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The work in this paper deals with the development of momentum and thermal boundary layers when a
power law fluid flows over a flat plate. At the plate we impose either constant temperature, constant flux
or a Newton cooling condition. The problem is analysed using similarity solutions, integral momentum
and energy equations and an approximation technique which is a form of the Heat Balance Integral
Method. The fluid properties are assumed to be independent of temperature, hence the momentum equa-
tion uncouples from the thermal problem. We first derive the similarity equations for the velocity and
present exact solutions for the case where the power law index n ¼ 2. The similarity solutions are used
to validate the new approximation method. This new technique is then applied to the thermal boundary
layer, where a similarity solution can only be obtained for the case n ¼ 1.
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1. Introduction

Describing the flow of a Newtonian fluid in the boundary layer
above a flat plate is one of the classical problems of fluid mechan-
ics. Since the majority of practical fluids are non-Newtonian the
extension of this theory to such fluids is obviously also a key prob-
lem. Hence, in this paper the flow of a power law fluid past a flat
plate, as well as the associated heat transfer, is examined.

The boundary layer flow of a power law fluid has received much
analytical attention, see [6–8,10–12,16] for example. When dealing
with the momentum boundary layer alone the problem may be
analysed using similarity methods. For the Newtonian case the
governing equations reduce to the Blasius equation: an ordinary
differential equation that is easily solved numerically [26]. For a
power law fluid the reduction of the system via similarity variables
leads to a modified version of the Blasius equation [11,12,25,27].

When the thermal boundary layer is included, due to the differ-
ences in the power of the stress gradient and second derivative of
temperature, a similarity solution is not possible (except in the New-
tonian case). In this case there are two standard ways forward. The
governing equations can be solved numerically, see [2,14,28] for
example, or via integral methods (which will be discussed in detail
later), see [1,6–8]. The accuracy of the latter approach is known to
deteriorate as the fluid becomes less Newtonian, [8,12]. As discussed
by Chhabra [8] the numerical results are more accurate than the
integral methods but the integral methods are useful since they of-
ten lead to closed form solutions. For this reason in the following
ll rights reserved.
work we will examine the integral method approach, with a view
to improving its accuracy.

In Section 2 we derive the governing equations and correspond-
ing integral forms describing the momentum and thermal bound-
ary layers. In Section 3 we discuss the similarity solutions for the
original and integral forms of the momentum equation. It is shown
that both problems have an exact solution for the case where the
power law index n ¼ 2. The numerical solution of the appropriate
ordinary differential equations tends to these solutions as n! 2. In
Section 4 we describe the standard approximation to the momen-
tum equations attributed to von Kármán and Pohlhausen, see [26],
as well as a more accurate method developed by Chhabra [7,8]. We
then demonstrate a variation of the method designed for the anal-
ogous Heat Balance Integral Method that minimises the error
introduced by solving the governing equations only in an integral
sense, see [18,21–23]. After demonstrating the improved accuracy
of the new method we then apply it to the thermal boundary layer
in Section 5 for a constant temperature, a constant flux and New-
ton cooling condition at the plate.

2. General theory

The boundary layer equations for two dimensional steady
incompressible flow are

u
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þ v @u
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dU1
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Nomenclature

C drag coefficient
H ¼ L=Re1=ðnþ1Þ height scale
H convective heat transfer coefficient
L plate length
m flow consistency index
n power law index
Re Reynolds number Re ¼ qU2�n

1 Ln=m
Pr Prandtl number Pr ¼ H2U1=ðjLÞ
Q non-dimensional heat flux at y ¼ 0
T fluid temperature
T1 far field temperature
u ¼ ðu;vÞ velocity vector

U1 far field velocity
dðxÞ; dTðxÞ momentum and thermal boundary layer thickness
� ¼ dT=d ratio of boundary layer thicknesses
j thermal diffusivity
q fluid density
s shear stress
n similarity variable

Subscripts
0 value in fluid at substrate y ¼ 0þ

s value at substrate y ¼ 0�
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where (u,v) is the fluid velocity, U1 is the velocity in the far field
and s is the shear stress. The velocity profile is subject to the bound-
ary conditions

u ¼ v ¼ 0 ð3Þ

at y ¼ 0 and

u ¼ U1 ð4Þ

as y!1. At x ¼ 0 the flow is the far field flow, uð0; yÞ ¼ U1. For a
power law fluid we can set

s ¼ m
@u
@y

���� ����n�1
@u
@y
; ð5Þ

where m is the consistency index and n > 0.
If the physical properties of the fluid only depend weakly on the

temperature (so that we can assume they are constant) then
the momentum boundary layer can be analysed independently
of the thermal problem. The thermal problem depends on the flow
and for an incompressible fluid is governed by

@

@x
ðuTÞ þ @

@y
ðvTÞ ¼ j

@2T
@y2 ; ð6Þ

where j is the thermal diffusivity and T ! T1 as y!1;
Tð0; yÞ ¼ T1. We will discuss the boundary condition at y ¼ 0 later.

For a Newtonian fluid equations (1)–(6), with the temperature
specified at the plate Tðx;0Þ ¼ Ts, can be examined using a similar-
ity variable, see [9, p311]. However, when n – 1 the similarity
reduction is not possible so we must resort to numerical or approx-
imate solution methods.

A standard approximation is known as the Integral Momentum
Equation (IME), [7]. The IME may be obtained from the boundary
layer equations (1, 2)or via a simple mass and momentum balance
argument, see [7, pp. 345–351], [26, p. 191]. Integrating Eq. (1)
over y 2 ½0;h�, where h is everywhere greater than the boundary
layer thickness leads to

q
Z h

0
u
@u
@x
þ v @u
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� U1

dU1
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dy ¼ sjhy¼0: ð7Þ

We can replace v in the integral via Eq. (2) after noting vðx;0Þ ¼ 0.
This leads to a double integral term; changing the order of integra-
tion and integrating once gives

q
Z h

0
2u
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� U1

dU1
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dy ¼ �s0; ð8Þ

where s0 is the shear stress in the fluid at y ¼ 0. In the simplest case
U1 is constant and the integral is zero everywhere outside the
boundary layer (since then u ¼ U1) and we may replace the upper
limit of the integral by the unknown boundary layer thickness
d ¼ dðxÞ to find

q
Z d

0

@

@x
½uðU1 � uÞ�dy ¼ q

d
dx

Z d

0
uðU1 � uÞdy ¼ s0: ð9Þ

This is known as the Integral Momentum Equation (IME). In this
form it holds for both laminar and turbulent flow and no assump-
tion has been made about the nature of the fluid [7]. However, from
now on we will assume that the power law relation, Eq. (5), holds. A
similar analysis on (6) leads to the Integral Energy Equation (IEE)

d
dx

Z dT

0
uðT1 � TÞdy ¼ j

@T
@y

����
y¼0
; ð10Þ

where the thickness of the thermal boundary layer dTðxÞ–dðxÞ.
In Section 4, when we develop the approximation method, we

will work with derivative forms of these equations and so denote
G ¼ quðU1 � uÞ; F ¼ uðT1 � TÞ. Then we will use derivative forms
of the integral equations
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Note, these equations follow from (9,10) by integrating over the
boundary layer. For example, with (11b) we note that
FðdTÞ ¼ TyðdTÞ ¼ 0 and soZ dT ðxÞ

0
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Eq. (10) then follows immediately.

2.1. Non-dimensionalisation

Using the standard boundary layer scaling for a power law fluid
we set

u ¼ U1û; v ¼ U1
Re1=ðnþ1Þ v̂ ; x ¼ Lx̂; ð13Þ

y ¼ Hŷ ¼ L

Re1=ðnþ1Þ ŷ;
bT ¼ T � Ts

T1 � Ts
; ð14Þ

where U1 is assumed constant, the Reynolds number
Re ¼ qU2�n

1 Ln=m and L is the plate length. Eq. (1) becomes
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 !
; ð15Þ

where the hats have been dropped. The thermal problem is de-
scribed by
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Fig. 1. Comparison of similarity solutions for velocity u from Eqs. (25) and (26).
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where the Prandtl number Pr ¼ H2U1=ðjLÞ. The IME (9) and IEE
(10) becomeZ d
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Finally, the derivative forms in (11) are now
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where now G ¼ uð1� uÞ; F ¼ uð1� TÞ.
The velocity is subject to the boundary conditions

uðx;0Þ ¼ vðx; 0Þ ¼ 0; uðx;1Þ ¼ 1; uð0; yÞ ¼ 1: ð20Þ

The temperature is subject to

Tðx;1Þ ¼ Tð0; yÞ ¼ 1; ðaÞ Tðx;0Þ ¼ 0; ðbÞ Tyðx;0Þ ¼ Q ;

ðcÞTy ¼HT; ð21Þ

where Q is a non-dimensional constant heat input and H is a non-
dimensional heat transfer coefficient. We will deal with each of the
conditions (21a–c) in Section 5.

3. Similarity solution for the velocity

For a Newtonian fluid the similarity solution is obtained by intro-
ducing a stream function ðu; vÞ ¼ ðwy;�wxÞ. The stream function may

be expressed in terms of the similarity variable n ¼ y=
ffiffiffiffiffiffi
2x
p

, so
w ¼

ffiffiffiffiffiffi
2x
p

gðnÞ and gðnÞ is an as yet unknown function. Then u ¼ gn

and v ¼ ðngn � gÞ=
ffiffiffiffiffiffi
2x
p

. Substituting these into Eq. (15) leads to the
Blasius equation, see, for example, [26, p. 167–172]. The boundary
layer equations for a power law fluid may be derived in a similar

manner. The similarity variable is n ¼ y=ðnðnþ 1ÞxÞ1=ðnþ1Þ and

u ¼ wy ¼
wn

½nðnþ 1Þx�1=ðnþ1Þ ¼ gn ð22Þ

v ¼ �wx ¼
1

nþ 1
nðnþ 1Þ
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ðngn � gÞ: ð23Þ

The modified Blasius equation is then
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which is solved subject to gð0Þ ¼ gnð0Þ ¼ 0; gnð1Þ ¼ 1 (correspond-
ing to u ¼ v ¼ 0 on y ¼ 0 and u! 1 as y!1). Eq. (24) is often
written with the modulus sign removed or with all the gnn terms
put together, as written below in Eq. (25): this requires division
by gn�1

nn , see [11,12] for example. For n 6 1 it can be shown gnn > 0
[4,16] and hence these simplifications are valid. For n > 1; gnn is
compactly supported, that is there exists a point n ¼ nc > 0 beyond
which gnn ¼ 0 [4]. If the modulus sign is removed then numerical
solutions can predict gnn becomes negative beyond nc and so the
velocity will decrease in an unphysical manner. This is in accor-
dance with the observation of [1,27] that the boundary layer has fi-
nite thickness. Denier and Dabrowski [11] show that for n > 1 a
viscous adjustment layer should be introduced to match to the
far-field boundary conditions. However, from now on we will ne-
glect the modulus sign in the stress expression and so deal with
@3g

@n3 þ g
@2g

@n2

 !2�n

¼ 0: ð25Þ

This equation holds for all n > 0 when n 6 1 and for n < nc when
n > 1. Consequently we only deal with physically realistic velocity
profiles.

The similarity solution of the momentum equation (19a) in-
volves the same variable, n. Since there is no vertical velocity then
there is no need to introduce the stream function and so the gov-
erning equation is one order less than (25) (of course since (25)
is autonomous we could also reduce the order by one). Setting
uðx; yÞ ¼ f ðnÞ and neglecting the modulus sign leads to

@2f

@n2 � ð1� 2f Þn @f
@n

� �2�n

¼ 0: ð26Þ

The three conditions uðx; 0Þ ¼ 0; uðx;1Þ ¼ 1; uð0; yÞ ¼ 1 reduce to
f ð0Þ ¼ 0; f ð1Þ ¼ 1.

The limiting case n ¼ 2 reduces Eq. (25) to gnnn þ g ¼ 0. This is a
linear constant coefficients equation, with solutions of the form erx,
where r3 ¼ �1. The solution satisfying the boundary condition at
n ¼ 0 is

gðnÞ ¼ A0 e�n þ en=2
ffiffiffi
3
p

sin

ffiffiffi
3
p

n
2
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ffiffiffi
3
p

n
2

 !" #
: ð27Þ

Now it is clear that the requirement gnð1Þ ¼ 1 cannot be met and a
finite width must be imposed, see [11]. Denoting the edge of the
boundary layer as nc we set gnðncÞ ¼ 1 and introduce a further con-
dition to determine nc , namely gnnðncÞ ¼ 0. This leads to

A0 ¼ �e�nc þ enc=2
ffiffiffi
3
p

sin

ffiffiffi
3
p
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2
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3
p
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2

 !" #�1

; ð28Þ

where nc satisfies the transcendental equation

e�nc þ 2enc=2 cos

ffiffiffi
3
p

nc

2
¼ 0: ð29Þ

In a similar fashion we may solve the Integral Momentum equation
(26) for the case n ¼ 2. Now the solution is in terms of Airy func-
tions with

f ðnÞ ¼ a0Aið�21=3nÞ þ a1Bið�21=3nÞ þ 1
2

ð30Þ

and
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32=3Cð2=3Þ

2
�
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3
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a1 ¼
32=3Cð2=3Þ

2
Ai0ð�21=3ncÞ

Bi0ð�21=3ncÞ �
ffiffiffi
3
p

Ai0ð�21=3ncÞ
; ð32Þ

where primes denote differentiation with respect to n. The position
of the edge of the boundary layer nc satisfies
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a0Aið�21=3ncÞ þ a1Bið�21=3ncÞ ¼
1
2
: ð33Þ

A comparison of the velocities uðnÞ ¼ f ðnÞ; gnðnÞ predicted by the
two similarity solutions is shown in Fig. 1. The solution to the IME
problem, Eq. (26), is shown as a dashed line whilst that of the original
problem, Eq. (25), is the solid line. The results are shown for four val-
ues of n ¼ 0:5; 1; 1:5; 2. Note, to highlight the differences in the
solutions we have truncated the computational domain shown in
the figure. For example, when n ¼ 0:5 we actually carry out the cal-
culation for gnðnÞuntil n ¼ 50 and for f ðnÞuntil n ¼ 20. For n ¼ 0:5 the
two solutions are clearly quite different, however, the statement that
the IME becomes less accurate as the fluid becomes less Newtonian
[8,12] is not strictly true given that the error for n ¼ 1:5 is smaller
than that for n ¼ 1. The lines for n ¼ 2 show the two analytical solu-
tions, (27), (30). Note that, after discussing the fact that the similarity
solution does not exhibit the correct far-field behaviour for n > 1 we
still present results for n ¼ 1:5, where we have taken the end-point
as n ¼ 5:8 for the g calculation. In fact up to around n ¼ 1:75 we
are able to produce results where the velocity appears to asymptote
to 1. The solid line for n ¼ 1:5 shows this quite clearly. Furthermore,
the drag coefficient (discussed in Section 4.5), which is a much stric-
ter indicator of the accuracy, converges to within three decimal
places. The solutions for n > 1 exhibit the expected behaviour in that
they tend towards the analytical solution for n ¼ 2 as n increases. So,
although the solution with n > 1 requires a finite-width boundary
layer, our calculations indicate that relatively accurate results can
be obtained, at least for n < 1:75, without carrying out any matching
to an outer layer.

We now have similarity solutions for the velocity profiles from
the full boundary layer equation and the integrated version. When
we consider the thermal boundary layer a similarity solution is
only possible for the Newtonian case, [9]. This is discussed in Sec-
tion 5.1. Consequently we will now seek approximate solutions
that do not have this restriction. The similarity solution will be
used to check the accuracy of the approximate solutions.

4. Approximate solutions

4.1. The Heat Balance Integral Method (HBIM)

The integral methods described in the following section stem
from the seminal work of von Kármán and Pohlhausen [26] on
boundary layer flow. However, there has perhaps been more re-
search on the related Heat Balance Integral Method (HBIM)
[13,18]. So, although the HBIM derives from the von Kármán–Pohl-
hausen method we will briefly describe the HBIM first and then
show the analogy with the current problem.

The HBIM is a method for solving the heat equation in an integral
sense. If we consider the basic problem of cooling the surface y ¼ 0 of
a semi-infinite material occupying y > 0 that is initially at a constant
temperature. Then we may write the non-dimensional problem as

@T
@t
¼ @

2T
@y2 ; Tð0; tÞ ¼ 0; Tðy;0Þ ¼ 1; Tð1; tÞ ¼ 1: ð34Þ

Although the heat equation has infinite speed of propagation, in the
HBIM a distance d, known as the heat penetration depth, is intro-
duced. For y P d it is assumed that the temperature rise above
the initial temperature is negligible and so Tðd; tÞ ¼ 1 and this re-
places the final condition of (34). To ensure that the solutions merge
smoothly with the constant outer solution a gradient condition
Tyðd; tÞ ¼ 0 is also imposed. Finally, the heat equation is integrated
for y 2 ½0; d� to obtain the Heat Balance IntegralZ d

0

@T
@t

dy ¼
Z d

0

@2T
@y2 dy ¼ �@T

@y

����
y¼0
: ð35Þ
Note that this is rather a weak condition since the choice of d only en-
sures that the area under Tt and Tyy match. This means that Tt can be
very different to Tyy and so it is no surprise that certain choices of
approximating function for T perform significantly better than others
[18,21,22].

The standard HBIM proceeds by defining a polynomial form of T,
with coefficients that satisfy the boundary conditions. Substituting
the polynomial into (35) then gives a first order ordinary differential
equation for d which may be solved analytically. A classic issue with
this method is the order of the approximating polynomial. Goodman
[13] advocates a quadratic. However, cubic and quartic functions
have also been used [3,17,20,23]. To improve the accuracy of solu-
tions Braga et al. [5] use a non-integer power that is chosen based
on a known exact solution. To avoid the requirement that approxi-
mate solutions should be based on known solutions, thus making
the method redundant, Myers [21,22] developed a method where
a non-integer power is chosen based on minimising the error

E ¼
Z d

0

@T
@t
� @

2T
@y2

" #2

dy P 0: ð36Þ

If T is an exact solution then obviously E ¼ 0. Approximate solutions
will have E > 0. Taking the square of Tt � Tyy prevents the cancelling
of errors of opposite sign and also magnifies the importance of re-
gions where T does not closely satisfy the heat equation [15].

Now consider the current problem. Comparison with the HBIM
shows that the IME, Eq. (17), is an integrated form of solution of Eq.
(19a), where the thickness of the boundary layer is equivalent to
the heat penetration depth. Hence if we wish to improve on the
accuracy of the IME then we should not only solve the integral
equation, Eq. (17), but also minimize the error

Ep ¼
Z d

0

@G
@x
� @s
@y

� �2

dy; ð37Þ

where G ¼ uð1� uÞ and the subscript p indicates we take a polyno-
mial power p. We will carry this out in Section 4.3 but first opt to
describe the von Kármán–Pohlhausen method as a way of introduc-
ing the integral method for boundary layer flows.

4.2. Von Kármán–Pohlhausen method

The classical method involves approximating the velocity by a
quartic polynomial subject to u ¼ 0 at y ¼ 0; u ¼ 1; uy ¼ uyy ¼
uyyy ¼ 0 at y ¼ d, hence

u ¼ 4
y
dP
� 6

y
dP

� �2

þ 4
y
dP

� �3

� y
dP

� �4

; ð38Þ

where the subscript P denotes Pohlhausen’s solution. Substituting
this into the IME, Eq. (17), without the modulus sign leads to

d
dx

4
45

dP

� �
¼ 4

dP

� �n

: ð39Þ

Applying dPð0Þ ¼ 0 gives

dP ¼ ð4n�1ðnþ 1Þ45xÞ1=ðnþ1Þ
: ð40Þ

Comparison with the Blasius solution shows that Pohlhausen’s solu-
tion is not a particularly accurate approximation (see Section 4.4).
Chhabra [8] derives a more accurate representation using a cubic
approximating function. The boundary conditions applied by Chh-
abra are u ¼ uyy ¼ 0 at y ¼ 0 and u ¼ 1; uy ¼ 0 at y ¼ d. The condi-
tion uyy ¼ 0 follows from setting u ¼ 0 in Eq. (2). Presumably the
physical reasoning behind this new boundary condition was based
on a desire to improve the accuracy near the wall, y ¼ 0, with less
emphasis on the solution at infinity. Consequently, one boundary
condition is dropped at infinity to be replaced by one at y ¼ 0. This
method leads to an approximating function
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u ¼ 3
2

y
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� 1

2
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: ð41Þ

From the IME we find

dC ¼ ðnþ 1Þ 3
2

� �n 280
39

x
� �1=ðnþ1Þ

ð42Þ

and this gives significantly more accurate solutions than the previ-
ous method (to be discussed further in Section 4.4).

4.3. Optimal power solution

An alternative method is to seek a polynomial approximation
where one of the powers is unknown. Taking the same number
of terms as in Chhabra’s solution we assume an approximating
function of the form

u ¼ a0 þ a1 1� y
d

� 	
þ a2 1� y

d

� 	2
þ ap 1� y

d

� 	p
: ð43Þ

We expand in terms of ð1� y=dÞ for two reasons. Firstly it simplifies
the algebra. Secondly, and most importantly, it has been shown for
analogous thermal problems that this form provides more accurate
solutions than the expansion in y=d [18]. Applying the same bound-
ary conditions as Chhabra we find

u ¼ 1� pðp� 1Þ
ðpþ 1Þðp� 2Þ 1� y

d

� 	2
þ 2
ðpþ 1Þðp� 2Þ 1� y

d

� 	p
: ð44Þ

For large p this reduces to a quadratic form

u! 1� 1� y
d

� 	2
� �

: ð45Þ

At the moment we have two unknowns, p and d. We determine d
through the IME, Eq. (17). Evaluating the integral with the velocity
of (44) gives

d
dx
½f1ðpÞd� ¼

f2ðpÞ
dn ; ð46Þ

where

f1ðpÞ¼
1
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3
�2p4þ11p3þ27p2þ25pþ15

5ðpþ3Þð2pþ1Þ
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f2ðpÞ¼
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Hence

d ¼ ðnþ 1Þf2

f1
x

� �1=ðnþ1Þ

¼ ax1=ðnþ1Þ; ð49Þ

after applying dð0Þ ¼ 0. Note, this has the same x dependence as the
previous solutions, Eqs. (40) and (42), only the constant coefficient
has changed.

The value of p is determined by minimizing the error Ep, defined by
Eq. (37), where

@G
@x
¼ @u
@x
½1� 2u�: ð50Þ

The derivatives required to calculate Gx and sy are

@u
@y
¼ 2p
ðpþ 1Þðp� 2Þd ðp� 1Þ 1� y

d

� 	
� 1� y

d

� 	p�1
� �

ð51Þ

@2u
@y2 ¼

2pðp� 1Þ
ðpþ 1Þðp� 2Þd2 1� y

d

� 	p�2
� 1

� �
ð52Þ

@u
@x
¼ 2py

ðpþ 1Þðp� 2Þd2

dd
dx

1� y
d

� 	p�1
� ðp� 1Þ 1� y

d

� 	� �
ð53Þ

dd
dx
¼ a

x�n=ðnþ1Þ

nþ 1
: ð54Þ
Since the algebra becomes very cumbersome at this stage, we
choose to evaluate Ep numerically.
4.4. Velocity results

The following results were calculated using MATLAB. The error
Ep was obtained using the derivatives defined in (51)–(54) and the
integral evaluated with the subroutine quadl, which uses adaptive
Lobatto quadrature. A range of p values was employed and the
optimal p chosen to be the one to produce the minimum value of
Ep. The value of p was fixed within 0.1% of the possible minimum
value and Ep did not change within four decimal places.

The velocity profiles for a Newtonian fluid are given in Fig. 2.
The similarity solutions for the boundary layer equations and the
IME, Eqs. (25) and (26), are shown as solid and dashed lines respec-
tively. The optimal p calculation leads to p ¼ 3:48, which is shown
as a dash-dot line and is hard to distinguish from the p ¼ 3 solution
(dotted line). The ‘+’ signs show Pohlhausen’s solution. These re-
sults provide little incentive for using the new method; Chhabra’s
solution seems sufficiently accurate. However, it is clear that Pohl-
hausens method and the IME provide the worst approximations. So
now we show solutions for n ¼ 0:6 in Fig. 3. Since the velocity pro-
files in general have the form shown in Figs. 1 and 2 we only show
a close-up of the solutions in the vicinity of y ¼ 0. In this case we
find the optimal p ¼ 10:016. Now it is clear that the optimal p solu-
tion gives the best approximation to the boundary layer solution.
Furthermore, since it provides the best approximation for the
velocity near y ¼ 0 it will also provide the best approximation to
the drag coefficient. An interesting point to note is that the IME
similarity solution provides the worst approximation and the poly-
nomial solutions are significantly more accurate.
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4.5. Drag coefficient

A quantity of primary interest is the drag coefficient CD. Since
this involves the integral of the shear stress along the plate, any
errors in the shear stress will be magnified when calculating CD.
It is therefore important to have an accurate approximation to
the wall stress.

In non-dimensional form the drag coefficient is scaled with
�s=ðqU2

0Þ, where �s ¼ mUn
0=Hn is the shear stress scale. The drag coef-

ficient is calculated via the shear stress at the substrate

s0ðxÞ ¼
@u
@y

����
y¼0

 !n

¼
gnð0Þ

½nðnþ 1Þx�1=ðnþ1Þ

 !n

: ð55Þ

The local skin friction coefficient is then defined as cf ðxÞ ¼ 2s0ðxÞ.
The average wall stress is

�s0 ¼
Z 1

0
s0 dx ð56Þ

and the drag coefficient is

CD ¼ 2�s0: ð57Þ

So for the similarity solution to the boundary layer equations we find

CD ¼
2ðnþ 1Þgn

nnð0Þ
½nðnþ 1Þ�n=ðnþ1Þ ; ð58Þ

where gnnð0Þ must be determined numerically. For the similarity
solution for the IME we simply replace gnnð0Þ with fnð0Þ. For the
optimal p solution we use Eqs. (49) and (51) to find

s0 ¼
2p

ðpþ 1Þa

� �n

x�n=ðnþ1Þ; ð59Þ

where a ¼ ððnþ 1Þf2=f1Þ1=ðnþ1Þ and f1; f 2 are defined in Eqs. (47) and
(48). The corresponding drag coefficient is

Cp ¼ 2ðnþ 1Þ 2p
ðpþ 1Þa

� �n

: ð60Þ

Similarly, for Chhabra’s solution we can write

CC ¼ 2ðnþ 1Þ 39
280ðnþ 1Þ

3
2

� �1�n
" #n

: ð61Þ

If we set p ¼ 3 in (60) then we obtain (61).
In Table 1 we present values for the drag coefficient calculated via

the numerical solution of the modified Blasius equations (25) and
(58) as well as the values calculated through the approximate solu-
tions with p ¼ 3 and the optimal p method. The values of CD for
n ¼ 3; 4; 5 are taken from [7]. We do not present results using the
IME similarity solution, Eq. (26), since it is clear from the previous
figures that the results are not accurate. Pantokratoras [24] points
out that in numerous studies of boundary layer flow the solutions
Table 1
Drag coefficient.

n CD via (58) CC via (61) Error (%) Cp via (60) (p) Error (%)

0.2 2.0754 1.794 13.5 1.868 9.9
0.4 1.8377 1.626 11.5 1.7434 5.1
0.6 1.6268 1.4914 10.7 1.5765 (10.016) 4
0.8 1.4597 1.3824 5.3 1.4239 (4.808) 2.4
1 1.3282 1.292 2.7 1.307 (3.488) 1.6
1.2 1.2234 1.2183 0.4 1.2093 (2.74) 1.1
1.5 1.1016 1.128 �3 1.091 (2.114) 0.96
1.7 1.0373 1.0781 �3.9 1.0282 (1.876) 0.9
2 0.959 1.014 �5.7 0.9513 (1.6573) 0.8
3 0.776 0.872 �12.4 0.786 (1.352) �1.3
4 0.678 0.79 �16.5 0.6922 (1.24) �2.1
5 0.613 0.732 �19.4 0.6315 (1.18) �3
are incorrect due to working over a domain that is too small (in fact
he gives over 70 references where the majority have inaccurate solu-
tions). In particular he points out that a truncated domain will lead to
errors in the values of wall shear stress and wall heat transfer. For
this reason we have taken great care to ensure that the numerical
solution has converged. The numerical solution for gnnð0Þ is very sen-
sitive to the length of the domain and so we choose a final value for n
that is sufficiently large so that the solution does not change within

three decimal places. Note, since n ¼ y=½xðnðnþ 1ÞÞ�1=ðnþ1Þ this posi-
tion will vary with n. For example, if the boundary layer appears to
have ended around y ¼ 10 (and we carry out all calculations at
x ¼ 1) then for n ¼ 1 we compute until n ¼ 10=

ffiffiffi
2
p

, whereas for

n ¼ 0:4 we require n � 10=ðð0:2Þ1=1:4Þ � 31 (in fact we take it much
further to n ¼ 100). Acrivos et al. [1] obtained values for the drag
coefficient that are typically around 5% different to the present ones.
By decreasing our domain we can reproduce their results, indicating
that the discrepancy is due to their taking too small a domain for the
integration. In the first column of Table 1 we show the n value, then
in the second column the drag coefficient, CD, calculated from the
similarity solution, (58). The third and fourth columns give the drag
coefficient calculated using Chhabra’s solution with p ¼ 3 and the
associated difference with the similarity solution. The fifth and sixth
columns show the drag coefficient using the optimal p method and
the error. In brackets is the p value required to obtain this solution.
Using the optimal p method we cannot obtain solutions for
n < 0:555. The problem appears to be that as n decreases p increases
and the velocity profile becomes approximately quadratic, with a
very slight deviation near x ¼ 0. Consequently the higher order poly-
nomial is not appropriate. So, for small n the velocity may be de-
scribed by the quadratic form (45) where dðxÞ given by (49) takes

the limiting value a! ð15ðnþ 1Þ2n�1Þ1=ðnþ1Þ. This leads to Cp ! 2
ðnþ 1Þð2=aÞn as p!1. Unfortunately, since the deviation from
quadratic is in the vicinity of y ¼ 0 the greatest errors are also there
and so the drag coefficient calculation deteriorates, although they
are still an improvement on choosing p ¼ 3.

From the table it can be seen that in general the current method
provides a significantly more accurate estimate of the drag coeffi-
cient than when using p ¼ 3, with the exception of a small region
where the error goes from positive to negative (and consequently
must somewhere be zero). When a p value can be found the error
is always below 4%. This increases to a maximum of around 10% for
the lowest value of n, when the infinite p approximation is used.
Taking p ¼ 3 the maximum error is around 20% and half the results
shown have an error over 10%. The differences in the models can be
seen more clearly in Fig. 4. This shows the drag coefficient calcu-
lated by the similarity solution (solid line), Eq. (58), the optimal
p solution (dashed line) and that of Eq. (61) (*’s). The kink in the
dashed line at n � 0:5 indicates the transition to the limiting for-
mula. For n > 0:5 the current method is clearly very accurate,
whilst that with p ¼ 3 shows a solution which diverges from the
numerical one. The assertion that the approximate solution loses
accuracy as the fluid becomes less Newtonian [8,12] does not hold
for the current method; the solution accuracy is really only lost for
n < 0:5.

From Table 1 it is clear that the optimal p ¼ pðnÞ. Obviously it is
undesirable (impractical) to calculate p for every case. Noting that
p increases rapidly as n! 0 we look for an approximation of the
form pa ¼

P
ai=ni. Defrawi and Finlayson [10] propose a similar

approximation p � 1þ 1=n. Since no real fluid has n > 2 we use fif-
teen data points for n 2 ½0:57;2� to obtain the curve fit (seven of
these points are given in Table 1). Using these data points a gener-
alised linear approximation pa ¼ a0 þ a1=n gives an error

E ¼
X5

n¼1

p� pa

p

� �2

� 1:77: ð62Þ
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Fig. 4. Drag coefficient CðnÞ for similarity solution (solid line), optimal p (dashed
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Whereas if we use an approximation up to n�4 we find an error of
0.05. We therefore take

pa ¼ 22:13� 98:3
n
þ 165:6

n2 � 114:8
n3 þ 29:01

n4 : ð63Þ

Using this to calculate p for n 6 0:5 gives almost exact agreement
with the Cp obtained by letting p!1. The highest error occurs for
n ¼ 0:6 where we find p ¼ 10:74 and the error in Cp is then 2.8%
(which is in fact an improvement on the result from the exact
calculation).

5. Thermal boundary layer

The thermal problem is governed by Eq. (16) or the IEE, Eq. (18).
Since the right hand side involves Tyy, whereas the momentum
equation has sn

y , a similarity solution for the coupled problem
can only be found for the case n ¼ 1 and with a fixed temperature
at y ¼ 0. At this stage the approximate solution methods are
invaluable. Having verified in the previous section that the optimal
p method provides the most accurate results, we will only use this
method to determine the temperature profile.

We begin by analysing the case where the temperature is fixed
at the substrate and then briefly describe the extensions to con-
stant flux and Newton cooling conditions.

5.1. Similarity solution for the temperature

The similarity variable of Section 3 may be applied to the temper-
ature equation (16). To balance the right hand side (the Tyy expres-
sion) with the left hand side (involving the velocity expressions)
requires n ¼ 1. In which case the governing heat equation becomes

@2T

@n2 ¼ �Prg
@T
@n
; ð64Þ

where n ¼ y=
ffiffiffiffiffiffi
2x
p

and u ¼ gn is the solution of (25) with n ¼ 1. This
is to be solved subject to Tð0Þ ¼ 0; Tð1Þ ¼ 1. For the Integral
Momentum equation, the equivalent expression is

@2T

@n2 ¼ Prn
@f
@n
ð1� TÞ � f

@T
@n

� �
: ð65Þ

where u ¼ f ðnÞ is the solution of Eq. (26) with n ¼ 1.

5.2. Fixed temperature substrate

First consider the boundary conditions Tð0; yÞ ¼ Tðx;1Þ ¼ 1,
Tðx;0Þ ¼ 0. For the integral method the conditions on y translate
to Tðx; dTÞ ¼ 1; Tyðx; dTÞ ¼ 0; Tðx;0Þ ¼ 0; dTð0Þ ¼ 0. Chhabra uses
a physical argument to derive a further boundary condition
Tyy ¼ 0. We may derive this in a less intuitive way from the govern-
ing equation, namely (16), by writing it as

PrðTr � uþ u � rTÞÞ ¼ @
2T
@y2 s: ð66Þ

For an incompressible fluidr � u ¼ 0 and on the boundary y ¼ 0 the
velocity is u ¼ 0. Consequently Tyy ¼ 0 and this is independent of
the boundary condition on T at y ¼ 0.

With the extra boundary condition we may specify a tempera-
ture similar to the velocity profile of Eq. (44),

T ¼ 1� qðq� 1Þ
2

aq 1� y
dT

� �2

þ aq 1� y
dT

� �q

; ð67Þ

where aq ¼ 2=ððqþ 1Þðq� 2ÞÞ.
When calculating the IEE the algebra becomes very unwieldy.

So, we follow Chhabra [7] and note that the thermal boundary
layer is thinner than the momentum boundary layer, hence we
set dT=d ¼ �� 1 (we will discuss this later). The integral on the left
hand side of (18) may be written asZ dT

0
uð1� TÞdy ¼ ðq� 2Þðqþ 3Þðq2 þ qþ 4Þ

12ð2þ qÞð1þ qÞ
p

ð1þ pÞ aqdT�þ Oð�2Þ;

ð68Þ

where it should be noted that the leading order terms in � have can-
celled out. Whilst the right hand side of (18) becomes

@T
@y

����
y¼0
¼ qðq� 2Þaq

dT
: ð69Þ

Hence the IEE may be written as

Pr
d
dx

k1�2d

 �

¼ 2q
1þ q

1
�d
; ð70Þ

where

k1 ¼
ðqþ 3Þðq2 þ qþ 4Þ

6ð2þ qÞð1þ qÞ2
p

ð1þ pÞ : ð71Þ

The momentum boundary layer thickness d is given by Eq. (49),
d ¼ ax1=ðnþ1Þ, and so we may write Eq. (70) in the form

l1�x
1=ðnþ1Þ d

dx
ð�2x1=ðnþ1ÞÞ ¼ 1; ð72Þ

where l1 ¼ Prk1a2ð1þ qÞ=ð2qÞ. This may be solved analytically to
determine �ðxÞ. However, since dTð0Þ ¼ dð0Þ ¼ 0 we find �ð0Þ is
undefined. To avoid this issue we set dTðx0Þ ¼ 0 and then let
x0 ! 0 to obtain

dT ¼ a
3ðnþ 1Þ

l1ð2nþ 1Þ

� �1=3

xðnþ2Þ=ð3ðnþ1ÞÞ: ð73Þ

Finally, the problem has reduced to determining the single un-
known q. This is achieved by minimizing the error

Eq ¼
Z dT

0

@F
@x
� @

2T
@y2

 !2

dy; ð74Þ

where F ¼ uð1� TÞ.
This calculation turns out to be much simpler than in the

momentum boundary layer solution. The value of q for n > 0:5 is
relatively constant (around 13), for n < 0:5 the value increases sig-
nificantly, for example, for n ¼ 0:3; q � 35. Consequently we may
obtain accurate solutions by assuming q� 1 and so the tempera-
ture is approximately quadratic
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Fig. 5. Comparison of similarity solution (solid line), IEE (dotted line) and optimal q
solution, q � 13 (dashed line) when n ¼ 1.
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T � y
dT

2� y
dT

� �
: ð75Þ

Note, if we neglect the extra boundary condition Tyyð0; tÞ ¼ 0 and
impose a temperature profile T ¼ 1� ð1� y=dTÞq then it turns out
that q � 2 and so the profiles are equivalent.

In the limit of large q the constants required to calculate dT are

k1 �
p

6ðpþ 1Þ ; l1 �
Prpa2

12ðpþ 1Þ ð76Þ

and a is defined in Eq. (49).
In Fig. 5 we compare the temperature profiles at x ¼ 1, when

n ¼ 1, predicted by the similarity solution, Eq. (64), the IEE similar-
ity solution, Eq. (65), and the optimal q solution, Eq. (67), with
q � 13. For T < 0:6 the optimal q solution clearly gives excellent
agreement with the solution of Eq. (64). For larger T it slightly over-
estimates the temperature. The IEE solution overestimates the
temperature for small T and underestimates it for larger T. Note,
this case where n ¼ 1 is the only one where we can find a similarity
solution to the full problem. For all other values we must rely on
the approximate solutions.

In Fig. 6 we present the temperature profiles at x ¼ 1 calculated
by optimizing q for the profile (67) and by using the simpler qua-
dratic approximation to the temperature, Eq. (75). The parameter
values are similar to those used in the example in [7, pp. 363–364],
m ¼ 0:3; j ¼ 1:4	 10�7; q ¼ 103; L ¼ 0:5; U1 ¼ 2 (in SI units)
but with a range of n ¼ 0:5; 1; 1:5. The height-scale H depends on
n, H ¼ L=Re1=ðnþ1Þ and consequently so does the Prandtl number
Pr ¼ H2U1=ðjLÞ. For the three n values we find ðH; PrÞ ¼ ð0:0014;
56:74Þ; ð0:0087;2136Þ; ð0:026;1:9	 104Þ. The value of p calculated
from the momentum problem is p ¼ 1; 3:49; 2:114 which deter-
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Fig. 6. Comparison of temperatures for n ¼ 0:5; q ¼ 14:85; n ¼ 1; q ¼ 13;
n ¼ 1:5; q ¼ 12:96 (solid line) and quadratic profile (dashed line).
mines a ¼ 6:33; 4:76; 3:74. From the figure we can see that the
agreement is good between all sets of curves, giving confidence in
the quadratic approximation. Consequently, to determine the
temperature profile in the thermal boundary layer it is sufficient to
specify T as a quadratic, through Eq. (75), with dT calculated via
(73) and l1 from (76). To be specific, for the thermal problem there
is no need to search for an optimum q.

In carrying out the preceding analysis, following [7], we made
the assumption that dT � d. The variation of these two functions
for n ¼ 0:5; 1; 1:5 is shown in Fig. 7, where dT is the dashed line
and d the solid line. Taking the definitions of d; dT we find that
the assumption reduces to the requirement that

x1�n � 3ðnþ 1Þ
l1ð2nþ 1Þ

� �nþ1

: ð77Þ

So, for n < 1 there will always be a region close to x ¼ 0 where this
assumption is violated. However, when we calculate this value we
find that n ¼ 0:5 leads to x� 2	 10�6 and this value decreases as n
increases. So, although the assumption is invalid near x ¼ 0, the re-
gion where it is violated is negligible. In fact, many of the model
assumptions are suspect in the vicinity of x ¼ 0, so this current prob-
lem should not be viewed too negatively. For example, the plate is
treated as infinitely thin: for a finite thickness plate the velocity pro-
file will be rather different where the fluid first contacts the plate. For
x < 0 the velocity gradient is zero and so, for n < 1 the power law
model predicts infinite viscosity, whereas for n > 1 the viscosity is
zero [19]. Once the plate is reached there is, apparently, an immediate
change to finite values. In the following examples with different con-
ditions on the temperature at y ¼ 0 we will not show the develop-
ment of the momentum and thermal boundary layers because they
are all approximately the same as those shown in Fig. 7.

5.3. Constant flux and Newton cooling boundary conditions

For completeness we now summarize the analysis for constant
flux and Newton cooling boundary conditions.

For constant flux the problem is now subject to Tyðx;0Þ ¼ Q ,
Tðx; dTÞ ¼ 1; Tyðx; dTÞ ¼ 0; Tyyðx;0Þ ¼ 0. The analysis follows that
in Section 5.2. The temperature is defined by Eq. (67) but now
aq ¼ dT Q=ðqðq� 2ÞÞ. The integral (68) and derivative (69) remain
the same and the IEE becomes

l2
d
dx
ð�3x2=ðnþ1ÞÞ ¼ 1; ð78Þ

where

l2 ¼ Pr
ðqþ 3Þðq2 þ qþ 4Þ
12qð2þ qÞð1þ qÞ

p
ð1þ pÞ

� �
a2: ð79Þ

This gives

dT ¼ al�1=3
2 xðnþ2Þ=ð3ðnþ1ÞÞ: ð80Þ
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Fig. 8. Comparison of temperatures with optimal q (solid) and quadratic formula
(dashed) for constant flux condition with n ¼ 0:5; 1; 1:5.
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Evaluating Eq, again we find that q� 1 and so the problem simpli-
fies considerably. The temperature is then given by

T � 1� dT Q
2

1� y
dT

� �2

ð81Þ

with dT specified by (80) and l2 ! l1 which is defined by Eq. (76b).
In Fig. 8 we compare the temperatures for the constant flux prob-

lem using the optimal q and the quadratic approximation. In this fig-
ure the difference can only be seen for a very small region close to
y ¼ 0 for the case n ¼ 0:5, otherwise the curves are indistinguish-
able. This is consistent with the results of [21], where it was shown
that for a standard thermal problem the constant flux approximation
was more accurate than for a fixed temperature.

A Newton cooling condition at the substrate leads to
Tyðx;0Þ ¼HTðx;0Þ. With the remaining boundary conditions the
temperature is given by (67) where aq ¼ 2HdT=ððq� 2Þð2qþ
HdTðqþ 1ÞÞÞ. The IEE follows from the same results as given by
Eqs. (68) and (69) but with the new expression for aq. This case shows
a key difference to the previous two cases in that the IEE becomes

Pr
d
dx
ðk2ðp; q; dÞ�3d2Þ ¼ q

2qþ �dHð1þ qÞ ; ð82Þ

where

k2 ¼
ðqþ 3Þðq2 þ qþ 4Þ

12ð2þ qÞð1þ qÞð2qþ �dHð1þ qÞÞ
p

ð1þ pÞ : ð83Þ

The function k2 depends on d and the IEE cannot be solved analyt-
ically. However, in the case where q� 1 and �dH ¼ dTH� 2 then

k2 ! k02 ¼
ðqþ 3Þðq2 þ qþ 4Þ
24qð2þ qÞð1þ qÞ

p
ð1þ pÞ ð84Þ

and the problem reduces to solving

l3
d
dx
ð�3x2=ðnþ1ÞÞ ¼ 1; ð85Þ

where l3 ¼ 2Prk02a2. This leads to

dT ¼ al�1=3
3 xðnþ2Þ=ð3ðnþ1ÞÞ: ð86Þ

When we minimise Eq the error decreases monotonically as q in-
creases, with an asymptote of around 0.063. In previous examples
Eq had a distinct minimum. Consequently we may assume that once
again q is large and so take a quadratic approximation to the
temperature

T � 1�HdT

2
1� y

dT

� �2

: ð87Þ

Note that the temperature stays positive since we have assumed
that HdT � 2. As with the constant flux condition the constant in
the expression for dT ; l3 ! l1 (defined by Eq. (76b)) and conse-
quently the non-dimensional thermal boundary layer thickness is
the same for all three thermal boundary conditions at y ¼ 0. Fig. 7
therefore serves to describe the boundary layer growth for all three
thermal boundary conditions.

In Fig. 9 we show the temperature for the Newton cooling
condition with n ¼ 0:5; 1; 1:5. Only the quadratic approximation
is shown since as mentioned above Eq decreases with q and
hence q!1. The dimensional heat transfer coefficient is taken
as 10 W/m2 K which leads to H ¼ 0:024; 0:15; 0:43. As can be
seen from Fig. 7 the maximum value of dT is around 0.2 for
n ¼ 1:5 and 1.2 for n ¼ 0:5 hence dTH� 2 is easily satisfied.
As with all other examples the temperature for the shear thin-
ning fluid grows most rapidly.
6. Conclusion

In this paper we have considered a number of aspects of the
boundary layer flow of a power law fluid. Firstly, we considered
the similarity solutions for the velocity profile using the standard
boundary layer equations and the Integral Momentum equation.
For both cases an exact solution was presented for the case
n ¼ 2. Of particular interest is the fact that although strictly speak-
ing the similarity solutions for n > 1 should be patched onto an
intermediate region, the results for n < 1:75 appear to be accurate
without this extra region.

For a Newtonian fluid and a constant temperature boundary
condition similarity solutions can be found for the coupled velocity
and temperature equations. For other values of n and temperature
boundary conditions we used the polynomial approximations. For
the velocity profile we found u � ð1� y=dÞp, where p turned out to
depend on n. The value of p may be calculated by minimising the
error or by using a relation of the form p ¼ R4

n¼0ai=ni. In all cases
examined the temperature is approximately quadratic.

It was shown that the Heat Balance Integral Method was
analogous to the Integral Momentum equation. Hence the re-
cently developed method for minimising the error in the HBIM
could be applied to this problem. The new method does not suf-
fer from problems associated with n > 1, namely that the veloc-
ity gradient can become negative, and hence results were
obtained for n up to 5 (we stopped there only because this
was the highest value we could find in the literature). From
the results we saw that the standard IME generally provides
rather inaccurate results. Using the new integral method reduces
the error considerably and so, hopefully, makes this a viable
alternative to the full numerical solution.
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