successively. Closed-form solutions exist
only for some particular cases (see, for examples,
Fratantonio and Rencis, 2000; Carini et al., 1999
[116,117]), and numerical integration using Gaussian
quadrature is often used. Note that singularity occurs in
the above integrals when the source and field points are
located on the same elements, and special integration
schemes need to be used to evaluate them in a Cauchy
Principal Value sense.
(4) Incorporation of boundary conditions and solution.

Incorporation of the boundary conditions into the
matrix Eq. (12) will lead to final matrix equation

½A�fxg ¼ fbg; ð14Þ

where the global matrix ½A� is a mixture of Tij and Uij ;
the unknown vector fxg is a composite of both
unknown displacements and unknown boundary trac-
tions, and the known vector fbg is the sum of the body
force vector fBig and the products of Tij with known
displacements and Uij with known tractions, respec-
tively. The resultant Eq. (14) is usually fully populated
and asymmetric, leading to fewer choices for efficient
equation solvers, compared with the sparse and sym-
metric matrices encountered in the FEM. The solution
of Eq. (14) will yield the values of unknown displace-
ments and tractions at boundary nodes. Therefore all
boundary values of displacements and tractions are
obtained.
(5) Evaluation of displacements and stresses inside the

domain. For practical problems, it is often the stresses
and displacements at some points inside the domain of
interest that have special significance. Unlike the FEM
in which the desired data are automatically produced at
all interior and boundary nodes, whether some of them
are needed or not, in BEM the displacement and stress
values at any interior point, P; must be evaluated
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separately by

uiðPÞ ¼ �
XM

k¼1

#Tij %u
k
j þ

XM

k¼1

#Uij %t
k
j þ

XM
k¼1

#Bk; ð15Þ

sijðPÞ ¼ �
XM

l¼1

Skij %u
l
k þ

XM

l¼1

Dkij %t
l
k; ð16Þ

where kernels #Tij ; #Uij ; Skij ; Dkij and #Bi must be re-
evaluated according to the new position of the source
point inside the domain (closed-form formulae for them
are available in many text books on the BEM), usually
without singularities unless the point is very close to
boundary, and %uk

j and %tk
j are known or calculated

displacement and traction vectors at all boundary nodes.
The boundary integral equation method was used for

the first time by Jaswon (1963) and Symm (1963)
[118,119] for solving potential problems. The break-
through for stress analysis in solids came with the work
of Rizzo (1967), Cruse and Rizzo (1968) and Cruse
(1973), and Cruse (1978) [120–123] for fracture me-
chanics applications, based on Betti’s reciprocal theo-
rem (Betti, 1872) [124] and Somigliana’s identity in
elasticity theory (Somigliana, 1885) [125]. The basic
equations can also be derived using the weighted
residual principle, as presented in Brebbia and Dom-
inguez (1977) [126]. The introduction of isoparametric
elements using different orders of shape functions in the
same fashion as that in FEM, by Lachat and Watson
(1976) and Watson (1979) [127,128], greatly enhanced
the BEM’s applicability for stress analysis problems.
All these works have established the status of BEM as

an efficient numerical method for solving general
engineering mechanics problems. The most notable
original developments of BEM application in the field
of rock mechanics may be attributed to Crouch and
Fairhurst (1973), Brady and Bray (1978) and Crouch
and Starfield (1983) [129–131], quickly followed by
many as reported in the rock mechanics and BEM
works (Hoek and Brown, 1982; Brebbia, 1987; Pande
et al., 1990; Beer and Watson, 1992) [132,133,47,49] for
general stress and deformation analysis for underground
excavations, soil-structure interactions, groundwater
flow and fracturing processes, and a large number of
journal and conference publications. Notable examples
are the work for stress/deformation analysis of under-
ground excavations with or without faults (Venturini
and Brebbia, 1983; Beer and Pousen, 1995a, b; Kayupov
and Kuriyagama, 1996; Cerrolaza and Garcia, 1997;
Pan et al., 1998; Shou, 2000) [133–139], dynamic
problems (Tian, 1990; Siebrits and Crouch, 1993;
Birgisson and Crouch, 1998) [140–142], in situ stress
and elastic property interpretation (Wang and Ma,
1986; Jing 1987) [143,144], and borehole tests for
permeability measurements (Lafhaj and Shahrour,
2000) [145]. Since the early 80s, an important develop-

mental thrust concerns BEM formulations for coupled
thermo-mechanical and hydro-mechanical processes,
such as the work reported in Pan and Maier (1997),
Elzein (2000) and Ghassemi et al. (2001) [146–148]. Due
to the BEM’s advantage in reducing model dimensions,
3-D applications are also reported, especially using
DDM for stress and deformation analysis, such as
Kuriyama and Mizuta (1993), Kuriyama et al. (1995)
and Cayol and Cornet (1997) [149–151].
The main advantage of the BEM is the reduction of

the computational model dimension by one, with much
simpler mesh generation and therefore input data
preparation, compared with full domain discretization
methods such as the FEM and FDM. Using the same
level of discretization, the BEM is often more accurate
than the FEM and FDM, due to its direct integral
formulation. In addition, solutions inside the domain
are continuous, unlike the pointwise discontinuous
solutions obtained by the FEM and FDM groups. The
solution domains of BEM can be divided into several
sub-domains with different material properties, and this
will often reduce the calculation time as well. The
method is also suitable for considering infinite domains
(full or half space/plane), due to its use of the
fundamental solutions.
However, in general, the BEM is not as efficient as the

FEM in dealing with material heterogeneity, because it
cannot have as many sub-domains as elements in the
FEM. The BEM is also not as efficient as the FEM in
simulating non-linear material behaviour, such as
plasticity and damage evolution processes, because
domain integrals are often presented in these problems.
The BEM is more suitable for solving problems of
fracturing in homogeneous and linearly elastic bodies.
The BEM formulation described above is called the

direct formulation in which the displacements and
tractions in the equations have clear physical meanings,
are the basic unknowns of the boundary integral
equations which are explicitly described on the problem
boundary, and can be directly obtained by the solution
of the integral equations. In the indirect formulation, on
the other hand, the basic unknowns have no physical
meanings and are just fictitious source densities related
to the physical variables such as displacements and
tractions.
The typical indirect BEMs are the Displacement

Discontinuity Method (DDM) by Crouch (1976) [152]
for 2-D problems and Weaver (1977) [153] for 3-D
problems and the Fictitious Stress Method by Crouch
and Starfield (1983) [131]. The basic concept of the
indirect approach is to place the finite domain of interest
into an imaginary infinitely large domain (full or half-
plane or spaces) to derive the boundary integral
equations relating the physical variables, such as
displacements and tractions, to fictitious source densi-
ties, such as fictitious load (stress) or displacement
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discontinuity. Dunbar (1985) [154] showed the equiva-
lence between the direct and indirect BEM approaches.

3.3.2. Fracture analysis with BEM

To apply standard direct BEM for fracture analysis,
the fractures must be assumed to have two opposite
surfaces, except at the apex of the fracture tip where
special singular tip elements must be used. Denote Gc as
the path of the fractures in the domain O with its two
opposite surfaces represented by Gþ

c and G�
c ; respec-

tively, Somigliana’s identity (when the field point is on
the boundary) can be written as

uj � cijDuj þ
Z
G

t
ijuj dGþ
Z
Gc

t
ijDuj dG

¼
Z
G

u

ij tj dGþ

Z
Gc

u

ijDtj dGþ

Z
G

qu

ij

qn
fj dG; ð17Þ

where Dui and Dti are the displacement and traction
jumps across the two opposite surfaces of the fractures.
Because of the very small thickness of fractures, the

two nodes at the opposite surfaces of a fracture will in
fact occupy the same coordinates. This will naturally
lead to singular global stiffness matrices if the same
boundary conditions (or unknowns) are specified at the
two opposite fracture surfaces. Also, any set of equal
and opposite tractions on the fracture surfaces will lead
to the same equation since Dti ¼ 0: In addition, the
displacement difference Duj becomes an additional
unknown on Gc besides uj :
To overcome these difficulties, two techniques were

proposed. One was to divide the problem domain into
multiple sub-domains with fractures along their inter-
faces (Fig. 13a), by Blandford et al. (1981) [155]. This
way, the stiffness matrices contributed by opposite
surfaces of the same fracture will belong to different
sub-domain stiffness matrices; thus, the singularity of
the global matrix is avoided. This technique, however,
requires the knowledge of fracturing paths (used for
deciding sub-regions) and growth rate (for deciding
element sizes), which is determined by the solution of the
problem itself, before the problem solution, and may not

be applicable for many practical problems without
symmetry in geometry and boundary conditions.
The second technique is the Dual Boundary Element

Method (DBEM). The essence of this technique is to
apply displacement boundary equations at one surface
of a fracture element and traction boundary equations
at its opposite surface, although the two opposing
surfaces occupy practically the same space in the model.
The general mixed mode fracture analysis can be
performed naturally in a single domain (Fig. 13b). The
term DBEM was first presented in Portela (1992) and
Portela et al. (1992, 1993) [156–158], and was extended
to 3-D crack growth problems by Mi and Aliabadi
(1992, 1994) [159,160]. However, the original concept of
using two independent boundary integral equations for
fracture analysis, one displacement equation and an-
other its normal derivative, was developed first by
Watson (1979) [128]. Special crack tip elements, such as
developed in Yamada et al. (1979) and Aliabadi and
Rooke (1991) [161,162], are used at the fracture tips to
account for the stress and displacement singularity.
The DDM has been widely applied to simulate

fracturing processes in fracture mechanics in general
and in rock fracture propagation problems in particular
due to the advantage that the fractures can be
represented by single fracture elements without need
for separate representation of their two opposite
surfaces, as should be done in the direct BEM solutions.
It was developed by Crouch and Starfield (1983) [131]
with open fractures, and was extended to fractures with
contact and friction by Wen and Wang (1991) [163] and
Shen (1991) [164] for mechanical and rock engineering
analyses, respectively. The fictitious unknowns are the
displacement discontinuity Dui acting on the boundary
G of a finite body of domain O; inserted in an infinitely
large half (or full) space. The displacement and traction
is given by

ui ¼ cijDuj þ
Z
G

u

ijDuj dGþ

Z
Gc

%u

ijDuj dG;

ti ¼ cijDuj þ
Z
G

t
ijDuj dGþ
Z
Gc

%t
ijDuj dG ð18Þ
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Fig. 13. Illustrative meshes for fracture analysis with BEM: (a) sub-domain, direct BEM; (b) single domain, dual BEM; and (c) single domain DDM.
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for field points on G: The kernels %u

ij and %t
ij are the

fundamental solutions due to unit discontinuity per unit
length (for 2-D) or area (for 3-D), see Appendix A in
Wen (1996) [165] for details.
By writing displacement and traction equations in

Eq. (18) at boundary and fracture nodes with corre-
sponding known displacements and tractions, respec-
tively, a determinate matrix equation can be produced
and its solution will yield all discontinuities Dui at all
boundary and fracture nodes, which can then be used to
produce displacements or stresses at required points
inside domain O:
For fracturing analysis using numerical methods,

there are two main tasks, besides the establishment of
the system equations. They are the evaluation of the
stress intensity factors (SIF) and simulating fracture
growth, based on determination of fracture deformation
modes (I, II and III) and different criteria for fracture
growth, such as maximum tensile strength or energy
release rate. The details can be obtained in Aliabadi and
Rooke (1991) [162], Wen (1996) [165] and Mi (1996)
[166], for both displacement discontinuity and DBEM
formulations applied for fracture growth analysis. A
comprehensive coverage of the subject is given in
Alliabadi (1999) [167], together with topics of rock
fragmentation using DFEM and transport using DFN.
Analysing fracturing processes using BEM is challen-

ging, especially for rock mechanics problems. On the
one hand, what happens exactly at the fracture tips in
rocks still remains to be adequately understood, with the
additional complexities caused by the microscopic
heterogeneity and non-linearity at the fracture tip scale,
especially regarding the fracture growth rate. On the
other hand, complex numerical manipulations are still
needed for re-meshing following the fracture growth
process so that the tip elements are added to where new
fracture tips are predicted, and updating of system
equations following the re-meshing, although the task is
much less cumbersome than that required for domain
discretization methods such as standard FEM.
Due to the above difficulties, fracture growth analyses

in rock mechanics have not been widely applied, and
were mostly performed with 2-D BEM using indirect
formulations such as DDM, considering often a small
number of isolated, non-intersecting fractures in usually,
small 2-D models concerning local failure mechanisms,
such as borehole breakout and mechanical breakage
(Tan et al., 1998) [168]. A 3-D DDM code POLY3D is
developed at Stanford University, which is able to
consider a number of non-intersecting fractures in 3-D
(La Pointe et al., 1999) [169]. Usually, fracture growth is
ignored completely in rock mechanics applications, and
only stress and deformations of large-scale fractures are
included, such as faults or fracture zones, using the
multi-region formulations (Crotty and Wardle, 1985)
[170] and in Beer and Pousen (1995a, b) [134,135]. This

can be justified by the fact that the scale of fracture
growth, under the normal loading conditions encoun-
tered in most civil engineering projects, is small and
omitting this factor will not cause major misinterpreta-
tions of the behaviour of rock masses under considera-
tion. The assumption, however, will not be true for
other problems—such as borehole stability and rock
spalling, where the former is dominated by in situ
stresses, and the latter is controlled by the local
stresses, local fracture geometry and dynamic fracturing
processes.
The effects of fluid pressures and heat gradients on

fracturing process in rock, either static or dynamic, is
not properly understood, even less analysed by numer-
ical methods, due to the added complexity in the
physics, equations and numerical solution procedures.
However, considering their potential significance for the
performance and safety of many environment-oriented
civil engineering projects in fractured rocks, the need for
such studies is clear.

3.3.3. Alternative formulations associated with BEM

The standard BEM, dual BEM and DDM as
presented above have a common feature: the final
coefficient matrices of the equations are fully populated
and asymmetric, due to the traditional nodal collocation
technique. This makes the storage of the global
coefficient matrix and solution of the final equation
system less efficient, compared with FEM. They suffer
also from another drawback: the need for special
treatment of sharp corners on the boundary surfaces
(curves) or at the fracture intersections, because of the
change of directions of the outward unit normal vectors
at the corners. This causes an inadequate number of
equations in the final system compared with that of the
degrees of freedom. Artificial corner smoothing, addi-
tional nodes or special corner elements are usually the
techniques applied to solve this particular difficulty. In a
special formulation of BEM, called the Galerkin BEM,
or Galerkin Boundary Element Method (GBEM), these
two shortcomings are removed automatically as the
consequences of the Galerkin formulation.

3.3.3.1. Galerkin Boundary Element Method. The
GBEM produces a symmetric coefficient matrix by
multiplying the traditional boundary integral by a
weighted trail function and integrates it with respect to
the source point on the boundary for a second time, in a
Galerkin sense of weighted residual formulation. For an
elasticity problem, the Somigliana identity becomes a
double integral equationZ

G
wicijuj dGþ

Z
G

Z
G

wit


ijuj dG dG

¼
Z
G

Z
G

wiu


ijtj dG dGþ

Z
G

wi

qu

ij

qn
fj dG; ð19Þ
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where wi is the weight function. Discretizing the
boundary into elements and choosing the weight
functions the same as the trial (shape) functions fNug
for displacement and fNtg for tractions, respectively, in
vector form and using the Galerkin approximation
technique, the boundary integral equation in Eq. (19)
becomes a matrix equation of the form

½Cuu� �½Cut� ½Cuc�

�½Ctu� ½Ctt� �½Ctc�

½Ccu� �½Cct� ½Ccc�

2
64

3
75

ftg

fug

fDug

8><
>:

9>=
>; ¼

ff ug

�ff tg

ff cg

8><
>:

9>=
>;;

ð20Þ

where the vectors ftg; fugand fDug are the unknown
traction and displacement vectors at the boundary and
displacement discontinuity vector along the fractures
inside the domain, respectively. The right-hand vectors
ff ug; ff tgand ff cg are obtained from known boundary
displacement and traction conditions on the boundary
and loading condition along the fractures, respectively.
The coefficient sub-matrices ½Cmn� (m; n ¼ u; t; and c) are
contributions from double integrals over elements with
specified displacements (Gu), traction (Gt), or along the
fracture paths (Gc), respectively, written as (Carini et al.,
1999) [117]

½Cuu� ¼Z
Gu

Z
Gu

fNtðQÞgT½GuuðP;QÞ�fNtðQÞg dGðQÞ dGðPÞ;

ð21aÞ

½Cui� ¼Z
Gi

Z
Gu

fNtðQÞgT½GutðP;QÞ�fNtðQÞg dGðQÞ dGðPÞ; ði ¼ t; cÞ

ð21bÞ

½Cij � ¼Z
Gi

Z
Gj

fNuðQÞgT½GttðP;QÞ�fNuðQÞg dGðQÞ dGðPÞ ði; j ¼ t; cÞ;

ð21cÞ

ff ug ¼
Z
Gu

fNtgf %fg
T dGu;

ff tg ¼
Z
Gt

fNugf %ftg
T dGt;

ff cg ¼
Z
Gc

fNugf %fcg
T dGc; ð21dÞ

where elements in the matrices ½Gmn� (m; n ¼ u; t; and c)
are kernel functions derived from fundamental solutions
of the problems. Due to the extra integration, the
singularity of these kernels increases, and the kernels
½Cut� and ½Ctu� are called strongly singular kernels whose
integration must be evaluated in a Cauchy principal value
sense and kernel ½Cpp� is called hypersingular kernels
which must be evaluated in the Hadamard finite parts.

The GBEM is an attractive approach due to the
symmetry of its final system equation, which paves the
way for the variational formulation of BEM for solving
non-linear problems. It is also flexible in choosing
different formulations, and the traditional BEM can be
seen as a special case. A recent review on GBEM is given
by Bonnet et al. (1998) [171] in which the theoretical
foundation and applications in different mechanics
fields are summarized. However, integration of these
strong and hypersingular kernels are more difficult than
the common singular kernels in the traditional BEM.
Analytical integration techniques were also proposed for
elements with low order shape functions (see Salvadori,
2001) [172], and singularity subtraction techniques were
also proposed to ease the task of integrations (Michael
and Barbone, 1998) [173]. Applications of GBEM into
rock mechanics problems has commenced (Wang et al.,
2001) [174].

3.3.3.2. Boundary Contour Method. The Boundary
Contour Method (BCM) involves rearranging the
standard BEM integral Eq. (8) so that the difference of
the two integrals appearing on the right-hand side of
Eq. (8) can be represented by a vector function Fi ¼
u


ij tj � t
ijuj which is divergence free, i.e. r  F ¼ 0; except
at the point of singularity (Nagarajan et al., 1994, 1996).
This property of Fi ensures the existence of a vector
function Vi so that F ¼ r � V and the BEM equation
can be rewritten as

cijuj ¼
Z
G
ðu


ijtj � t
ijujÞ dG ¼
Z
G

Fi dG ¼
I
qG

Vi dl; ð22Þ

where qG is the boundary of the boundary G of the
domain O of interest. Therefore, if the vector potential
function Vi can be obtained, the dimension of the
computational model can be reduced further by one, i.e.
it is only necessary to evaluate values of Vi at nodes for
2-D BEM without integration, and integrals along the
closed contours of psuedo-2-D elements for 3-D BEM,
thus explaining the name BCM.
Since the vector function Fi contains the unknown

fields of displacements and tractions, special shape
functions must be chosen for them to determine the
potential function Vi: For 2-D linear elasticity problems,
a five node quadratic element with two traction nodes
and three displacement nodes with equal intervals in
between (Fig. 14a) is used to completely define the shape
functions. Three different kinds of 3-D elements were
proposed for 3-D elasticity problems, and the simplest
one is a four-node triangle element with three displace-
ment nodes and one traction node at the centre
(Fig. 14b). The values of vector function Vi will then
be determined based on the shape functions (in closed-
form for 2-D problems and using numerical integrations
for 3-D problems), which are then used to determine
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nodal values of boundary displacements and tractions.
Details for the numerical implementation of BCM can
be seen in Nagarajan et al. (1994, 1996), Phan et al.
(1997), Mukherjee et al. (1997) and Zhou et al. (1999)
[175–179]. The method has also been combined with
Galerkin approximation, to become the so-called
Galerkin Boundary Contour Method (GBCM) (Zhou
et al., 1998; Novati and Springhetti, 1999, [180,181]),
and generated a symmetric final coefficient matrix when
all elements are straight segments for 2-D problems.
Similar developments, combined with meshless ap-
proaches, are also reported in Chati et al. (2001) [182].
The BCM approach is attractive mainly because of its

further reduction of computational model dimensions
and simplification of the integration. The savings in pre-
processing of the simulations are clear. Treatment of
fractures and material non-homogeneity has not been
studied in BCM; these may limit its applications to rock
mechanics problems considering the present state-of-
the-art.

3.3.3.3. Boundary Node Method. Another recent devel-
opment associated with the BEM is the Boundary Node
Method (BNM) (Mukherjee and Mukherjee, 1997;
Chati et al., 1999; Chati and Mukherjee, 2000; Kothnur
et al., 1999) [183–186]. The method is a combination of
traditional BEM with a meshless technique using the
moving least squares for establishing trial functions
without an explicit mesh of boundary elements. It
further simplifies the mesh generation tasks of the BEM
at the cost of increasing computational operations for
establishing the trial functions. Its applications concen-
trate on shape sensitivity analysis at present and
solution of potential problems (Gu and Liu, 2002;
Gowrishankar and Mukherjee, 2002) [187,188], but can
be extended to general geomechanics problems, espe-
cially groundwater flow and stress/deformation analysis.

3.3.3.4. Dual Reciprocity Boundary Element Method

(DRBEM). When source terms are presented in BEM
formulations, such as gravitational body forces, heat
sources, sinks/source terms in flow problems, thermal
stress fields, etc., domain integrals often appear in the

formulation. This problem will also occur when
considering initial stress/strain effects, and non-linear
material behaviour such as plastic deformation. The
traditional technique to deal with such domain integrals
is the division of the domain into a number of internal
cells, which will seriously compromise the advantages of
BEM’s ‘‘boundary only’’ discretization. Different tech-
niques have been developed over the years to overcome
this difficulty (see for example Brebbia et al., 1984;
Partridge et al., 1992) [189,190], as listed below.

* Analytical integration of domain integrals, which is
applicable to limited cases of simple geometry and
boundary conditions.

* Fourier expansion of integrand functions, which is
limited by domain geometry and boundary condi-
tions, with additional computational cost of calculat-
ing the expansion coefficients.

* Galerkin vector technique based on Green’s identity
and higher order fundamental solutions, which can
be readily applied to transform the domain integrals
into boundary ones when the source terms are simple,
such as constant body forces or heat sources. When
the source terms are complex functions of space and
time, the higher fundamental solutions may be
difficult to obtain and the technique cannot be
effectively used. An extension of this technique using
multiple higher order fundamental solutions, instead
of just one as in the Galerkin vector method, is called
the Multiple Reciprocity Method in the literature.

* The Dual Reciprocity Method (DRM), which is a
more generalized method closely related to the
Galerkin vector and multiple reciprocity techniques
(MDR) for constructing particular solutions suitable
for non-linear and time-dependent problems. The
source terms can be more generalized functions of
space and time. Global interpolation functions, or
Radial basis functions, are often used in converting
the domain integrals into boundary ones (Cheng
et al., 1994) [191].

The numerical treatment of the domain integrals,
when the initial domain fields must be considered, is a
significant subject in BEM, since it relates to some
important rock mechanics problems as mentioned
above. The DRM approach appears to be the most
widely applied technique so far since it has a unified
approach to treat different source terms and initial
fields. A revisit of the technique for thermo-elasticity
and elastic body force problems is presented in Cheng
et al. (2001) [192] and an application for groundwater
flow problem is presented in El Harrouni et al. (1997)
[193]. Treatment of initial stress and strain fields related
to plastic deformation is presented in Ochiai and
Kobayashi (1999, 2001) and Gao (2002) for both 2-D
and 3-D elasto-plastic problems [194–196]. Despite the

Traction nodeDisplacement node
(a) (b)

Fig. 14. (a) Boundary elements used for 2-D BCM and (b) 3-D BCM

(after Nagarajan et al., 1996) [176].
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efforts, the numerical efficiency of the DRM is still a
subject of debate and has significant influence on the
suitability and efficiency of BEM for problems of
material non-homogeneity and non-linearity.
The BEM methods as a whole is less efficient in

treatment of material non-homogeneity and non-linear-
ity compared with FEM and FVM, despite the fact that
a limited number of multiple sub-regions of different
material properties can be efficiently handled in BEM.
However, it is much more efficient in simulating
fracturing process (initiation, growth and coalescence)
in elastic solids. It is therefore not surprising that BEM
is most often applied for stress analysis problems, or
fracturing process simulation, of CHILE continua, and
is used for far-field representations in hybrid models.

3.4. Basic features of the Discrete Element Method

(DEM)

Rock mechanics is one of the disciplines from which
the DEM originated (Burman, 1971; Cundall, 1971,
1974; Chappel, 1972, 1974; Byrne, 1974) [197–202]. The
other engineering branches that stimulated the develop-
ment of the DEM are structural analysis and multi-body
systems. The theoretical foundation of the method is the
formulation and solution of equations of motion of rigid
and/or deformable bodies using implicit (based on FEM
discretization) and explicit (using FVM discretization)
formulations. The method has a broad variety of
applications in rock mechanics, soil mechanics, struc-
tural analysis, granular materials, material processing,
fluid mechanics, multi-body systems, robot simulation,
computer animation, etc. It is one of most rapidly
developing areas of computational mechanics. The key
concept of DEM is that the domain of interest is treated
as an assemblage of rigid or deformable blocks/
particles/bodies and the contacts among them need to
be identified and continuously updated during the entire
deformation/motion process, and represented by proper
constitutive models. This fundamental conception leads
naturally to three central issues:

(i) identification of block or particle system topology
based on the fracture system geometry, or particle
shape assumptions within the domain of interest;

(ii) formulation and solution of equations of motion of
the block (particle) system;

(iii) detection and updating of varying contacts between
the blocks (particles) as the consequences of
motions and deformations of the discrete system.

The basic difference between DEM and continuum-
based methods is that the contact patterns between
components of the system are continuously changing
with the deformation process for the former, but are
fixed for the latter.

To formulate a DEM method to simulate the
mechanical processes in rock mechanics applications,
the following problems must be solved:

(1) space sub-division and identification of block
system topology;

(2) representation of block deformation (rigid or
deformable, using FVM or FEM);

(3) developing an algorithm for contact detection
(penalty function, Lagrange multiplier, or augmen-
ted Lagrange multiplier);

(4) obtaining constitutive equations for the rock blocks
and fractures;

(5) integration of the equations of motion of the
blocks/particles (dynamic relaxation; time-march-
ing FVM).

The block system identification depends on the re-
construction of the fracture system in situ according to
usually very limited data from borehole logging or
surface/underground mapping of fracture systems at
generally very limited exposure areas. The usual
procedure is to establish probabilistic density functions
(PDFs) of the fracture parameters (orientation, fre-
quency, size/trace length, etc.) and then use the random
number field technique to re-generate a number of
realizations of synthetic fracture systems that share the
same statistical geometric properties of the sampled
fracture population from the logging and mapping. The
reliability of such stochastic models of fracture system is
therefore dependent on the quality of the logging and
mapping operations that, in turn, depends on the
quantity of data (therefore areas for fracture mapping
and numbers/length of boreholes) available. It is evident
that reliability of such fracture system models are largely
unknown or the level of uncertainty is very high, due
simply to the fact that the real fracture systems are
hidden inside rock masses and will never be fully
accessed by measurements. Regarding this difficulty, a
large number of such realizations need to be generated
so that they, collectively, provide a much improved
representation of the stochastic nature of the fracture
system. This is called Monte Carlo simulation, and will
naturally cause significant increase of DEM computa-
tional cost.
When the fracture systems are available, either re-

generated or assumed, the next step is to construct the
block systems defined by the fracture system. The task is
trivial if the fractures are infinitely long (or large) and
follow regular patterns of distributions (such as constant
spacing and fixed orientations). However, for random
fracture systems of finite fracture size, special techniques
of combinatorial topology is needed to construct the
block systems according to the fracture system geometry
(see Lin et al., 1987; Lin and Fairhurst, 1988; Lin, 1992;
Jing and Stephansson, 1994a, b; Jing, 2000; Lu, 2002)
[203–209].
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For rigid block analysis, an explicit time-marching
scheme is used to solve the dynamic equations of motion
of the rigid block system, based on a dynamic or static
relaxation scheme, or an FDM approach in the time
domain. For deformable block systems, the solution
strategies are different for the treatment of block
deformability. One is explicit solution with finite volume
discretization of the block interiors, without the need for
solving large-scale matrix equations. The other is an
implicit solution with finite element discretization of the
block interiors, which leads to a matrix equation
representing the deformability of the block systems,
similar to that of the FEM.
The most representative explicit DEM methods is the

Distinct Element Method created by Cundall (1980,
1988) [210,211] with the computer codes UDEC and
3DEC for 2- and 3-D problems of rock mechanics
(ITSACA, 1992, 1994) [212,213]. Other developments
were made in parallel with the distinct element approach
and used the name ‘discrete element methods’, such as in
Taylor (1983), Williams et al. (1985), Williams and
Mustoe (1987), Williams (1988), Willaims and Pentland
(1992), Mustoe (1992), Hocking (1977, 1992), Williams
and O’Connor (1995) [214–222]. Another approach, so-
called ‘Block-Spring Model’ (BSM) is essentially a
version of DEM with rigid blocks linked by springs
and applied for structural (Kawai, 1977a, b; Kawai et al.,
1978) [223–225] and rock engineering problems (Wang
and Garga, 1993; Wang et al., 1997; Li and Vance, 1999;
Hu, 1997; and Li and Wang, 1998) [226–230]. However,
the approach and codes by the Distinct Element
Methods appears to be the main direction of application
in rock mechanics problems, even the term ‘discrete
element methods’ is more universally adopted.
The implicit DEM was represented mainly by the

Discontinuous Deformation Analysis (DDA) approach,
originated by Shi (1988) [231] and further developed by
Shyu (1993) and Chang (1994) [232,233] for stress/
deformation analysis, and Kim et al. (2000) and Jing
et al. (2001) for coupled stress-flow problems [234,235].
The method uses standard FEM meshes over blocks and
the contacts are treated using the penalty method.
Similar approaches were also developed by Ghaboussi
(1988), Barbosa and Ghaboussi (1989, 1990) [236–238].
The technique uses four-noded blocks as the standard
element and is called the Discrete Finite Element
Method. Another similar development, called the
combined finite-DEM (Munjiza et al., 1995, 1999;
Munjiza and Andrews, 2000) [239–241], considers not
only the block deformation but also fracturing and
fragmentation of the rocks. However, in terms of
development and application, the DDA approach
occupies the front position. DDA has two advantages
over the explicit DEM: permission for relatively larger
time steps and closed-form integrations for the stiffness
matrices of elements. An existing FEM code can also be

readily transformed into a DDA code while keeping all
the advantageous features of the FEM.

3.4.1. Explicit DEM—Distinct Element Method: block

systems

The Distinct Element Method was originated in the
early 70s by a landmark paper on the progressive
movements of rock masses as 2-D rigid block assem-
blages (Cundall, 1971) [198]. The work was extended
later into a code, RBM, written in machine language for
a NOVA mini-computer (Cundall, 1974) [199]. The
method and the RBM code later progressed, firstly by
approximating the deformation of blocks of complex
2-D geometry by a constant strain tensor, with the code
translated into the FORTRAN language and called
SDEM for block systems (Cundall and Marti, 1979)
[242]. A separate version of the SDEM code, called
CRACK, was created to consider fracturing, cracking
and splitting of intact blocks under loading, based on a
tensile failure criterion. The representation of ‘‘simply
deformable blocks’’ causes incompatibility between the
complex block geometry and constant strain tensor, and
the difficulty was overcome later by using full internal
discretization of blocks by finite volume meshes of
triangle elements, leading to early versions of the code
UDEC (Cundall, 1980; Cundall and Hart, 1985)
[210,243], which has a BEM function representing the
far-field (Lemos, 1987) [244]. Extension to 3-D problems
was developed by Cundall (1988) [211] and Hart et al.
(1988) [245], leading to the code 3DEC.
The technique of the explicit DEM is presented

comprehensively in Cundall and Hart (1992), Hart
(1993) and Curran and Ofoegbu (1993) [246–248]. The
principle of simulating large-scale deformations of
elasto-plastic materials using finite difference/volume
schemes developed in Wilkins (1963) [16] and the
dynamic relaxation principles (Southwell, 1935, 1940,
1956) [249–251] are the mathematical basis. The contact
detection and updating is performed based on the
‘‘contact overlap’’ concept. The method and codes were
then developed further by coupling heat conduction and
viscous fluid flow through fractures (treated as interfaces
between block boundaries).

3.4.1.1. Block discretization. Blocks are represented as
convex polyhedra in 3-D with each face a planar convex
polygon having a finite number of rectilinear edges.
Their 2-D counterparts are general polygons with a
finite number of straight edges (Fig. 15). The 2-D
polygons can be either convex or concave, but the 3-D
polyhedral must be convex. These blocks are formed by
fractures which are represented in the problem domain
either individually (for larger-scale fractures) or by a
fracture sets generator (for smaller-scale fracture sets)
using random distributions—based on site or modelling
requirement data—of dip angles, dip directions, spacing
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and apertures of the sets. The vertices (corners), edges
and faces of individual blocks and their connection
relations are identified during the block generation
process.
The deformable blocks are further divided into a finite

number of constant strain triangles in 2-D or tetrahedra
in 3-D. These triangles or tetrahedra form a mesh of the
FVM (zones). Rectangular element meshes can also be
used for 2-D problems when the problem geometry is
favourable.

3.4.1.2. Representation of deformation. An explicit,
large strain Lagrangian formulation for the constant
strain elements is used to represent the element
deformations. The displacement field of each ele-
ment varies linearly and the faces or edges of the
elements remain as planar surface or straight line
segments. Higher order elements may also be used, but
curved boundary surfaces (or edges) may be obtained,
which may in turn complicate the contact-detection
algorithm.
Based on Gauss’ theorem to convert volume (area)

integrals into surface (line) integrals, the increments of
element strain can be written

DeijE
Dt

2

XN

k¼1

½ðvm
i Þnj7ðvm

j Þni�DSk; ð23Þ

where DSk is the area (or length) of the kth boundary
face (or edge) with unit normal nk

i ; and vm
i is the mean

value of velocity over DSk: The summation extends over
the N faces (or edges) of an element (zone). The sign
‘‘+’’ is used if i ¼ j; otherwise, the sign ‘‘�’’ is used. Dt

is the time step. The stress increments are obtained by
invoking the constitutive equations for the block
materials.

3.4.1.3. Representation of contacts. Kinematically,
block contacts are determined by the smallest distance
between two blocks, pre-set in the codes or models.
When this distance is within a prescribed threshold, a
potential contact between these two blocks is numeri-
cally established. The contact-detection algorithm in the
Distinct Element Method programs determines the
contact type (different touching patterns between
vertices, edges and faces), the maximum gap (if two
blocks do not touch but are separated by a gap close to
the pre-set tolerance), and the unit normal vector
defining the tangential plane on which sliding can take
place. Table 1 lists all types of contacts.
Mechanically, the interaction between two contacting

blocks is characterized by a stiffness (spring) in the
normal direction and a stiffness and friction angle
(spring-slip surface series) in the tangential directions
with respect to the fracture surface (contact plane, see
Fig. 16a). Interaction forces developed at contact points
are determined as linear or non-linear functions of
the deformations of springs and slip surfaces (i.e., the
relative movements of blocks at contact points) and
resolved into normal and tangential components,
depending the constitutive models of the contacts (point
contacts or edge/face contacts).
The concept of contact ‘overlap’, though physically

inadmissible in block kinematics—because blocks
should not interpenetrate each other—may be accepted
as a mathematical means to represent the deformability
of the contacts. However, it does present a numerical
shortcoming that is difficult to overcome when the
normal forces or stresses at contact points are large. In
this case, even with high normal stiffness, the ‘overlap’
may be too excessive to be acceptable and the
calculation has to be stopped to implement some
remedial measure (for example, to increase the normal

 triangle element

tetrahedral element
a tetrahedral element

(a) (b) (c)

Fig. 15. Discretization of blocks by: (a) constant strain triangles; (b) constant strain tetrahedral; and (c) a typical tetrahedral element.

Table 1

Types of contacts for polygons and polyhedral

Block shapes Contact types

Arbitrary polygons (convex or concave) (2-D block) vertex-to-vertex, vertex-to-edge, edge-to-edge

Convex polyhedral (3-D block) vertex-to-vertex, vertex-to-edge, vertex-to-face, edge-to-edge, edge-to-face, face-to-face
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stiffness) and start again. It also presents a problem for
fluid flow calculation in which the apertures of fractures
may become negative if ‘overlap’ occurs at contact
points. The mathematical representation of the contact
‘overlap’ is thus not fully compatible with physical
reality.

3.4.1.4. Numerical integration of the equations of

motion. An explicit central difference scheme is applied
in the Distinct Element Method to integrate the
equations of motion of the block system, as opposed
to the implicit approach utilized in other continuum-
based numerical methods. The unknown variables
(contact forces or stresses) on the block boundary or
in the internal elements are determined locally at each
time step from the known variables on the boundaries,
in the elements and their immediate neighbours. There is
no need to set up and solve a matrix form of the
equations of motion. The non-linearity in the material
behaviour (of the fractures or intact blocks) can be
handled in a straightforward manner.
The equations of motion for a rigid block, in terms of

translational and rotational velocities, are written

v
ðtþDt=2Þ
i ¼ v

ðt�Dt=2Þ
i þ

P
fi

m
þ bi

� �
Dt;

oðtþDt=2Þ
i ¼ oðt�Dt=2Þ

i þ
P

Mi

I
Dt; ð24Þ

where m is the block mass, I is the moment of inertia, bi

are the volume force components of the block and Mi

are the components of the resultant moment. The
displacement at the next time step is then given by

u
ðtþDtÞ
i ¼ u

ðtÞ
i þ v

ðtþDt=2Þ
i Dt;

yðtþDtÞ
i ¼ yðtÞi þ oðtþDt=2Þ

i Dt; ð25Þ

where yi is the angular displacement of the block.

For deformable blocks, the equations of motion are
written for grid points—the vertices of internal differ-
ence elements. The central difference scheme is similar to
the first equation in Eq. (24) with only one modification
to the resultant out-of-balance force, fi

fi ¼ f ci þ
XN

k¼1

sijðnk
j DSkÞ; ð26Þ

where f ci is the resultant contact force if the grid point is
on the boundary of the block. The symbol N denotes the
number of difference elements connected by this grid
point.
At each time step, the kinematic quantities (velocities,

displacements and accelerations) are first calculated and
the contact forces or stresses, as well as the internal
stresses of the elements, are then obtained via constitu-
tive relations for contacts.
In the general calculation procedure, two basic tasks

are performed in turn. The kinematic quantities are
updated first, followed by invoking the constitutive
relations to provide the corresponding forces and
stresses, see Fig. 17.

3.4.1.5. Applications and remarks. Due mainly to its
conceptual attractions in the explicit representation of
fractures, the DEM, especially the Distinct Element
Method, has been enjoying wide application in rock
engineering. A large quantity of associated publications
has been published, especially in conference proceed-
ings: it is not practical to list these even at a moderate
level for this review. Therefore, a few representative
references, mainly in international journals, are given
here to show the wide range of the applicability of the
methods:

* Tunnelling, underground excavations and mining:
Barton (1991), Jing and Stephansson (1991), Nor-
dlund et al. (1995), Chryssanthakis et al. (1997),
Hanssen et al. (1993), Kochen and Andrade
(1997), McNearny and Abel (1993), Souley et al.
(1997a, b), Sofianos and Kapenis (1998) and Lorig
et al. (1995) [252–262];

* Rock dynamics: Zhao et al. (1999) and Cai and Zhao
(2000) [263,264];

* Nuclear waste repository design and performance
assessment: Chan et al. (1995), Hansson et al. (1995),
Jing et al. (1995, 1997) [265–268];

* Reservoir simulations: Gutierrez and Makurat (1997)
[269];

* Fluid injection: Harper and Last (1989, 1990a, b)
[270–272];

* Rock slopes, caving and gravity flow of particle
systems: Zhu et al. (1999) [273];

* Laboratory test simulations and constitutive model
development for hard rocks: Jing et al. (1993, 1994),
Lanaro et al. (1997) [274–276];

K

K

 n

 t

(a)

l l

(b)

 ∆Ut∆Un

Old position

New position

F

F

t

n

llll 1 2 3 4

(c) (d)

C 1

C 2

C 3  C4

Φ

Fig. 16. Mechanical representation of contacts in the 2-D DEM.
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* Stress-flow coupling: Makurat et al. (1995) and Liao
and Hencher (1997) [277,278];

* Hard rock reinforcement: Lorig (1985) [279];
* Intraplate earthquake: Jing (1990) [280];
* Well and borehole stability: Rawlings et al. (1993)
and Santarelli et al. (1992) [281,282];

* Acoustic emission in rock: Hazzard and Young
(2000) [283];

* Derivation of equivalent hydro-mechanical proper-
ties of fractured rocks: Zhnag et al. (1996), Mas-Ivars
et al. (2001), Min et al. (2001) [284–286].

A recent book by Sharma et al. (2001) [287] includes
reference to a collection of DEM application papers for
various aspects of rock engineering. The applications

concentrate on hard rock problems and have increasing
focus on coupled hydro-mechanical behaviour—because
of the dominating effects of the rock fractures on these
aspects, and so where the explicit representation of
fractures is necessary. For the softer and weaker rocks,
equivalent continuum models are more applicable
because there is less difference between the deform-
ability of the fractures and the rock matrix.
Despite the advantages of DEM, lack of knowledge of

the geometry of the rock fractures limits its more general
applications. In general, the geometry of fracture
systems in rock masses cannot be known and can only
be roughly estimated. The adequacy of the DEM results
in capturing the rock reality are therefore highly
dependent on the interpretation of the in situ fracture
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Fig. 17. Calculation cycles in the Distinct Element Method (after Hart, 1993) [247].
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system geometry—which cannot be even moderately
validated in practice. Of course, the same problem
applies also to the continuum models, such as the FEM
or FDM, but the requirement for explicit fracture
geometry representation in the DEM highlights the
limitation and makes it more acute. Monte Carlo
fracture simulation may help to reduce the level of
uncertainty, albeit with increased computation. A prime
subject for research, therefore, is increased quality of
rock fracture system characterization with more ad-
vanced and affordable means, possibly using geophysi-
cal exploration techniques.

3.4.2. Implicit DEM—Discontinuous Deformation

Analysis method: block systems

DDA originated from a back analysis algorithm
for determining a best fit to a deformed configuration
of a block system from measured displacements and
deformations (Shi and Goodman, 1985) [288]. It
was later further developed to perform complete
deformation analysis of a block system (Shi, 1988)
[231]. The early formulation used a simple representa-
tion of block motion and deformation, with six basic
variables (three rigid body motion and three constant
strain components) and is not suitable for irregularly
shaped blocks. The major improvements come from full
internal discretization of blocks by triangular or four-
noded FEM elements (Shyu, 1993; Chang, 1994)
[232,233], as also demonstrated in Jing (1998) [289].
These improvements make the DDA method more
suitable for arbitrarily shaped deformable blocks.
Improvements of the method have been made for
frictional contacts (Jing, 1993) [290], user-friendly code
structure and environment (Chen et al., 1996; Chen,
1998) [291,292], rigid block systems (Koo and Chern,
1998) [293], fractured rock masses (Lin et al., 1996) [294]
and coupled flow-stress analysis (Kim et al., 2000;
Jing et al., 2001) [234,235] with fluid conducted only
in fractures. Numerous other extensions and im-
provements have been implemented over the years
in the late 90s’, e.g. recently in Doolin and Sitar
(2001) [295], with the bulk of the publications ap-
pearing in a series of ICADD conferences (Li et al.,
1995; Salami and Banks, 1996; Ohnishi, 1997; Amadei,
1999) [81–84].

3.4.2.1. Basic concepts of DDA. By the second law of
thermodynamics, a mechanical system under loading
(external and/or internal) must move or deform in a
direction which produces the minimum total energy of
the whole system. For a block system, the total energy
consists of the potential energy due to different
mechanisms like external loads, block deformation,
system constraints, kinetic and strain energy of the
blocks and the dissipated irreversible energy. The
minimization of the system energy will produce an

equation of motion for the block system, the same as
that used in the FEM. For a system of N blocks, each
having mi nodes (i ¼ 1; 2;y;N), the total number of
nodes is m1 þ m2 þ    þ mN ¼ M ; and each node has
two orthogonal displacement variables, u and v:
Assuming, without losing generality, that nodes are
numbered sequentially blockwise, the minimization will
yield (2M� 2M) simultaneous equations, written sym-
bolically as

k11 k12 k13 y k1N

k21 k22 k23 y k2N

k31 k32 k33 y k3N

^ ^ ^ ^ ^

kN1 kN2 kN3 y kNN

2
6666664

3
7777775

d1

d2

d3

^

dN

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

f1

f2

f3

^

fN

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

or ½K�fDg ¼ fFg; ð27Þ

where diagonal sub-matrices kij is a ð2mi � 2miÞ matrix
representing the sum of contributing sub-matrices for
the ith block of mi nodes. Vector di is a ð2mi � 1Þ vector
of displacement variables of the ith block and vector f i is
a ð2mi � 1Þ vector of resultant general forces acting on
the ith block. The off-diagonal sub-matrices kij ðiajÞ
represent the sum of contributing sub-matrices of
contacts between blocks i and j and other inter-block
actions like bolting. The matrix ½K� can also be called the
global ‘‘stiffness matrix’’.
For the three-block system illustrated in Fig. 18, the

matrix structure of the equation system by DDA is
shown in Fig. 19.
Compared with the explicit approach of the DEM,

the DDA method has four basic advantages over the
explicit DEM:

(i) The equilibrium condition is automatically satisfied
for quasi-static problems without using excessive
iteration cycles.

(ii) The length of the time step can be larger, and
without inducing numerical instability.

(iii) Closed-form integrations for the element and block
stiffness matrices can be performed without the
need for Gaussian quadrature techniques.

(iv) It is easy to convert an existing FEM code into a
DDA code and include many mature FEM
techniques without inheriting the limitations of
the ordinary FEM, such as small deformation,
continuous material geometry, and reduced effi-
ciency for dynamic analysis. However, matrix
equations are produced and need to be solved,
using the same FEM technique.

L. Jing / International Journal of Rock Mechanics & Mining Sciences 40 (2003) 283–353312



(1)

(2)

(3)
1

2

3 4

5

6 8
7

(1)

(2)

(3)

(4)

(5)

(7)

(8)

(9)

(6)

(10)

(11) (12)

(13)
(14)

(1) - Block number 1  - Element number    - Node number(1)

1
2
3
4
5
6
7
8

(1), (2), (3)

(2), (4), (3)

(5), (6), (9)

(6), (8), (9)

(6), (7), (8)

(10), (11), (14)

(11), (12), (14)

(12), (13), (14)

Element connectivity

2, 3
2, 6
6, 2
5, 8

Contact connectivity

Fig. 18. Blocks and FEM element discretizations by DDA—an example of three blocks.
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The DDA method has emerged as an attractive model
for geo-mechanical problems because its advantages
cannot be replaced by continuum-based methods or
explicit DEM formulations. It was also extended to
handle 3-D block system analysis (Shi, 2001) [296] and
use of higher order elements (Hsiung, 2001) [297], plus
more comprehensive representation of the fractures
(Zhang and Lu, 1998) [298]. The applications focus
mainly on tunnelling, caverns, fracturing and fragmen-
tation processes of geological and structural materials
and earthquake effects (see, for example, Yeung and
Leong, 1997; Hatzor and Benary, 1998; Ohnishi and
Chen, 1999; Pearce et al., 2000; Hsiung and Shi, 2001)
[299–303].

3.4.3. Key Block theory

The Key Block approach, initiated independently by
Warburton (1983, 1993) [304,305] and Goodman and
Shi (1985) [306], with a more rigorous topological
treatment of block system geometry in the latter (see
also Shi and Goodman, 1989, 1990 [307,308]), is a
special method for stability analysis of rock structures
dominated by the geometrical characteristics of the rock
blocks and hence fracture systems. It does not perform
any stress and deformation analysis, but identifies the
‘‘key blocks’’ (or ‘‘keystones’’ in the terms of Warburton
(1983) [304]), which are formed by intersecting fractures
and excavated free surfaces in rocks and have the
potential for sliding and rotation towards certain
directions without geometrical constraints.
This technique is a powerful and efficient tool for

stability analysis and support design for slopes and
underground excavations in fractured rocks—with
large-scale movements of isolated blocks (such as
wedges in slopes) as the major mode of failure and
instability, rather than deformation and stresses of the
intact rock matrix. It is therefore suitable for ‘hard rock
engineering’, but is less suitable for soft rocks because
the stress/deformation/failure of the rock matrix is
equally important for the latter.
Key Block Theory, or simply Block Theory in the

Warburton approach, and the associated code develop-
ment enjoys wide applications in rock engineering, with
further development considering Monte Carlo simula-
tions and probabilistic predictions (Stone and Young,
1994; Mauldon, 1993; Hatzor, 1993; Jakubowski and
Tajdus, 1995; Kusznaul and Goodman, 1995) [309–313],
water effects (Karaca and Goodman, 1993) [314], linear
programming (Mauldon et al., 1997) [315], finite block
size effect (Windsor, 1995) [316] and secondary blocks
(Wibowo, 1997) [317]. Predictably, the major applica-
tions are in the field of tunnel and slope stability
analysis, such as reported by Chern and Wang (1993),
Scott and Kottenstette (1993), Nishigaki and Miki
(1995), Yow (1990), Boyle and Vogt (1995), Lee and
Song (1998) and Lee and Park (2000) [318–324].

3.4.4. DEM formulations for particle systems

Simulating the mechanical behaviour of granular
materials is another important application area of the
DEM, for both the Distinct Element and DDA
approaches. The principle of the DEM technique for
granular materials is basically the same as for the
blocks, with the additional simplification that particles
are rigid and their shape can be regular (circular,
elliptical in 2-D and ellipsoidal in 3-D) or irregular
(generally polygonal in 2-D and polyhedral in 3-D). The
contacts between the particles are represented by
springs, and friction may also be considered.
The seminal work of the DEM for granular materials

for geomechanics and civil engineering application is the
series of papers by Cundall and Strack (1979a–c, 1982)
[325–328], which was based on an earlier work by
Cundall et al. (1978) and Strack and Cundall (1978)
[329,330]. The development and applications are mostly
reported in a series of proceedings of symposia and
conferences, such as in Jenkins and Satake (1983),
Satake and Jenkins (1988), Biarez and Gourv!es (1989),
Thornton (1993), Siriwardane and Zaman (1994) in the
field of micro-mechanics of granular media in general
[331–335], and in Mustoe et al. (1989) and Williams and
Mustoe (1993) in the field of geomechanics in particular
[336,337]. The simulations of particle systems using the
DDA approach appear mostly in ICADD conference
systems (Li et al., 1995; Salami and Banks, 1996;
Ohnishi, 1997; Amadei, 1999) [81–84].
The most well-known codes in this field are the PFC

codes for both 2-D and 3-D problems (Itasca, 1995)
[338], and the DMC code by Taylor and Preece (1989,
1990) [339,340]. The method has been widely applied to
many different fields such as soil mechanics, the
processing industry, non-metal material sciences and
defence research. The following examples of publica-
tions highlight the wide applications of the DEM for
particle systems in the field of rock engineering:

* Fracturing and fragmentation processes of rock
blasting: Preece (1990, 1994), Preece and Knudsen
(1992), Preece et al. (1993), Preece and Scovira
(1994), Donz!e et al. (1997), Lee et al. (1997), Lin
and Ng (1994) [341–348];

* Ground collapse and movements: Iwashita et al.
(1988), Zhai et al. (1997) [349,350];

* Hydraulic fracturing in rocks: Thallak et al. (1991),
Huang and Kim (1993), Kim and Yao (1994) [351–
353];

* Tunnelling: Kiyama et al. (1991)[354];
* Rock fracture: Blair and Cook (1992) [355].

3.4.5. Dynamic lattice network models

A numerical method closely related to the DEM
model of granular material, often called the dynamic
lattice network model, has also been applied for
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simulating fracture initiation and propagation in rocks.
The main concept of the lattice model is that the
medium consists of a mesh of regular elements, such as
triangle elements, with particles of lumped masses
located at the vertices of the mesh. The mass particles
are then connected by massless springs along the edges
of the mesh. The dynamic motion of the medium is
simulated by the equations of motions of the mass
particles and the deformation of the springs, whose
stiffness and strength are derived from those of the
medium, which may have local variations and be
generated randomly. The masses of the particles
are derived from the density of the material, and can
also be generated randomly, for representing statistical
inhomogeneity of the medium.
This technique is similar to that of the DEM for

particle systems, with the difference that it represents the
continuum behaviour of the medium through a deter-
ministic/stochastic assembly of particles and springs,
rather than as a direct discrete medium.
The applications of the lattice model focus on the

fracturing processes of intact rock materials during
loading and hydraulic fracturing, such as reported in
Paterson (1988), Song and Kim (1994a, 1994b, 1995),
M .uhlhaus et al. (1997), Schlangen and Van Mier (1994),
Li et al. (2000), Napier and Dede (1997) and Place and
Mora (2000) [356–364].

3.5. Discrete Fracture Network method

3.5.1. DFN-the basic concepts

The DFN method is a special discrete model that
considers fluid flow and transport processes in fractured
rock masses through a system of connected fractures.
The technique was created in the early 1980s for both
2-D and 3-D problems (Long et al., 1982, 1985;
Robinson, 1984; Andersson, 1984; Endo, 1984; Endo
et al., 1984; Smith and Schwartz, 1984; Elsworth,
1986a, b; Dershowtz and Einstein, 1987; Andersson
and Dverstop, 1987) [365–375], and has been continu-
ously developed afterwards with many applications in
civil, environmental and reservoir engineering and other
geoscience fields.
The effects of mechanical deformation and heat

transfer in a rock mass on fluid flow and transport are
difficult to model by the DFN approach and are perhaps
crudely approximated without explicit representation of
the fractures. Thus, this method is most useful for the
study of flow and transport in fractured media in which
an equivalent continuum model is difficult to establish,
and for the derivation of equivalent continuum flow and
transport properties of fractured rocks (Yu et al., 1999;
Zimmerman and Bodvasson, 1996) [376,377]. A large
number of publications has reported progresses in
journals and international symposia and conferences.
Systematic presentations and evaluations of the method

have also appeared in books, such as Bear et al. (1993),
Sahimi (1995), the US National Research Council
(1996) and Adler and Thovert (1999) [378–381].
The DFN model is established on the understanding

and representation of the two key factors: fracture
system geometry and transmissivity of individual
fractures. The former is based on stochastic simulations
of fracture systems, using the PDFs of fracture
parameters (density, orientation, size, aperture or
transmissivity) formulated according to field mapping
results, in addition to the assumption about fracture
shape (circular, elliptical or generally polygonal). Due to
the fact that direct mapping can only be conducted at
surface exposures of limited area, boreholes of limited
length/depth and the walls of underground excavations
(tunnels, caverns, shafts, etc.) of more limited exposure
areas, and with both lower and upper cut-off limits for
mapping, the reliability of fracture network information
is dependent on the quality of mapping and representa-
tiveness of the sampling, and hence its adequacy is
difficult to evaluate. Equally difficult is also the
representation of the transmissivity of the fracture
population, due to the fact that in situ and laboratory
tests can only be performed at a limited number of
fracture samples at restricted locations, and the effect of
sample scale is difficult to determine.
Despite the above hurdles, the DFN model enjoys

wide applications for problems of fractured rocks,
perhaps mainly due to the fact that it is a so far,
irreplaceable tool for modelling fluid flow and transport
phenomena at the ‘near-field’ scale—the ‘near-field’
because the dominance of the fracture geometry at
small and moderate scales makes the volume averaging
principle used in continuum approximations sometimes
unacceptable at such scales. Its applicability diminishes
for ‘far-field’ problems at large scales when explicit
representation of large numbers of fractures make the
computational model less efficient, and the continuum
model with equivalent properties become more attrac-
tive, similar to the DEM.
There are many different DFN formulations and

computer codes, but most notable are the approaches
and codes FRACMAN/MAFIC (Dershowitz et al.,
1993) [382] and NAPSAC (Stratford et al., 1990;
Herbert, 1994, 1996; Wilcock, 1996) [383–386] with
many applications for rock engineering projects over the
years. Some special features of DFN are briefly reviewed
below.

3.5.2. Stochastic simulations of fracture networks

The stochastic simulation of fracture systems is the
geometric basis of the DFN approach and plays a
crucial role in the performance and reliability of the
DFN model, in the same way as the DEM. The key
process is to create PDFs of fracture parameters relating
to the densities, orientations and sizes, based on field
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mapping results using borehole logging data and scan-
line or window mapping techniques, and generate the
realizations of the fractures systems according to these
PDFs and assumptions about fracture shape (circular
discs, ellipses or polygons), (Dershowitz, 1984; Billaux
et al., 1989) [387–388].
A critical issue in this technique is the treatment of

bias in estimation of the fracture densities and trace
lengths from conventional straight scanline or rectan-
gular window mappings. A notable recent development
using circular windows (Mauldon, 1998; Mauldon et al.,
2001) [389,390] provides an important step forward in
this regard.

3.5.3. Solution of the flow fields within fractures

Numerical techniques have been developed for the
solution of flow fields for individual fracture elements
using closed-form solutions, the finite element model,
the boundary element model, the pipe model and the
channel lattice model.
Closed-form solutions exist, at present, only for

planar, smooth fractures with parallel surfaces of
regular shape (i.e. circular or rectangular discs) for
steady-state flow (Long, 1983) [391] or for both steady-
state and transient flow (Amdei and Illangaseekare,
1992) [392]. For fractures with general shapes, numerical
solutions must be used. The FEM discretization
technique is perhaps the most well-known techniques
used in the DFN flow models and has been used in the
DFN codes FRACMAN/MAFIC and NAPSAC. The
basic concept is to impose an FEM mesh over
the individual discs representing fractures in space
(Fig. 20a) and solve the flow equations. The aperture
or transmissivity field within the fracture can be either
constant or randomly distributed. Similarly, the BEM
discretization can also be applied with the boundary
elements defined only on the disc boundaries (Fig. 20b),

with the fracture intersections treated as internal
boundaries in the BEM solution. The compatibility
condition is imposed at the intersections of discs. See
Elsworth (1986a, b) [372,373] and Robinson (1986) [393]
for detailed formulations.
The pipe model represents a fracture as a pipe of

equivalent hydraulic conductivity starting at the disc
centre and ending at the intersections with other
fractures (Fig. 20c), based on the fracture transmissivity,
size and shape distributions (Cacas, 1990) [394]. The
channel lattice model represents the whole fracture by a
network of regular pipe networks (Fig. 3.13d). The pipe
model leads to a simpler representation of the fracture
system geometry, but may have difficulties to properly
represent systems of a number of large fractures.
The channel lattice model is more suitable for

simulating the complex flow behaviour inside the
fractures, such as the ‘‘channel flow’’ phenomena (Tsang
and Tsang, 1987) [395], and is computationally less
demanding than the FEM and BEM models since the
solutions of the flow fields through the pipe elements are
analytical.
The fractal concept has also been applied to the DFN

approach in order to consider the scale dependence of
the fracture system geometry and for upscaling the
permeability properties, using usually the full box
dimensions or the Cantor dust model (Barton and
Larsen, 1985; Chil!es, 1988; Barton, 1992) [396–398].
Power law relations have been also found to exist for
trace lengths of fractures and have been applied for
representing fracture system connectivity (Renshaw,
1999) [399].

3.5.4. Issues of importance and difficulty

The influence of the rock matrix on flow in rock
fractures is usually not considered in the DFN models.
However, the related effects also need to be estimated

 (a)  (b)

  (c)

Equivalent pipes Equivalent pipe networks

BE elements
Intersection

FE elements
Intersection

(d)

Fig. 20. Representation of rock fractures for the flow equation solution: (a) FEM; (b) BEM; (c) equivalent pipes; and (d) channel lattice model.
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when the permeability of the rock matrix is large
compared with that of the fractures, or the time scale
of the problem is long enough so that matrix diffusion
cannot be ignored. In such cases, a fracture system
embedded in a highly porous matrix needs to be
properly represented, considering the different time
scales between the fracture flow and matrix diffusion
processes, such as the FEM technique used by Sudicky
and McLaren (1992) [400]. Dershowitz and Miler (1995)
[401] reported a simplified technique for considering
matrix influence on flow in DFN models, using a
probabilistic particle tracking technique.
The stress/deformation processes of the fractures, and

the effects of stress/deformation of rock matrix on the
deformation/flow of fractures, are usually also ignored
in the DFN models, simply due to the complexity of the
numerical techniques and extraordinary computational
efforts needed. Although simple estimates concerning
the effects of in situ stresses on fracture aperture
variations have been used in DFN models, e.g. in the
NAPSAC code (Wilcock, 1996) [386], proper represen-
tation of the coupled stress/flow process in fractures is
needed, especially for near-field problems for perfor-
mance and safety assessment of radioactive waste
repositories.
Simulation of multiphase flow and transport by DFN

models is also an important subject, with significance for
reservoir simulations (for oil/gas recovery and hot-dry-
rock thermal energy extraction projects) and nuclear
waster repositories (heat decay and waster phase
change, and radionuclide transport). The conventional
technique is the dual permeability models which treats
the fracture system and matrix as two superimposed
conducting media for flow, heat transfer and transport,
because the heat transfer process is largely dominated by
matrix heat conduction—but heat convection by flow in
fractures may also become important issues, e.g. for hot-
dry-rock reservoir simulations and performance of the
near-field buffer material for nuclear waste isolation
(Pruess and Wang, 1987; Slough et al., 1999; Hughes
and Blunt, 2001) [402–404]. Proper solutions of the
governing equations for mass and energy balances, with
phase change relations (water evaporation and con-
densation, moisture flow driven by thermal gradients,
etc.) need to be properly considered, with embedded
DFN models in porous media, which is a subject still
needed to be further investigated. The main challenge is
the computational effort for considering the matrix–
fracture interaction, with fractures dominating flow and
matrix dominating heat transfer. Phase changes may
occur in both.
Because of its origin based on fracture mapping at

limited exposure areas, the DFN models are based on,
and at the same time are limited by, their two
cornerstones: the largely unknown true fracture geome-
try; and the hydraulic properties of fractures—with, in

both cases, the attendant difficulties in property
measurement and evaluation. The upper and lower
cut-off limits for trace lengths in mapping, and the
effects of scale, roughness, and stress-dependency of
fracture aperture and transmissivity, play a significant
role in the adequacy and reliability of the DFN models:
it is often difficult to evaluate their significance because
of the lack of any independent checking mechanisms.
An additional drawback is the high computational
demands when large fracture numbers are required for
large-scale problems.
These drawbacks are similar to those of the DEM

models and can only be partially overcome or qualita-
tively addressed with the aid of advanced mapping and
measurement techniques. Therefore, the applications of
DFN models are concentrated more on characterization
of the permeability of fractured rocks and generic
studies of fracture influences, and the design of rock
engineering works for near-field problems, see for
example as follows:

* Hot-dry-rock reservoir simulations: Layton et al.
(1992), Ezzedine and de Marsily (1993), Watanabe
and Takahashi (1995), Kolditz (1995), Willis-
Richards and Wallroth (1995), Willis-Richards
(1995) [405–410];

* Characterization of permeability of fractured rocks:
Dershowitz et al. (1992), Herbert and Layton (1995),
Doe and Wallmann (1995), Barth!el!emy et al. (1996),
Jing and Stephansson (1996), Margolin et al.
(1998), Mazurek et al. (1998), Zhang and Sanderson
(1999) [411–418];

* Water effects on underground excavations and rock
slopes: Rouleau and Gale (1987), Xu and Cojean
(1990), He (1997) [419–421].

3.5.5. Alternative formulations—percolation theory

Percolation theory is a counterpart of the lattice
model for solid deformation and fracturing for fluid
diffusion process. The theory is based on a random
lattice model of conductors (fractures) for deriving fluid
transport conditions (permeability), based on the con-
nectivity through a geometrical sample of the fractures
(Robinson, 1984; Hestir and Long, 1990; Berkowitz and
Balberg, 1993; Sahimi, 1995) [367,422,423,379]. The
theory provides a theoretical platform for understanding
the geometric conditions for fluid conduction in
fractured media in terms of a percolation threshold,
expressed as a critical probability. Application of this
theory in rock mechanics and engineering problems
seems to concentrate on characterization of flow
properties of fractured rocks. Some example works in
this field are given bellow:

* Critical behaviour of deformation and permeability
of fractured rocks: Zhang and Sanderson (1998)
[424];
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* Flow and transport in fracture networks: Mo et al.
(1998) [425];

* Microstructure and physical properties of rock:
Gu!equen et al. (1997) [426];

* Fluid, heat and mass transport in percolation
clusters: Kimmich et al. (2001) [427].

3.6. Hybrid models

Hybrid models are frequently used in rock engineer-
ing, basically for flow and stress/deformation problems
of fractured rocks. The main types of hybrid models are
the hybrid BEM/FEM, DEM/BEM models. The hybrid
DEM/FEM models are also developed. The BEM is
most commonly used for simulating far-field rocks as an
equivalent elastic continuum, and the FEM and DEM
for the non-linear or fractured near-field where explicit
representation of fractures or non-linear mechanical
behaviour, such as plasticity, is needed. This harmonizes
the geometry of the required problem resolution with
the numerical techniques available, thus providing an
effective representation of the effects of the far-field to
the near-field rocks.

3.6.1. Hybrid FEM/BEM models

The hybrid FEM/BEM was first proposed in Zien-
kiewicz et al. (1977) [428], then followed by Brady and
Wassyng (1981) [429], and Beer (1983) [430] as a general
stress analysis technique. In rock mechanics, it has
been used mainly for simulating the mechanical
behaviour of underground excavations, as reported in
Varadarajan et al. (1985), Ohkami et al. (1985), Gioda
and Carini (1985), Swoboda et al. (1987) and van Estorff
and Firuziaan (2000) [431–435]. The coupling algo-
rithms are also presented in detail in Beer and Watson
(1992) [49].
The standard technique is to treat the BEM region as

a ‘super’ element with an artificially ‘symmetrized’
stiffness matrix, using the least-square techniques, so
that it can be easily inserted into the symmetric FEM
stiffness matrix for the final solution, which is easier
to handle than the non-symmetric BEM stiffness matrix.
However, such artificial ‘symmetrization’ introduces
additional errors into the final system equations. The
coupling can also be performed in the opposite
direction, i.e. treat the FEM region as a ‘super’
BEM element, and insert the corresponding FEM
stiffness matrix into the final BEM stiffness matrix; this
leads to a asymmetric stiffness matrix for the final
equation, which needs additional computational efforts
for solution.
The hybrid BEM/FEM models are as efficient

computationally as the FEM, with the additional
advantage of being able to deal with the non-linear
behaviour of materials in the FEM region, using the
FEM’s advantages. However, this advantage may be

affected by the symmetrized BEM equation. A possible
step forward in this direction is to use the Galerkin
double integration techniques in the BEM region so that
the final BEM stiffness matrix is automatically sym-
metric, and therefore can be directly inserted in the final
hybrid BEM/FEM matrix without errors caused by
artificial ‘‘symmetrization’’.

3.6.2. Hybrid DEM/BEM

The hybrid DEM/BEM model was implemented only
for the explicit Distinct Element Method, in the code
group of UDEC and 3DEC. The technique was created
by Lorig and Brady (1982, 1984, 1986) [436,3,437], and
was implemented into UDEC by Lemos (1987) [244].
The basic concept is to treat the BEM region (which
surrounds the DEM region) as a ‘super’ block having
contacts with smaller blocks along the interfaces with
the DEM region (cf. Fig. 5), which can be treated in
standard DEM contact representations. The key condi-
tions are:

(1) the kinematic continuity along the interfaces of the
two regions during the time-marching process; and

(2) the elastic properties of the two regions near the
interface are similar.

Condition 2 indicates that blocks in the DEM regions
must be deformable, i.e. not be rigid blocks. In the case
of mixed rigid and deformable block systems, special
equations of motion need to be developed to handle
such cases.
Wei (1992) and Wei and Hudson (1998) [438,439]

reported a development of hybrid discrete-continuum
models for coupled hydro-mechanical analysis of
fractured rocks, using combinations of DEM, DFN
and BEM approaches. The near-field of a fractured rock
mass is simulated using DEM and DFN models, using
independent DFN and DEM codes, for representing the
dominance of fractures on the near-field fluid flow and
stress/deformation of rock blocks, and the far-field is
simulated by BEM codes for flow and stress/deforma-
tion in a continuum. The equations of flow and motion
are not directly coupled, but are solved independently by
separate DFN, DEM and BEM codes, and they are
coupled through an internal linking algorithm with the
time-marching process.

3.6.3. Alternative hybrid models

Besides the above mainstream hybrid formulations,
there are other coupling techniques which take advan-
tage of different numerical methods. Pan and Reed
(1991) [440] reported a hybrid DEM/FEM model, in
which the DEM region consists of rigid blocks and the
FEM region can have non-linear material behaviour.
The algorithm places the FEM calculations into the
DEM time-marching process. Since the blocks in DEM
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region are rigid and the FEM region is an elastic
continuum, the kinematical continuity condition along
the interface of the DEM and FEM regions may not be
satisfied.
A hybrid beam-BEM model was reported by P .ottler

and Swoboda (1986) [441] to simulate the support
behaviour of underground openings, using the
same principle as the hybrid BEM/FEM model.
Sugawara et al. (1988) [442] reported a hybrid BEM-
characteristics method for non-linear analysis of rock
cavern.

3.7. Neural networks/empirical techniques

All the numerical modelling methods described so far
are in the category of ‘1:1 mapping’—using the terms in
Fig. 2, Section 1, which illustrates the eight basic
methods of rock mechanics modelling and rock en-
gineering design. The term ‘1:1 mapping’ refers to
the attempt to model geometry and physical mechan-
isms directly, either specifically or through equivalent
properties.
A completely different numerical method, located in

Box 2C in Fig. 2, uses neural networks: a ‘non-1:1
mapping’ method. The rock mass is represented
indirectly by a system of connected nodes, but there is
not necessarily any physical interpretation of the nodes,
nor of their input and output values. The model
purports to operate like the human brain.
Another example is the use of empirical techniques,

the rock rating systems (Q, RMR, RMI, GSI, etc.—see
Box 2B in Fig. 2), for characterization of rock mass
properties and construction design, without resorting to
the solution of the basic balance equations and use of
thermodynamically acceptable constitutive models. This
design method is possible because of the fact that a true
1:1 mapping solution can never be achieved with 100%
confidence and reliability for problems in fractured
rocks because a 100% characterization of the rock/
fracture system can never be achieved and validated.
This is the reason for the development and success of
non-1:1 mapping techniques like the rating systems in
rock engineering. Through the use of empirical techni-
ques, including empirical failure criteria, a rock engineer
can state whether a tunnel or a cavern is safe or
dangerous, without solving any of the equations in the
BEM, FEM or DEM methods.
Such a ‘non-1:1 mapping’ system has its advantages

and disadvantages. The advantages are:

* that the geometrical and physical constraints of the
problem, which appear in governing equations and
constitutive laws when the 1:1 mapping techniques
are used, are no longer so dominating,

* different kinds of neural networks and empirical
models can be applied to a problem, and

* there is the possibility that the ‘perception’ we
enjoy in the human brain may be mimicked in the
neural network, so that the programs can incor-
porate judgements based on empirical methods and
experiences.

The disadvantages are that

* the procedure may be regarded as simply super-
complicated curve fitting (because the program has to
be ‘taught’),

* the model cannot reliably estimate outside its range
of training parameters,

* critical mechanisms might be omitted in the model
training, and

* there is a lack of theoretical basis for verification and
validation of the techniques and their outcomes.

Neural network models provide descriptive and
predictive capabilities and, for this reason, have been
applied through the range of rock parameter identifica-
tion and engineering activities. Recent published works
on the application of neural networks to rock mechanics
and rock engineering includes the following:

* Stress–strain curve for intact rock: Millar and Clarici
(1994) [443];

* Intact rock strength: Alvarez Grima and Babuska
(1999); Singh et al. (2001) [444,445];

* Fracture aperture: Kacewicz (1994) [446];
* Shear behaviour of fractures: Lessard and Hadjigeor-
giou (1999) [447];

* Rock fracture analysis: Sirat and Talbot (2001)
[448];

* Rock mass properties: Qiao et al. (2000); Feng et al.
(2000) [449,450];

* Rock mechanics models: Feng and Seto (1999) [451];
* Rock mass classification: Sklavounos and Sakellariou
(1995); Liu and Wang (1999) [452,453];

* Displacements of rock slopes: Deng and Lee (2001)
[454];

* Tunnel boring machine performance: Alvarez Grima
et al. (2000) [455];

* Displacements/failure in tunnels: Sellner and Stein-
dorfer (2000); Lee and Sterling (1992) [456,457];

* Tunnel support: Leu (2001); Leu et al. (2001)
[458,459];

* Surface settlement due to tunnelling: Kim et al.
(2001) [460]

* Earthquake information analysis: Feng et al. (1997)
[461];

* Rock engineering systems (RES) modelling: Millar
and Hudson (1994); Yang and Zhang (1998)
[462,463];

* Rock engineering: Yi and Wanstedt (1998) [464];
* Overview of the subject: Hudson and Hudson (1997)
[465].
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As evidenced by the list of highlighted references
above, the neural network modelling approach has
already been applied to the variety of subjects in rock
mechanics and rock engineering. It is also evident that
the method has significant potential—because of its
‘non-1:1 mapping’ character and because it may be
possible in the future for such networks to include
creative ability, perception and judgement. However,
the method has not yet provided an alternative to
conventional modelling, and it may be a long time
before it can be used in the comprehensive Box 2D mode
envisaged in Fig. 2 and described in Feng and Hudson
(2003) [466].

3.8. Constitutive models of rocks

The constitutive models of rocks, including those
for both rock fractures and fractured rock masses,
are one of the most important components of numerical
solutions for practical rock engineering problems,
and one of the most intensively and continuously
investigated subjects in rock mechanics. The most
recent developments in the area are briefly introduced
with some comments, supported by literature sources.
To make the presentation clearer, the models are
divided into five groups according to their different
formulation platforms and traditional application
areas: classical constitutive models, failure criteria,
time effects and viscosity, size effects and homogeniza-
tion, damage mechanics models, and rock fracture
models.

3.8.1. Classical constitutive models of rocks

The classical constitutive models are the models based
mostly on the theory of elasticity and plasticity, but with
special considerations of fracture effects. The model of
linear elasticity based on the generalized Hooke’s law is
still by far the most widely adopted assumption for the
mechanical behaviour of rocks, especially for hard
rocks. When the CHILE assumption (Continuous,
Homogeneous, Isotropic, Linear Elastic) is adopted,
the constitutive law is simply characterized by two
independent material properties, either the most com-
monly known, Young’s modulus (E) and Poisson’s ratio
(n), or Lame’s two parameters, G and l: More
sophisticated constitutive models of anisotropic elasti-
city can be derived in closed-form by considering
alternative elastic symmetry conditions for intact rocks
(such as transversely isotropic elasticity) or equivalent or
effective continuum elastic rocks intersected by ortho-
gonal sets of infinitely large or finite fractures, see Singh
(1973), Gerrard (1982), Fossum (1985), Wei and
Hudson (1986), Yashinaka and Yamabe (1986), Wu
(1988), Murakami and Hegemier (1989), Chen (1989),
Singh (2000), and Wu and Wang (2001) [467–476]. Oda
(1986) [477] developed a crack tensor approach to derive

the equivalent elastic compliance tensors of fractured
rocks with randomly distributed finite fractures, and Li
et al. (1998) developed effective stress–strain relations
for rocks containing deformable micro-cracks under
compression. In the above developments, interactions
between the fractures were not considered. A compre-
hensive summary of the constitutive laws for geomater-
ials in oil and gas reservoir rocks is given by Papamichos
(1999) [478].
Plasticity and elasto-plasticity models have been

developed and widely applied to fractured rocks since
the 1970s, based mainly on the classical theory of
plasticity, with typical models using Mohr–Coulomb
and Hoek–Brown failure criteria (Hoek, 1983; Hoek and
Brown, 1982, 1997) [479,132,480] as the yield functions
and plastic potentials. A comprehensive and detailed
description of such plasticity models is given in Owen
and Hinton (1980) [45], together with FEM implemen-
tations. Parallel and similar developments can also be
seen in Zheng et al. (1986) [481] with a strain space
formulation, Adhikary and Dyskin (1998) [482]
for layered rocks, Sulem et al. (1999) [483] for
elasto-plasticity models of a sandstone and Boulon
and Alachaher (1995) [484] for a non-linear model
based on generalized strain paths, suitable for FEM
implementations.
Strain-hardening and strain-softening are the two

main features of plastic behaviour of rocks, with the
latter more often observed under uniaxial com-
pression test conditions. Related works are reported
by Dragon and Mr !oz (1979), Nemat-Nasser (1983),
Zienkiewicz and Mr !oz (1984), Read and Hegemier
(1984), Gerrard and Pande (1985), Desai and
Salami (1987), Rowshandel and Nemat-Nasser
(1987), Kim and Lade (1988), and Sterpi (1999)
[485–493].
Strain-localization (e.g. shear-banding) is a deforma-

tion phenomenon closely related to the constitutive
models of rocks, and has been studied intensively
using plasticity and damage mechanics models (see,
for example, Rudnicki and Rice, 1975; Fang, 2001)
[494,21].

3.8.2. Failure criteria

The failure criteria of rocks are important compo-
nents of constitutive relations and are usually used as
yield surfaces or/and plastic potential functions in a
plasticity model. Besides the most well known and
perhaps also the most widely used Mohr–Coulomb and
Hoek–Brown criteria, different failure (or strength)
criteria have been proposed for rock masses over the
years. The dimensionless forms of the Mohr-type failure
criteria were discussed in Pariseau (1994) [495]. Sheorey
(1997), Mostyn and Douglas (2000) and Parry (2000)
have provided a comprehensive reviews of the subject
[496–498]. Some of the recent developments are listed
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below with their contexts:

* Anisotropy of jointed rock mass strength: Amadei
and Savage (1989) [499];

* Time-dependent tensile strength of saturated granite:
Sun and Hu (1997) [500];

* Failure criteria for anisotropic rocks: Duvean et al.
(1998) [501];

* Compressive failure of rocks: Gupta and Bergstr .om
(1997), Tharp (1997) [502,503];

* Testing factors for establishing rock strength:
Hawkins (1998) [504];

* Shear failure envelope for modified Hoek–Brown
criterion: Kumar (1998) [505];

* Effect of intermediate principal stress on strength of
anisotropic rocks: Singh et al. (1998) [506];

* Modified Mohr–Coulomb failure criterion for
layered rocks: Lai et al. (1999) [507];

* Short- and long-term strength of isotropic rocks:
Aubertin et al. (2000) [508];

* Relation between failure criterion and deformability
of rock: Hibino et al. (2000) [509];

* Water effects on rock strength: Masuda (2001) [510];
* Failure criterion for transversely isotropic rocks: Tien
and Kuo (2001) [511].

3.8.3. Time effects and viscosity

Time effects are one of the most important and also
perhaps one of the least understood aspects of the
physical behaviour of rock masses. There are two main
aspects: the effects caused by the rock (and fracture)
viscosity and the effects caused by the dynamic loading
conditions. The former concerns mainly the stationary
behaviour of rock over long- or extremely long-terms,
such as geological time periods, and the latter is just the
opposite—dynamic and even violent behaviour over
short durations, such as earthquake effects. In such
cases, not only the magnitudes, directions and dura-
tions, but also the rate of change in loading parameters
are important. The time and rate effects are therefore
often discussed in combination.
The effect of viscosity, also termed a rock rheology

effect, is significant in rock salt and other weak rocks, and
is caused by two mechanisms: creep and relaxation. The
former is the behaviour of increasing deformation (strain)
under constant loading (stress); and the latter is the
decreasing loading (stress) while the deformation (strain)
state is kept constant. The fundamentals of the physics,
experimental basis and the constitutive models for these
two mechanisms of viscosity were described in detail in
Jaeger and Cook (1969) [512] and Cristesu and Hunsche
(1998) [513], with applications in tunnel/cavern failure and
borehole closure in mining and petroleum engineering.
The effect of viscosity has been considered in

constitutive modelling in combination with other basic
deformation mechanisms, such as elasticity and elasto-

plasticity or plasticity (leading to constitutive models of
so-called visco-elasticity, and its plasticity counterparts,
visco-elasto-plasticity/visco-plasticity). Comprehensive
descriptions of the constitutive models using visco-
plasticity were given in Valanis (1976) [514] and in Owen
and Hinton (1980) [45]. The link to and coupling with
fluid flow are also important. Representative and recent
works are listed below:

* Parameter identification of visco-elastic materials
using back-analysis: Ohkami and Ihcikawa (1997),
Ohkami and Swoboda (1999), Yang et al. (2001)
[515–517];

* Viscosity and yield strength degradation of rock:
Nawrocki and Mr !oz (1999) [518];

* Visco-elasto-plastic behaviour with finite strains:
Nedijar (2002a, b) [519,520];

* Comparison of formats and algorithms of visco-
plasticity models: Runesson et al. (1999) [521];

* Combination with fluid flow and rock porosity:
Abousleiman et al. (1993, 1996), [522–523];

* Material softening simulations: Diez et al. (2000)
[524];

* Rheology of fractured rocks: Patton and Fletcher
(1998) [525];

* Poroelasticity of rocks with anisotropic damage:
Shao et al. (1997) [526].

3.8.4. Size effects and homogenization

Size effect is a special feature of fractured rocks,
mainly due to two factors caused by the existence of
fractures of various sizes in rock masses. The first is the
fact that the fracture systems divide the rock mass into a
large number of sub-domains or blocks, whose sizes and
interactions dominant the overall behaviour of rock
masses. The second is the fact that the physical
behaviour of fractures themselves is dependent on the
sizes of fractures, due to scale-dependence of surface
roughness of the rock fractures (Fardin et al., 2001)
[527]. The state-of-the-art of this subject for rocks is
presented in two edited volumes by Da Cunha (1990,
1993) [4,5] and a recent comprehensive survey of size
effects in the strength and behaviour of structures,
including geotechnical structures, was given by Bamant
(2000) [528].
A shortcoming of classical plasticity theory is the lack

of an intrinsic length scale in the models that is
otherwise needed to explain the size effect in such
theories. Since the 1990s, however, a theory of gradient
plasticity was developed, which may be applied to
consider plastic behaviour and Strain-localization of
geological materials with regular fracture patterns,
such as Aifantis (1992), Zbib and Aifantis (1989, 1992)
[529–531]. Frantziskonis et al. (2001) [532] proposed a
new scale-dependent constitutive model for heteroge-
neous materials like concretes, using wavelet analysis
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techniques. Application of this theory has not been
found in rock mechanics publications.
The most representative and contemporary methods

to take the size effect into account for the physical
behaviour of fractured rocks is the equivalent con-
tinuum approach established on the basis of the
Representative Elementary Volume (REV), through
analytical or numerical processes of homogenization
and/or upscaling and based on assumed constitutive
models. The properties established are often called
effective or equivalent properties. Except for a few cases
with specific fracture sets (often assumed to be infinitely
large in size), closed-form solutions for equivalent
properties do not exist for generally fractured rocks,
and numerical simulations are often used as the tools of
derivation. One exception is the crack tensor theory
proposed by Oda (1986) [477], in which random fracture
populations can be readily incorporated into the
analytical functions defining the compliance and perme-
ability tensors.
For homogenization and upscaling, much work has

been undertaken in general solid mechanics fields,
especially for composite materials. The general metho-
dology is well known, see for example the most recent
publication by Fraldi and Guarracino (2001) [533]. For
the mechanical properties of fractured rocks, a number
of closed-form solutions were obtained with simplified
fracture system geometry, as mentioned in Section 3.8.1.
Homogenization and upscaling techniques have a

long history of application in deriving equivalent
hydraulic properties of fractured rocks, such as in Snow
(1965) [534]. Two comprehensive reviews by Renard and
de Marsily (1997) [535] and Wen and G !omez-Hern!andez
(1996) [536] summarized the state-of-the-art. The more
recent works on the subject are reported in Lee et al.
(1995), Li et al. (1995), Tran (1996), Hristopulos and
Christakos (1997), Scheibe and Yabusaki (1998), Pozd-
niakov and Tsang (1999), Shahimi and Mehrabi (1999),
Lunati et al. (2001) and Zhang and Sanderson (1999)
[537–544,418]. Derivation of coupled hydro-mechanical
effective properties of general porous media was
reported in Kachanov et al. (2001) [545]. Similar works
were also reported for heat transfer processes in porous
media, see Quintard et al. (1997) [546].
For flow in fractured porous media like rock masses,

new techniques were also created to separate the
contributions from the rock matrix and from the
fracture systems (which are also treated as equivalent
continua), the so-called dual (double) porosity models,
dual (double) permeability models and dual (double)
continuum models, in order to simplify the complexity
in the fracture–matrix interaction behaviour and to
partially consider the size effects caused mainly by the
fractures. Some recent works in this field can be seen in
Zimmerman et al. (1996), Bai (1997), Bai et al. (1999),
Choi et al. (1997), Masters et al. (2000), McLaren et al.

(2000), Vogel et al. (2000), Zhang et al. (2000), and
Landereau et al. (2001) [547–555]. In these approaches,
although the matrix and fractures are numerically
‘separated’, the size effects in the fracture system still
exist, and the interactions between the matrix continua
and fracture ‘continua’ still need to be considered. It is
more than likely that the two ‘continua’ will have
different REVs. Proper numerical methods to treat the
effect of such differences in size effects of co-existing
continua remain to be developed.
In the above approaches and models, the interactions

between the finite fractures were not considered. It
appears that an effective approach to derive equivalent
elastic constitutive models of rocks with randomly
distributed finite fractures is the numerical approaches
of homogenization and upscaling, such as reported by
Stietel et al. (1996) and Lee and Pande (1999) using
FEM [556,557], and Mas-Ivas et al. (2001) and Min et al.
(2001) using DEM [285,286].
The existence of the REV for fractured rocks is still in

debate and non-REV approaches were also proposed in
Pariseau (1999) [558]. The focus of debate is whether
such REVs can exist physically considering the presence
of a hierarchic structure of fracture sizes and widths
(apertures) and their vastly different physical behaviour
and properties.

3.8.5. Damage mechanics models

Constitutive models of rocks have also been devel-
oped using continuum damage mechanics principles,
proposed first by Kachanov (1958) [559], based on
scalar, vector or tensor representations of the void
formation, micro-cracking or embedded fracture phe-
nomena in rock under loading. This theory is very
closely related to both continuum mechanics and
fracture mechanics, and serves as a bridge connecting
the two (see Oliver, 2000; Oliver et al., 2002) [560,561]. It
has a certain parallelism in the formulation with the
plasticity models, such as using damage evolution laws
in place of flow rules. The restriction by the normality
rule in plasticity theory is, however, absent in damage
mechanics principles. The damage mechanics theory has
also a certain advantage in simulating the Strain-
localization factors using continuum approaches and
study of brittle-ductile deformation model transitions
observed during testing rock samples. Comprehensive
reviews on its development, characteristics, trends and
weaknesses are given in Krajcinovic (2000) and de Borst
(2002) [562,563].
The damage mechanics approach has been applied to

study strength degradation and Strain-localization
phenomena in rocks and to formulate damage related
constitutive models of rock and rock like materials, such
as Kawamoto et al. (1988) and Ichikawa et al. (1990)
[564,565]. A large number of papers has been published
on these subjects and cannot be summarized in even
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moderate detail. Below are some recent publications
concerning rock damage:

* Constitutive models and properties of rocks: Auber-
tin and Simon (1997), Grabinsky and Kamaleddine
(1997), Shao (1998), Shao and Rudnicki (2000), Yang
and Daemen (1997), Chazallon and Hicher (1998),
Homand-Etienne et al. (1998), Basista and Gross
(1998), Zhao (1998), Carmelier (1999), Chen (1999),
Dragon et al. (2000), Jessell et al. (2001), Li et al.
(2001), Brencich and Gambarotta (2001) [566–580];

* Damage induced permeability change in rock: Souley
et al. (2001) [581];

* Strain-localization and failure predictions: Comi
(1999, 2001), Peerlings et al. (2002) [582–584];

* Scale effects of damage in cemented granular rocks:
Pisarenko and Gland (2001) [585];

* Effects of damage on explosions, blasting and
fragmentation of rocks: Yang et al. (1996), Liu and
Katsabanis (1997a, b), Rossmanith and Uenishi
(1997), Ma et al. (1998), Wu et al. (1999) [586–590];

* Disturbed state concept-based model: Desai and
Zhang (1998) [591];

* Effects of damage on excavations and boreholes:
Sellers and Scheele (1996), Cerrolaza and Garcia
(1997), Elata (1997); Nazimko et al. (1997a, b),
Swoboda et al. (1998), Zhu and Li (2000), Zhu et al.
(1999) [592–598,273].

3.8.6. Rock fracture models

Constitutive models for rock fractures play an
important role in almost every aspect of rock mechanics
and rock engineering, especially in the fields of
numerical modelling and characterization. It is therefore
not surprising that the mechanics and models of rock
fractures has become one of the main themes in almost
every international or national conference on rock
mechanics, rock physics and rock engineering. The
most directly relevant volumes are those edited by
Stephansson (1985), Barton and Stephansson (1990),
Myer et al. (1995) and Rossmanith (1990, 1995, 1998)
[599–604]. The subject has also become an inevitable
part of many text and reference books and parts of
many edited volumes, such as Chernyshev and Dearman
(1991), Lee and Farmer (1993), Selvadurai and Boulon
(1995), Hudson (1993), Indrarantna and Hague (2000)
and Indrarantna and Ranjith (2001) [605–610]. Some
early comprehensive reviews on the experimental
aspects, formulations of constitutive models and
strength envelopes of rock fractures are given in Jing
and Stephansson (1995), Ohnishi et al. (1996) and
Maksimovic (1996), respectively [611–613]. In this
section, we will only present a limited number of
fundamental developments of importance.
The constitutive models of rock fractures are for-

mulated with mainly two approaches: empirical and

theoretical. The primary variables are contact tractions
and relative displacements (instead of stresses and
strains in continuum models), and aperture and
flow rates (fluxes). Implementation of constitutive
models into continuum numerical methods such as
FEM often leads to so-called interface elements, which
may also cause numerical instabilities when zero-
thickness of interface elements is employed, such as
discussed in Kaliakin and Li (1995), Day and Potts
(1994), and Lee and Pande (1999) [614–615,557].
Implementation into DEMs is generally a more
straightforward use of contact mechanics principles,
but the prevention of inter-penetration of solid blocks
must be applied, using methods like penalty function,
Lagrangian multipliers or augmented Lagrangian multi-
plier techniques.
Besides the classical Coulomb or Mohr–Coulomb

friction laws, the most well-known constitutive laws
developed for rock fractures with an empirical approach
are Goodman’s model (Goodman et al., 1968; Good-
man, 1976) [51,52] concerning mechanical behaviour
and the Barton–Bandis model concerning coupled
hydro-mechanical responses (Bandis et al., 1983; Barton
et al., 1985) [616,617]. Since the principles of the
thermodynamics of solids are not involved in the
formulations, such empirical models may possibly
violate the second law of thermodynamics when
complex stress-displacement paths are involved. In
addition, the validity of such models beyond their
model construction databases may or may not be
verifiable. On the other hand, such empirical models
provides basic understanding to the physical behaviour
of the fractures and are still useful in engineering
practice due to their usually simpler mathematical forms
and reduced number of parameters required, especially
when simple loading mechanisms are anticipated. There
are many other empirical models of rock fractures
implemented in numerous computer codes, such as the
Continuously Yielding model in UDEC (ITASCA,
1992) [212], micro-mechanics based models (Dong and
Pan, 1996) [618] and the DSC (disturbed state model)-
based models (Desai and Ma, 1992; Desai, 1994)
[619,620], but the majority of such models used in
practice are the above three empirical models or their
different variations.
The theoretical models are formulated using princi-

ples of one of the solid mechanics branches, mostly
plasticity or contact mechanics. Consistency with the
thermodynamic principles is strictly required in such
models and therefore theoretical models are established
on the firmer basis of solid physics compared with
empirical models. However, such theoretical correctness
is achieved at the expense of usually more complex
mathematical forms and an increased number of
parameters, causing extra considerations and costs of
parameterization when using such models.

L. Jing / International Journal of Rock Mechanics & Mining Sciences 40 (2003) 283–353 323



Besides the constitutive model of rock fracture
proposed by Amadei and Saeb (1990) [621], which has
been extended by Souley et al. (1995) [622], the most
common constitutive models for rock fractures devel-
oped with the theoretical approach are formulated using
principles of plasticity theory, based on the similarity
between the plastic hardening–softening deformation of
solids and shear stress (traction)-shear displacement
components of rock fractures. Examples of early work
in this direction can be seen in Ghaboussi and Wilson
(1973) [53] and Fishman and Desai (1987) [623]. Plesha
(1987) [624] proposed a plasticity-based model for rock
fractures, using a stress-transformation function based
on a simplified asperity model relating the micro- and
macro-contact stresses on the fracture surfaces, and an
exponential degradation law of the asperity angle based
on the dissipated work accumulated during shearing
process. This work has inspired many similar develop-
ments, such as Jing et al. (1993, 1994) [274,275], Nguyen
and Selvadurai (1998), Lee et al. (2001), Plesha and Ni
(2001) and Lee and Cho (2002) [625–628]. Different
models using plasticity theory as the formulation plat-
form were also reported by Buczkowski and Kleiber
(1997) [60], Desai and Fishman (1991), Desai et al.
(1995), Mr !oz and Giambanco (1996) and Lespinasse
and Sausse (2000) [629–632].
The principles of contact mechanics of rough surfaces

has also been used to formulate constitutive models of
rock fractures, such as the early work by Swan (1983)
and Sun et al. (1985), Swan and Sun (1985), and later by
Yoshioka and Scholz (1989a, b) and Lei et al. (1995)
[633–638]. The work is based mainly on principles
established in Greenwood and Williamson (1966) [639]
and Greenwood and Tripp (1971) [640] simulating the
contacts, friction and wear of rough surfaces. The
practical applicability of such models depends largely on
the unique quantification of surface roughness and
understanding its impact on fracture behaviour, which
still remain as a challenging topic today, and an ever-
continuing research subject for often the non-stationary
roughness of rock fractures. The concept of Joint
Roughness Coefficient (JRC) (Barton, 1973; Barton
and Choubey, 1976) [641,642] and other random field
and geostatistical models, especially fractal models for
the roughness of rock fracture surfaces, have been
postulated over the years for roughness characterization
of rock fractures. Some of the most recent research in
this direction is reported in Fardin et al. (2001) [527],
Kwa!sniewski and Wang (1997), Panagouli et al. (1997),
Homand et al. (2001), Roko et al. (1997), Yang and
Chen (1999), Belem et al. (2000), Yang et al. (2001a–c),
Lanaro (2000), and Fu et al. (2001) [643–653]. Use of
fractals to represent the roughness of rock fractures has
become an important subject, as indicated in the above
publications, but still remains a controversial topic in
debate, as also in other fields (Whitehouse, 2001) [654].

Since the coupled hydro-mechanical effects become a
more and more important aspect in rock mechanics
studies, the constitutive models for aperture-flow rela-
tions and their coupling to mechanical displacements
and damage of rock fractures become increasingly
reported in literature. Although the dominant trend is
still the idealized parallel plate model (Snow, 1965) [534]
or the Cubic Law, in computer codes alternative models
considering coupled stress-flow behaviour have been
postulated over the years based on extensive experi-
mental evidence, as reported by Gangi (1978), Walsh
and Grosenbaugh (1979), Witherspoon et al. (1980),
Walsh (1981), Tsang and Witherspoon (1981), Raven
and Gale (1985), Brown and Scholz (1985), Brown
(1987), Pyrak-Nolte and Cook (1988), and Cook (1988)
[655–664]. More recent work is reported by Olsson
(1992), Olsson and Brown (1993), Ng and Small (1997),
Oron and Berkowitz (1998), Power and Durham (1997),
Nicholl et al. (1999), Yeo et al. (1998), Indraratna et al.
(1999), Pyrak-Nolte and Morris (2000), and Olsson and
Barton (2001) [665–674].
Besides the fractures, there are other interfaces in rock

engineering projects, such as interfaces between different
materials (rock and soil, rock and buffer or backfilling
material, rock and reinforcement elements, e.g. bolts,
grouts, cables, etc.). Despite their obvious importance
for the design and performance of rock engineering
structures, development of special constitutive laws and
models, and reporting of progress in this direction seems
to be lacking. Examples of such models are reported in
Fakharian and Evgin (2000) [675], and Cox and
Hermmann (1998, 1999) [676,677] for steel–concrete
bonds.
Although tremendous effort has been paid to develop

constitutive models for rock fractures, the currently
available models still cannot predict fracture behaviour
with a reasonable level of confidence. The major
difficulty is the lack of adequate understanding of the
basic physics of the rock fractures, a unique and
quantitative representation of joint roughness, damage
evolution during a general deformation process, and its
impact on the mechanical, hydraulic and thermal
behaviour and properties of rock fractures. Other
difficulties include the models for fractures at large
scales, such as faults or fracture zones with large widths,
time-scale dependence, and hydro-mechanical coupling
effects. New subjects are the effects of chemical coupling
and transport properties of fractures, as affected by
understanding the flow path tortuosity, initial contact
area and its evolution, and the fracture-rock interaction
in terms of flow and transport during the deformation
process of rock fractures. All the above add to the ever-
increasing complexity in modelling the physico-chemical
behaviour and properties of rock fractures, and
introduces difficulties for formulating realistic constitu-
tive models. On the other hand, it should also be noted
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that many models are developed for understanding the
overall behaviour and help to solve practical problems.
Therefore proper and prudent simplifications and
idealization will always be needed to derive conceptua-
lization models comprehensive enough for the problems
at hand, while still retaining the necessary levels of
scientific sophistication so that basic laws of physics and
chemistry will not be violated.

4. Coupled thermo-hydro-mechanical models

The couplings between the processes of heat transfer,
fluid flow and stress/deformation in fractured rocks has
become an increasingly important subject in rock
mechanics and engineering design since the early 1980s
(Tsang, 1987, 1991) [678,679], mainly due to the
modelling requirements for the design and performance
assessment of underground radioactive waste reposi-
tories, and other engineering fields in which heat and
fluids play important roles, such as gas/oil recovery, hot-
dry-rock thermal energy extraction, contaminant trans-
port analysis and environment impact evaluation in
general. In fact, the coupling can be extended to include
chemical and biosphere factors, but we concentrate here
on the THM coupled models.
The term ‘coupled processes’ implies that one process

affects the initiation and progress of another. Therefore,
the rock mass response to natural or man-made
perturbations, such as construction and operation of a
nuclear waste repository, cannot be predicted with
confidence by considering each process independently.
The combination of the natural and engineering factors
comprises also a coupled system (Hudson 1992; Jiao and
Hudson, 1995) [680,681], the evolution of which
involves a variety of mechanism pathways. For the
THM model, it is certainly necessary to study the two-
way interactions between the T, H and M components,
as indicated in an outline form in Fig. 21.
Such mathematical models and associated computa-

tional methods are the only quantitative means for

scientists and engineers to gain understanding of
complex physical systems, often using multiple stochas-
tic system realizations and parameter sensitivity analysis
to account for the interactions among so many
processes, properties and parameters, plus the uncer-
tainty of parameter values. The complexity of the
THM problem is increased by the presence of the
rock fractures of various dimensions, whose physical
behaviour under thermal, hydraulic and mechanical
loadings is far from clearly understood, due mainly to
the mostly unpredictable geometrical complexities of
their surfaces.
The coupled THM process is mainly described by

mechanics of porous media, which is applicable to
fractured rocks. The first theory is Terzaghi’s 1-D
consolidation theory of soils (Terzaghi, 1923) [682],
followed later by Biot’s theory of isothermal consolida-
tion of elastic porous media, a phenomenological
approach of poroelasticity (Biot, 1941, 1956) [683,684],
and the mixture theory by Morland (1972) [685],
Bowen (1982) [686] and others. Non-isothermal con-
solidation of deformable porous media is the basis of
modern coupled THM models using either averaging
approach as proposed first by Hassanizadeh and Gray
(1979a, b, 1980, 1990) [687–690] and Achanta et al.
(1994) [691], or an extension to Biot’s phenomenological
approach with a thermal component (de Boer, 1998)
[692]. The former is more suitable for understanding the
microscopic behaviour of porous media and the latter is
better suited for macroscopic description and computer
modelling.
The subject attracted a very active research because of

its wide reaching impacts in mechanics and engineering
in geomaterials. Extensive research and publications
have been generated. The fundamentals are system-
atically presented in many written or edited volumes
such as in Whitaker (1977), Domenico and Schwartz
(1990), Charlez (1991), Charlez and Keramsi (1995),
Coussy (1995), Selvadurai (1996), Lewis and Schrefler
(1988, 1998), Bai and Elsworth (2000) [693–701], and
Sahimi (1995) [379] with focus on multiphase flow and

thermal
stress/expansion

mechanical
energy conversionconvectionbuoyancy

THERMAL
(heat flow due to heat release

of radioactive waste)

MECHANICAL
(deformation of rock matrix 

and rock fractures)

HYDROLOGICAL
(ground water flow through
rock matrix and fractures)

heatwater

water pressure

change of porosity
and apertures

Phase change

Fig. 21. Coupled thermo-hydro-mechanical processes in a fractured rock mass.
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transport in porous media, targeting more for reservoir
and environmental engineering applications. Tsang
(1987) [678] and Stephansson et al. (1996) [702] are
more focused on stress/deformation, fluid flow and heat
transfer in fractured rocks, targeting especially for
nuclear waste disposal applications.
THM coupling models have been developed accord-

ing to two basic ‘partial’ coupling mechanisms which are
well established within the principles of continuum
mechanics: thermo-elasticity of solids (T–M) (interac-
tion between the stress/strain and temperature fields
through thermal stress and expansion) and poroelasti-
city theory (H–M) (interaction between the deform-
ability and permeability fields of porous media). They
are, in turn, based on the Hooke’s law of elasticity,
Darcy’s law of flow in porous media, and Fourier’s law
of heat Conduction. The effects of the THM coupling
are formulated as three inter-related PDEs expressing
the conservation of mass, energy and momentum, for
describing interactions among fluid flow, heat transfer
and deformation processes.
The solution of the coupled sets of conservation

equations can use either continuum or discrete ap-
proaches. For continuum approach, FEM, BEM, FDM
and FVM are usually applied (Noorishad et al., 1992;
Noorishad and Tsang, 1996; Rutqvist et al., 2001a, b;
B .orgsson et al., 2001; Nguyen et al., 2001; Pruess,
1991; Millard, 1996; Ohnishi and Kobayashi et al., 1996)
[703–711]. A general framework of the equations and
FEM formulation for porous media is given in Schrefler
(2001) [712]. The continuum solution approach is based
on the established equivalent properties of the fractured
porous media. It is not computationally efficient when a
large number of fractures are explicitly represented and
derivation of whose equivalent properties, especially
their scale-dependency, often needs discrete numerical
methods.
The numerical methods for THM processes using

discrete approach have not reached the same degree of
maturity compared with their continuum counterparts,
mainly because the fluid flow is most often limited only
in fractures and matrix flow, therefore also the fracture–
matrix interaction, is not considered. The most repre-
sentative example of the discrete numerical method for
coupled THM processes in fractured rocks is the
UDEC/3DEC DEM code group. Heat convection can
be considered (Abdaliah et al., 1995) [713], but partial
saturation and fluid phase change have not been
incorporated yet, because no fluid is assumed in the
matrix.
Comprehensive studies, using both continuum and

discrete approaches, have been conducted in the
international DECOVALEXy3 projects for coupled

THM processes in fractured rocks and buffer materials
for underground radioactive waste disposal since 1992.
Results have been published in a series of reports
(Jing et al., 1996, 1999) [714,715], an edited book
(Stephansson et al., 1996) [702] and two special issues of
the International Journal of Rock Mechanics and
Mining Sciences (Stephansson, 1999; Stephansson
et al., 2001) [716,717]. These contribute greatly to the
understanding of the coupled processes and the math-
ematical models.
Coupled processes have also been studied in other

application areas, such as:

* Reservoir simulations: Gutierrez and Makurat (1997)
[269], Zhao et al. (1999), Yang (2000), Sasaki and
Morikawa (1996) [718–720];

* Partially saturated porous materials: Gawin and
Schrefler (1996) [721];

* Advanced numerical solution techniques for coupled
THM models: Wang and Schrefler (1998), Cervera
et al. (1996); Thomas et al. (1999) [722–724];

* Soil mechanics: Thomas and Missoum (1999) [725];
* Simulation of expansive clays: Thomas and Cleall
(1999) [726];

* Flow and mechanics of fractures: Selvadurai and
Nguyen (1999) [727];

* Nuclear waste repositories: Selvadurai and Nguyen
(1996), Hudson et al. (2001) [728,729];

* Non-Darcy flow in coupled THM processes: Nithiar-
asu et al. (2000) [730];

* Double-porosity model of porous media: Masters
et al. (2000) [551];

* Parallel formulations of coupled hydro-mechanical
and thermo-mechanical models for porous media:
Zimmerman (2000) [731];

* Tunnelling in cold regions: Lai et al. (1998) [732].

In the face of ever increasing complexity in the
modelling of large numbers of concurrent and con-
secutive operating mechanisms and mechanism path-
ways in the coupled models and with many geometrical
and parameter uncertainties, we can foresee three
directions which future coupled modelling may take:

* continue with the current direction, refining the
algorithms and using sensitivity analyses to establish
the significance of geometrical and parameter
uncertainties;

* continue with the current direction, but extend the
models to include further physical and chemical/
biochemical mechanisms, concentrating on equiva-
lent geometries and ‘first order’ mechanism effects;

* change the modelling paradigm to ‘non-1:1 mapping’
(cf. Fig. 1 and the discussion in Section 3.7).

* develop solution techniques so that large-scale
equation systems can be solved more efficiently for
coupled equation systems.

3DECOVALEX (acronym for DEvelopment of COupled models

and their VALidation against EXperiments.
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These anticipated future developments are all based
on extensions of current activities, and will be facilitated
by continuing advances in computing capabilities.
The third and fourth developments are anticipated

because the amount of information used in modelling
(measured in bits) has greatly increased from the 1940s
to the present day, from just a few bits in the first
calculations to perhaps terrabits (1012) and exabits (1015)
nowadays when all the information in a computerized
time-marching operation is considered. Such exponen-
tially increasing curves always collapse at some stage,
and this difficulty will only be overcome through more
efficient form of simplification, probably by a switch of
the modelling paradigm from ‘1:1 mapping’ to ‘non-1:1
mapping’ of the geometry and mechanisms, and
more efficient calculation techniques, such as parallel
processing.

5. Inverse solution methods and applications

A large and very important class of numerical
methods in rock mechanics and civil engineering
practice is the inverse solution techniques. The essence
of the inverse solution approach is to identify unknown
system properties or perturbation parameters, through
direct application of numerical methods or closed-form
solutions to derive unknown material properties, system
geometry, and boundary or initial conditions, based on
a limited number of measured values of some key
variables, using either least-square or mathematical
programming techniques of error minimization. The
technique has been long applied in rock characterization
practices, such as stress measurements using over-coring
or hydraulic fracturing (by deriving stress data from
measured displacements) and underground structure
identification (by deriving geometry of structures using
ground penetration radar images). Because the aim
of the solution is the system parameters (which should
be known beforehand in ordinary forward simulations),
thus the name ‘inverse solution’. In the case of
rock engineering, the most widely applied inverse
solution technique is back analysis using measured
displacements from convergence extensometer or fluid
pressure data to derive mechanical and hydraulic
properties of rock, such as deformability and perme-
ability in general civil/hydrogeological engineering. The
technique was initiated by Sakurai (1981) for displace-
ment back-analysis and has been extensively applied in
rock engineering.
The numerical models for forward analysis are

generally a closed system with all necessary assumptions
about constitutive models and parameter values and
initial/boundary conditions. The input data and output
variable values have a one-to-one response and the
solution is unique, although the output results may or

may not agree with the measured variable values,
depending largely on the correctness of the model
conceptualization concerning material behaviour and
system geometry, especially effects of fractures. Such
uniqueness in solution, however, is not guaranteed in
inverse solutions, even when the constitutive models are
assumed, since an acceptable agreement between the
numerical results and measured data may be obtained
with different forms of constitutive models and multiple
fracture system realizations.
Fig. 22 illustrates the concepts of the forward and

back analysis applied in general geotechnical engineer-
ing (Sakurai, 1997) [733]. Back analysis can be
performed with assumed constitutive laws, usually
called parameter identification. However, forms of
constitutive laws themselves may also be the objects of
back analysis, at least in theory, as pointed out by
Sakurai and Akuragawa (1995) [734], which may not be
easily achieved in practice.
A distinct advantage of back analysis is the fact that

the measured values in the field represent the behaviour
of large volumes of rock masses containing effects from
largely unknown fractures: the scale effects of the
constitutive parameters are automatically included in
the identified parameter values without burden of prove
for the existence of the REV for fractured rocks. It also
points to a promising method for validation of
constitutive models and properties using back analysis
with field measurements. On the other hand, the same
objective can also be reached by using successive
forward solutions with material property perturbations
through a global optimization process or mathematical
programming.
Since groundwater flow has become an important

aspect in numerical modelling work in rock mechanics
and rock engineering, it is necessary to present briefly
the advances and status of the subject. More compre-
hensive summary and in-depth analysis of the subject is
beyond the scope of this review.
In this Section, brief summaries of the principles

and applications of two main inverse solution techni-
ques, the displacement-based back analysis for rock
engineering and pressure-based inverse solution for
groundwater flow analysis, are presented to demonstrate
the history and trends of development of this particular
technique.

5.1. Displacement-based back analysis for rock

engineering

Since displacements along extensometers with multi-
ple anchors and the convergence of tunnel walls are the
most directly measurable quantities in situ, and are one
of the primary variables in many numerical methods,
they have been extensively used to derive rock properties
over the years. The majority of applications concern
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identification of constitutive properties and parameters
of rocks, using displacement measurements from tunnels
or slopes. Below are some typical and recent examples of
such applications:

* Underground excavations: Gens et al. (1996), Ledes-
ma et al. (1996a, b), Mello Franco et al. (1997), Hojo
et al. (1997), Sakurai (1997), Singh et al. (1997),
Pelizza et al. (2000), Yang et al. (2000), Krajewski
et al. (2001), Chi et al. (2001), Hatzor and Benary
(1998), Yang et al. (2001) [734–744,300,517];

* Slopes and foundations: Ai-Homoud et al. (1997),
Okui et al. (1997), Sonmez et al. (1998), Feng et al.
(2000), Deng and Lee (2001) [745–747,450,454];

* Initial stress field: Yang et al. (1996) [748], Rossma-
nith and Uenishi (1997) [588];

* Stress measurements: Obara et al. (2000) [749];
* Time-dependent rock behaviour: Ohkami and
Swoboda (1999) [333], Guo (2000) [750];

* Consolidation: Kim and Lee (1997) [751].

5.2. Pressure-based inverse solution for groundwater flow

and reservoir analysis

Inverse solutions have long been used in hydrogeol-
ogy, reservoir engineering (oil, gas and Hot-Dry-Rock
geothermal reservoirs) and geotechnical engineering
practice of environmental impacts, as a critical techni-
que for estimating hydraulic properties of large-scale

geological formations. Similarly, the fluid pressure
values measured from boreholes/wells are used to
identify the hydraulic properties of rock formations,
such as permeability, porosity, storativity, etc. by
assuming hydraulic constitutive laws of porous media
based on Darcy’s law or other non-Newtonian fluid
models. Complexity is increased when the thermal
process is involved due to the additional parameters of
thermal diffusivity involving phase change of multiple-
phased flow of fluids, with various states of saturation.
However, the mathematical principles and the issue of
solution uniqueness are the same as that of the
displacement-based back analysis for rock mechanics.
Inverse solutions against laboratory measurement re-
sults are also often used for parameter identification of
rock/soil matrices, and fractures, and the upscaling of
hydraulic parameters has been a very active issue in
hydrogeology with a vast number of publications.
A comprehensive review of the subject is given in de

Marsily et al. (1999) [752] for the history of inverse
solution development and methods for the past 40 years,
especially the application of the stochastic approach
using geostatistics. Due to the space limit, only some
most recent developments in this subject are quoted
below to illustrate the advances of the development:

* Capillary pressure-saturation and permeability func-
tion of two-phase fluid in soil: Chen et al. (1999)
[753];

Uniqueness is guaranteedAssumption

Modelling

Input data

Mechanical parameters: E, ν,
c, φ, …;
External force, …

Forward
analysis

Output results

Displacement;
Stress;
Strain

1) Forward analysis

Uniqueness is not guaranteed

Assumption

Modelling

Output results

Mechanical parameters: E, ν,
c, φ, …;
External force, …

Back
analysis

Input data

Displacement;
Stress;
Strain

2) Back analysis

Fig. 22. Comparison between the procedures of forward and back analyses (Sakurai, 1997) [739].
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* Water capacity of porous media: Fatullayev and Can
(2000) [754];

* Unsaturated properties: Finsterle and Faybishenko
(1999) [755];

* Transmissivity, hydraulic head and velocity fields:
Hanna and Yeh (1998) [756];

* Hydraulic function estimation using evapotranspira-
tion fluxes: Jhorar et al. (2002) [757];

* Use of BEM for inverse solution: Katsifarakis et al.
(1999) [758];

* Integral formulation: Vasco and Karasaki (2001)
[759];

* Hydraulic conductivity of rocks using pump test
results: Lesnic et al. (1997) [760];

* Least-square penalty technique for steady-state
aquifer models: Li and Yang (2000) [761];

* Maximum likelihood estimation method: Mayer and
Huang (1999) [762];

* Inversion using transient outflow methods: N-
.utzmann et al. (1998) [763];

* Use of geostatistics for transmissivity estimation:
Russo (1997), Roth et al. (1998), Wen et al. (1999,
2002) [764–767];

* Successive forward perturbation method: Wang and
Zheng (1998) [768].

The inverse solution is closely related to the consti-
tutive models, especially to identification of model
parameters and upscaling, as demonstrated in Lunati
et al. (2001) [544]. It is also widely applied to other
branches of mechanics and material sciences, such as
heat transfer (Chapko, 1999) [769], stress–strain inver-
sion without assuming constitutive models for solid
mechanics (Hori and Kameda, 2001) [770] and non-
iterative least-square inversion algorithm (Shaw, 2001)
[771]. With the complex and largely unknown fracture
systems and their significant impact on the physical
behaviour of fractured rocks, back analysis and
inverse solutions appear to play more and more
important roles in modelling, design and performance
assessments of rock engineering problems since the
directly measured data are not only the most re-
liable, but also the only available responses one can
obtain from rocks in situ as a result of man-made
perturbations.

6. Advances and outstanding issues

This Review began by describing the special features
of rock masses, the difficulties of characterizing their
DIANE nature, and presenting an overview diagram of
rock mechanics modelling approaches. The various
numerical modelling techniques were then described in
some detail with comments on their applicability,
followed by a Section on the way in which coupled

models are being developed. It has also been intimated
that, after the past 50 years’ development, we still
mainly use empirical failure criteria, empirical design
procedures, and an observational approach to rock
engineering. There have been many significant advances
in numerical methods, including developments that
allow the DIANE features of a rock mass to be captured
in the models. However, there are still outstanding issues
relating to the numerical models themselves and to the
utility of the models for supporting rock engineering
practice.

6.1. Advances in numerical modelling in rock mechanics

To adequately capture the rock reality and the
perturbations introduced by engineering, a numerical
model for the design and performance analysis of rock
engineering projects should have the capability to
represent the system geometry (including the fracture
system geometry), boundary and initial conditions, any
natural and induced loading/perturbation histories,
complex material models (constitutive laws) for both
the rock matrix and fractures, including scale-time
effects, uncoupled or coupled physical processes, com-
plex construction sequences, interactions between all
system components and interfaces—and all in both 2-D
and 3-D spaces.
Such ‘all-encompassing’ numerical models do not

exist today, mainly because of our limited knowledge
about the physical behaviour of rock fractures and
fractured rock masses, our limited means to represent
the geometry and evolution of complex rock fracture
systems, and our limited computational capacity for
large or very large-scale problems. For the more
complex rock engineering problems, numerical model-
ling is still largely a tool for conceptual understanding
and generic studies. However, for ‘simpler’ rock
engineering projects, such as tunnel design and slope
stability analysis, numerical modelling has become a
valuable design tool.
Indeed, our advances in the field of computational

methods in rock mechanics since the dawn of the
computer era in civil engineering fields over the last
three decades is impressive. These advances can be
briefly summarized as follows.

* Parallel development of continuum-based and dis-
crete numerical models, such as FEM, BEM, and
DEM, for stress/deformation analyses. The discrete
models are a special development, driven by the need
of rock and soil mechanics models in the early 70s
(when the early FEM and BEM codes started to be
applied to rock and soil mechanics problems, based
almost entirely on linear elasticity). The result was a
drive for much greater in-depth understanding of the
mechanical behaviour of fractured rock masses and
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granular soils due to the DEM’s ability to provide a
more realistic representation of the rock and soil
fabrics and significant improvement of numerical
modelling at moderately large scales. Special credit
should be given to P.A. Cundall and G. Shi, and their
co-workers, for the explicit and implicit DEM, DDA
and Key Block theory approaches.

* Significant improvement of traditional FEM, DEM
and FEM techniques for rock mechanics problems,
especially regarding fracture simulations with devel-
opments such as meshless models (cf. Section 3.2),
enriched FEM (cf. 3.2), GBEM (cf. 3.3) and FVM
(cf. 3.1). These advancements not only enriched the
numerical methods themselves, but also significantly
improved our computing capability and overcame
one of the most significant difficulties—the simula-
tion of fracture evolution. Special credit should be
given to T. Belytschko and his co-workers for the
development of the meshless technique that has
become an important field of research and applica-
tion for fractured rocks.

* Significant advances in the mapping and representa-
tion of the fracture systems in fractured rocks
by stochastic DFN models. This advance is a
specially useful development for fractured hard
rocks and has been developed and applied to a
large variety of problems where fluid flow is the
main concern. Although severe limitations still
exist (see later in this section), the DFN has
been developed from simple generic study techniques
into a practical tool for engineering scale applications
in a relatively short time, less than 20 years. Special
credit should be given to J.C.S. Long, P.A. Robinson,
W.S. Dershowitz, A.W. Herbert and others for
initiation and continuous development of the DFN
codes.

* Significant improvements in the formulation of
complex constitutive models for rocks, soils and rock
fractures, using different mathematical platforms,
such as plasticity theory, damage mechanics, contact
mechanics and fracture mechanics. The second law of
thermodynamics is being applied more and more in
the model formulations, either implicitly or explicitly,
and empirical relations obtained from laboratory
tests are used more correctly. The formulation of
constitutive models for numerical methods has been
largely driven by the need to characterize rocks and
rock fractures including stress-dependency, scale-
dependency, time-dependency, roughness character-
ization, damage and degradation, contacts and their
evolution, strain-localization, bifurcation, etc. Any
one of these problems is a serious challenge: the
combination of all such problems, especially concen-
trated when characterizing fractured rocks, makes
rock mechanics one of the most challenging fields of
applied mechanics.

* Development of alternative numerical models, often
as companions to the main-stream methods, such as
the BCM accompanying the BEM, lattice model
accompanying the DEM, percolation theory accom-
panying the DFN, etc. Although the roots of these
alternative formulations can be traced to the early 40s
and 50s, their applications to rock and soil mechanics
fields are relatively new, and they have played a
significant role in computational mechanics for civil
engineering.

* Development of mathematical models and computer
codes for coupled THM-processes of fractured
geological media, mainly fractured rocks and buffer
materials, and their verification against small, med-
ium and large-scale in situ experiments and generic
benchmark test problems, since the late 80s. This
development greatly broadens the scope of the
traditional rock/soil mechanics disciplines, and the
fields have been developed more systematically under
the governance of fundamental physical laws, such as
mass, momentum and energy conservation, and
concerning more general physical processes such as
fluid flow, heat transfer and stress/deformation,
rather than empirical approaches concerning only
strength/failure phenomena. The discipline of rock
mechanics is now established on a much improved
scientific foundation compared with 20 years ago.
Special credit should be given to C.-F. Tsang,
J. Noorishad, and the international DECOVALEX
project.

* Development of successful commercial software
packages which can be used by both the research
community and practising engineers, such as the
UDEC/3DEC/PFC DEM code group, FracMan/
MAFIC DFN codes, FLAC-2D and -3D FDM code
groups, etc. The popularity of these software
packages is largely due to their user-friendliness and
PC-oriented operating environment, which enables
the practising engineers, students and researchers to
run the models quickly without going through the
special training required and the inconvenience when
large, main-frame computers are needed. This user-
friendliness is one of the important factors for the
wide propagation of numerical modelling in civil
engineering fields today.

Despite all the advances, our computer methods and
codes can be inadequate when facing the challenge of
practical problems, especially when adequate represen-
tation of rock fracture systems and fracture behaviour
are the pre-conditions of successful modelling. The
fundamental reason for this is that there are still many
factors beyond the comprehension and hence control of
researchers, code developers and practising engineers
alike. The issues of special difficulty and importance are
presented below.
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6.2. Issues of special importance and difficulty in

numerical modelling for rock mechanics

Although the basic principles and engineering practice
of rock mechanics and engineering are well known
today, and a large number of numerical codes has been
developed over the years for design and simulation
purposes, a number of important scientific and technical
issues of difficulty exist today in either fundamental
understanding or numerical implementation.

(1) Understanding and mathematical representation of

large rock fractures. It is common practice that rock
fracture properties are obtained from laboratory
tests on samples of smaller fractures of limited size,
say 100–400mm. This size may or may not be large
enough to reach the stationarity threshold of even
the smaller fractures, depending on the roughness
characteristics of the sample surfaces (see, for exam-
ple, Fardin et al., 2001) [527]. There is an acute
lack of understanding of the hydro-mechanical
behaviour of large fractures (such as faults or
fracture zones) with a large width (say, 10mm–
50m). This type of rock fracture has been asso-
ciated with problems in many engineering projects,
and they are the most important geologic feature
for the design and safety of radioactive waste
repositories.
The difficulty is the fact that laboratory scale

tests cannot be applied to establish the character-
istics of large-scale fractures, and in situ experi-
ments are difficult to control in terms of loading
and boundary conditions, and are expensive and
difficult to ‘decode’. The lack of progress in this
regard leads also to the lack of proper constitutive
models for the large fracture zones, which, in turn,
reduces our current capacity in numerical modelling
for large-scale problems. Possible remedies may be
the use of back-analysis using large-scale in situ
instrumentation information for underground
works or GPS monitoring data for surface
works—but the derived properties are still subject
to the validity of the assumed constitutive models.

(2) Quantification of fracture shape, size and connectiv-

ity for DFN and DEM models. Measuring the shape,
size and connectivity of fractures is an extreme
technical difficulty, but the parameters are critical in
characterizing the fracture system geometry and
play important roles in the permeability of the
fractured rock mass. The difficulty lies in two
critical aspects: the size (obtained from trace length
information) and fracture behaviour (obtained
largely from laboratory tests). Thus, the quality of
DFN models depends directly on the quality of the
field mapping, which is affected by a large number
of factors (such as available exposure areas of the

mapping sites, limits of window/scanline mapping
regarding trace length biases, etc.), and the un-
known effect of cut-off limits of the mapping on
the validity of the DFN models. The effects of
fracture intersections for both flow and stress/
deformation is much less understood, compared to
the mechanics and flow of single fractures. Because
there is unlikely to be a rapid technical break-
through in mapping technology, the possible
remedy is to reduce (or at least understand) the
uncertainties by using Monte Carlo processes with
DFN models and systematic analyses of effects of
the fracture geometry assumptions. This will
provide a method for evaluating uncertainty and
variability ranges.

(3) Representation of rock mass properties and behaviour

as an equivalent continuum. Since most of the
measured rock properties are obtained through
small-scale laboratory tests, the measured values are
at best valid only at these small scales, representing
only intact rock matrix or single small fractures.
For large-scale problems, rock masses are often
assumed to be equivalent continua, and the
equivalent properties therefore need to be evaluated
mathematically; this is the termed upscaling and
homogenization of the rock mass properties which
is necessary for numerical solution of the pro-
blems—but is subject to the validity of some crucial
assumptions:
(a) existence of an REV which may or may not

exist in fractured rocks, depending on varia-
tions in the fracture density and geometry,
model cut-off limits and computing power
limitations;

(b) assumption of constitutive behaviour of the
equivalent continuum, which may or may not
be valid;

(c) assumption of the constitutive representations
for rock matrix and fractures, which may or
may not be sufficiently comprehensive;

(d) effects of fracture intersections whose hydro-
mechanical effect is itself a difficult and
unsolved issue, especially in 3-D and for fluid
flow problems; and

(e) the problem is site-specific and general solution
techniques may or may not exist.
Large-scale block tests or in situ borehole or

pressure-tunnel tests have similar drawbacks
relating to the evaluation of fracture effects
because the precise fracture geometry is also
unknown in these tests. Therefore rock mass
properties remain an issue of particular diffi-
culty. Numerical models were developed using
the discrete models for deriving equivalent
hydro-mechanical properties, mostly for 2-D
cases. Three-dimensional analysis is rarely
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reported mainly because of computational
difficulties in realistic fracture geometry repre-
sentations.

(4) Numerical representation of engineering processes,
such as excavation sequence, grouting and reinforce-

ment. It is not sufficient to consider just the initial
and final states for rock engineering: it may be
necessary, for example, to consider the complete
stress path during the stages of an excavation. This
is important for mining engineering, where there are
often complex geometry changes, but can be equally
important for civil engineering projects where there
is a set of excavation sequences and/or complex
excavation geometries. Also, if grouting and re-
inforcement measures are to be included for
analysis, e.g. evaluation of long-term stability
contributions from reinforcement measures, these
measures need to be included in the capabilities of
the computer codes, with properly developed
constitutive models for not only the supporting
elements and materials, but also contacts between
the rock and reinforcement. This is a difficult area
in current rock mechanics and engineering and
requires considerable increase of knowledge and
computing power, especially for 3-D models.
Empirical approaches have been especially success-
ful in the face of such difficulties. As Barton has
said (2001), ‘‘We need to damp the model down in
order to make it work.’’ [772].

(5) Interface behaviour. There are different types of
interfaces between components of a rock engineer-
ing project. Most notable in conventional rock
engineering are the interfaces between the rock
reinforcement and support components and the
rock mass. For a radioactive waste repository, the
most notable interfaces are threefold: canister-
bentonite, bentonite-rock and backfill-rock. An
adequate understanding of the THM behaviour of
these interfaces is needed for evaluation of their
functions for repository design and performance
assessment. However, there is no experimental basis
today for this understanding and it is an acute need
for research, especially regarding the bentonite-rock
and backfill-rock interfaces.

(6) Large-scale computational capacities. Most of to-
day’s numerical codes for rock mechanics and rock
engineering are suitable only for small scale generic
studies, mostly in 2-D. A few large-scale commer-
cial codes, such as ABAQUS, DIANA, etc. are
standard structural analysis codes and lack impor-
tant capabilities for rock mechanics and engineering
problems, such as fracture system treatment, con-
stitutive models for rock fractures, construction/
support sequence simulation, and THM coupling.
Enhanced computing power is required for large-
scale applications in the near future and so

development using parallel solution techniques is
needed.

(7) Scale and time effects. These two effects are the
most often-mentioned difficulties in rock engineer-
ing modelling because they are difficult to investi-
gate by either experimental or mathematical means.
The scale effect is caused by scale-dependency of
physical properties and the geometry of fractures;
and the time effect is caused mainly by material
creep over long periods of time. Another type of
time effect is the dynamic behaviour of a rock
excavation, such as during earthquakes. The
difficulty lies not only in understanding and
mathematical models for dynamic systems, but
also in obtaining dynamic values of all material
properties, which are usually measured in static
conditions.

(8) Systematic evaluation of geological and engineering

uncertainties. Although numerical modelling has
incorporated uncertainties, especially geological
uncertainties such as uncertain fracture system
geometry and fracture behaviour, the systematic
mathematical evaluation of the effects of such
uncertainties has not been attempted in the field
of rock mechanics. Perhaps some uncertainties,
such as fracture size and shape, can never be truly
evaluated. On the other hand, mathematical tools
exist today for partial quantitative evaluation of
uncertainties, such as uncertainty intervals, prob-
ability bounds, fuzzy sets, neural networks and
hybrid arithmetic and fuzzy geostatistics (Banks,
2001) [773]. They may become useful complements
to the traditional ‘engineering equivalence’ ap-
proaches as commonly applied today in rock
engineering for reducing property variations and
raising model confidence.

The above issues cannot cover all points of difficulty
in numerical modelling in rock mechanics. Other issues
of significance are the need for more laboratory and in
situ experiments for verification of numerical methods,
codes and models with well-controlled testing conditions
and large enough sample sizes, and the need for more
efforts in the combined applications of different model-
ling approaches, especially the 1:1 and not 1:1 modelling
approaches, such as using rock mass classification with
more numerically based methods.

7. Conclusions

The conclusions are presented in two parts: firstly,
specific conclusions relating to the main numerical
modelling methods; and then overview comments
relating to the general subject of numerical modelling
in rock mechanics.
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7.1. Main numerical modelling methods

7.1.1. Finite Element Method

The FEM will remain a mainstream numerical tool in
engineering computations for the visible future, simply
because of its maturity and advantages in handling
material inhomogeneity and non-linearity, and the
availability of many well-verified commercial codes for
large- or small-scale problems. Moreover, the meshless,
manifold or generalized FEM approaches may become
important subjects for further research and development
for problems of fractured rocks, mainly because of their
flexibility for meshing and capability of fracture evolu-
tion simulations without re-meshing. This fracture
simulation development provides a challenge to the
advantage, enjoyed so far by the BEM approach for
fracturing process simulation, but with the added
advantage of more natural treatment of material
non-linearity.

7.1.2. Boundary Element Method

The BEM method remains today the best tool
for simulating fracturing processes in rock and other
solids. The Galerkin BEM approach provides also a
promising platform for overcoming corner problems
and coupling with FEM because of its symmetric
stiffness matrix. The BEM’s advantage of smaller
computer memory and block-like matrix structure
when the multi-region technique is used makes it
more suitable for solving large-scale problems with
reduced degrees of freedom, compared with the FEM
and FDM. Algorithms for coupled TM and HM
processes have been developed without fracturing
processes being considered, but modelling fully coupled
THM processes using BEM technique has yet to be
developed.

7.1.3. Finite Difference Method/Finite Volume Method

The FDM, especially FVM, remains a powerful
numerical tool, not only because of its conceptual
simplicity, but also its flexibility in handling material
non-linearity. Its coupling with contact mechanics for
deformable block systems produced the DEM ap-
proach. It is especially useful for solving fluid flow
equations, and is therefore a useful tool for coupled
THM problems of large scale—due to its smaller matrix
size using iterative solution techniques.

7.1.4. Discrete element method (DEM)

The DEM approach, either explicit or implicit, has
become a powerful numerical modelling tool simply
because of its flexibility in handling a relatively large
number of fractures, for either purely mechanical
problems or for coupled THM processes. The main
shortcoming for the latter is the lack of fluid flow in the
rock matrix, so that the matrix–fracture flow interaction

cannot be adequately treated. The reason is the
exceptional computational effort, both computer mem-
ory and running time, required for even a moderately
large number of blocks. Coupling with meshless BEM,
and using parallel processing techniques on main-frame
computers may be useful alternatives to extend the
DEM’s capacity. However, the main difficulty for the
DEM is the uncertainty about the fracture system
geometry, and the effect of this uncertainty is difficult to
quantify. In addition, a DEM model requires 3-D
simulation: 2-D models can only be used for generic
studies, or when the fracture system geometry and
relative orientations of the engineering structures permit
2-D simplifications without causing unquantifiable
errors.

7.1.5. Discrete Fracture Network model

Like the DEM, the DFN model was developed from a
need to represent more realistic fracture system geome-
tries in 3-D (with 2-D DFN models having limited
practical applicability). And also like DEM, the DFN
models suffer the same shortcomings relating to
uncertain fracture system geometry. However, the
DFN approach is a valuable tool for generic studies
for quantitatively evaluating the impact of fracture
system variations on the model output. Large-scale
DFN calculations are easier to run because the number
of degrees of freedom of DFN models is much less
compared with FEM—because the discretization for
3-D problems is essentially at 2-D (if the FEM mesh
is used for fracture discretization) and 1-D (when pipe
and lattice network models are used). The problem of
fracture intersections, such as mixing of flow and
transmissivity change due to stress and displacement
discontinuities at intersections, has yet to be properly
solved, especially when the fracture deformation is
included. These disadvantages of lack of matrix flow
and stress influence may be difficult to overcome in
the near future, especially for near-field problems.
Understanding and quantifying the geological and
physical uncertainties remains the main task for DFN
development.

7.2. General comments regarding numerical models

1. The ‘model’ and the ‘computer’ are now integral
components in studies for rock mechanics and rock
engineering. Indeed, numerical methods and com-
puting techniques have become daily tools for
formulating conceptual models and mathematical
theories integrating diverse information about
geology, physics, construction technique, economy
and their interactions. This achievement has greatly
enhanced the development of modern rock me-
chanics from the traditional ‘empirical’ art of rock
strength estimation and support design to the
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rationalism of modern mechanics, governed by and
established on the three basic principles of physics:
mass, momentum and energy conservation.

2. The characteristics of the rock mass that distinguish
it from other engineering materials are the rock
mass fracturing and inhomogeneity that occurs at
several scales. Rock masses are disordered fractured
media in which multiple physical and chemical
processes co-exist and interact, and the parametric
values of the main feature, the fracture system, are
and will remain largely unknown. Consequently,
the major thrust of research and development in
rock mechanics is characterization and representa-
tion of the rock fractures, both as individual
entities and as a collective system. Furthermore,
the lack of information about the rock fractures
means that working with uncertainty and variability
becomes a way of life in rock mechanics and
rock engineering, which for numerical modelling
demands clarification of sources, significances,
propagation paths of uncertainties and their math-
ematical treatment.

3. It is in regard to the rock fracturing that numerical
models play their most useful role: they can
provide information on or insights into the
behaviour of rock masses (that cannot be obtained
by experiments or observation) by systematic
stochastic, sensitivity and scoping analyses with
chosen sophistication in processes, properties,
parameters and engineering perturbations. The
main advantage of the numerical models is their
repeatability with clear demonstration of causes
and effects.

4. Full validation of numerical models and computer
codes by experiments in rock mechanics is not
possible, and can at best be only partial, due to the
necessary assumptions in the mathematical models
and hidden nature of the fractures. All verifications
are relative by nature, but our confidence in the
numerical models can be raised when they are
successfully calibrated against well-controlled la-
boratory and in situ experiments, and when their
output for analysing practical problems follows
both the basic laws of physics and engineering
experience. This combined ‘scientific’ and ‘engineer-
ing’ support for judgement is essential for applying
numerical methods to rock mechanics and rock
engineering.

5. The most important step in numerical modelling is
not running the calculations, but the earlier ‘‘con-
ceptualization’’ of the problem regarding the
dominant processes, properties, parameters and
perturbations, and their mathematical presenta-
tions. The associated modelling component of
addressing the uncertainties and estimating their
relations to the results is similarly important. The

operator should not ‘dive in’ and just use
specific approaches, codes and numerical models,
but first consider the specific codes and models
to evaluate the harmony between the nature of
the problem and the nature of the codes, plus
studying the main uncertainties and their potential
effects on the results. This practice is necessary
because today many different approaches and
computer codes are available and the operator
must have a clear idea to harmonize the program to
the problem. This idea is strongly related to
technical auditing and quality control issues which
will become increasingly applied in the future as the
design of large rock engineering projects becomes
more subject to independent audit (Hudson, 2001)
[1,2].

6. Although clearly defined mathematical approaches
may exist to describe and analyse uncertainties and
error propagation, their application in mathemati-
cal and computer models of rock engineering is still
difficult—simply because we do not have a refer-
ence basis for judgements, except for empirical
judgement. Very often, mistakes are identified
directly through structural failure or accidents, but
conceptual failures and modelling mistakes can be
hidden under the thick blanket of the ‘operational
success’ of the rock engineering structure. More-
over, model reliability and credibility are always
relative, subjective and case-dependent. This lack of
a rigorous treatment of uncertainty in rock en-
gineering may well be a major reason why many
practising engineers and researchers remain uncer-
tain about the usefulness of mathematical models
and computer methods.

7. There are no clear-cut advantages or shortcomings
when considering continuum or discrete models for
simulating fractured rocks. Continuum models
often include a limited number of explicitly
represented fractures of usually larger scales, and
the blocks in the discrete models are treated as
continuum bodies with standard discretization
meshes. The main difference is
� whether contacts between the blocks (particles)
remain unchanged (continuum approach) or
need to be continuously updated using contact
mechanics principles (discrete approach), and

� whether the fractures are permitted to have
large-scale displacement/movement, including
rotation and complete detachment (discrete
approach).
Since the main effects of the fractures are

mostly concentrated near excavated surfaces,
the discrete approach is more appropriate
for near-field representations and the equiva-
lent continuum approach is more efficient for
far-field regions. Hybrid models are therefore
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the natural product of combinations of the
two.

8. Experiences with the comparison between the
discrete and continuum approaches for coupled
T–H–M processes for fractured rocks show that
our present numerical ability can predict the
heat transfer processes in fractured rocks, either
with or without convection by fluid flow with
high confidence, as demonstrated by a large number
of benchmark tests, small and medium scale
laboratory and large-scale in situ heating experi-
ments. Our present numerical capability can also
provide accepted predictions for stress and displace-
ment of fractured rocks in terms of magnitudes
with reasonable confidence. However, current
numerical methods cannot predict fluid flow in
fractured rocks with reasonable confidence, espe-
cially for the near-field, due mainly to the dom-
inance of the, unknown, fracture system geometry,
even when the DFN models are used (Jing et al.,
1996) [714].

9. Finally in summary, success in numerical modelling
for rock mechanics and rock engineering depends
almost entirely on the quality of the characteriza-
tion of the fracture system geometry, physical
behaviour of the individual fractures and the
interaction between intersecting fractures. The
engineer needs a predictive capability for design,
and that predictive capability can only be achieved
if the rock reality has indeed been captured in the
model—and the rock fractures dominate. Today’s
numerical modelling capability can almost handle
very large-scale and complex equations systems, but
the quantitative representation of the physics of
fractured rocks remains generally unsatisfactory,
although much progress has been made in this
direction.

The key issues of importance for numerical modelling
are:

* the development of advanced rock mass character-
ization techniques and modelling methods, and

* more scientific treatment of the sources and effects of
uncertainties in geology, material behaviour, natural
or man-made disturbances, and other economic and
social constraints.

The fact that these uncertainties will remain and will
never be truly removed is part of the character of the
rock mechanics and rock engineering subjects. Re-
searchers and practitioners should understand the
uncertainties, scientifically present them, and assess
them—so that the design and performance assessment
of engineering works in fractured rocks can be
performed with adequate management of the risks yet
without being over-conservative.
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