The EGSnrc Code System:
Monte Carlo Simulation of Electron and Photon Transport

I. Kawrakow and D.W.O. Rogers
Ionizing Radiation Standards
National Research Council of Canada
Ottawa, K1A OR6
iwan@irs.phy.nrc.ca
dave@irs.phy.nrc.ca

Nov 7, 2003

NRCC Report PIRS-701

Available on-line via:
©NRC Canada, 2001–2003
EGSnrc Code System Licence

The EGSnrc code system (i.e. all pieces of code saying they are subject to the EGSnrc Licence, including routines related to the 1999 and later versions of EGSnrc and EGS_Windows, all associated source code, the NRC databases related to multiple scattering and spin correction, as well as the NRC user codes DOSRZnrc, FLURZnrc, CAVRZnrc and SPRRZnrc, all scripts and all associated documentation) are copyrighted material owned by the National Research Council of Canada, all rights reserved. Those portions of the system for which the copyright is owned jointly or wholly by the Stanford Linear Accelerator Center, are distributed under a formal NRC/SLAC agreement.

1) The NRC grants the user a non-transferable, non-exclusive licence to use this system free of charge only for non-commercial research or educational purposes. All proprietary interest, right, title and copyright in the EGSnrc code system remains with NRC.

2) The express, written consent of NRC is required if the EGSnrc code system or any part or derivative thereof or data generated by the code is used by an individual or an organization for developing a commercial product or service.

3) The express, written consent of NRC is required if this code system or any part thereof is to be used in a fee for service application, either clinically or by consultants.

4) The express, written consent of NRC is required if the NRC spin correction or multiple scattering databases are to be used directly or indirectly in any other application, either commercial or non-commercial.

5) The code system must be obtained from NRC. Users may not copy nor distribute the code system or parts thereof.

6) NRC disclaims any warranties, expressed, implied or statutory, of any kind or nature with respect to the software, including without limitation any warranty of merchantability or fitness for a particular purpose. NRC shall not be liable in any event for any damages, whether direct or indirect, special or general, consequential or incidental, arising from the use of the software.

7) This licence supersedes all prior communications and agreements, written or oral, concerning the EGSnrc code system. No amendment or waiver of terms is effective unless in writing, signed by both parties and specifically states the intention to affect this licence.

8) This licence is governed by the laws of Ontario and Canada applicable therein. The user consents to the jurisdiction of the federal court and the courts of Ontario.

The intent of the above may best be given by example. If you are at a not-for-profit institution, and are not working under a contract or grant from a commercial organization, you have a free licence to use EGSnrc. If you work for a commercial organization (except a hospital), then you may only use EGSnrc if your organization has a licence agreement with NRC. If you work at a hospital but are using the code solely for internal or personal research purposes, you have a free licence to use EGSnrc. If you work for any type of organization, and your work is sponsored by a commercial organization for any purpose related to commercial use, then you need a licence agreement with NRC.

The scripts and GUIs are distributed under the GNU GPL which is with the system.

Last edited 2003/12/10 22:25:01
Preface

In the decade and a half since the original version of EGS4 was released there have been well over 1000 papers published which cite the original SLAC-265 Report. The code itself has been improved in many different ways by a large number of people. For a detailed history of much of this up to 1994, the reader is referred to a report titled “History, overview and recent improvements of EGS4” by Bielajew et al which is available on line via http://www.irs.inms.nrc.ca/inms/irs/papers/irs_www/irs_www.html.

In the last few years there have been significant advances in several aspects of electron transport. For example, improvements in multiple scattering theory have been developed by Kawrakow and Bielajew[1, 2, 3] which get over most of the shortcomings of the Moliere theory used in EGS4. Perhaps more important has been the development by Kawrakow and Bielajew[4] of a new electron transport algorithm, sometimes called PRESTA-II, which makes a significant advance in the science of electron transport. In addition to these advances, Kawrakow has implemented several other improvements in the electron transport algorithm of EGS which make it capable of accurately calculating ion chamber response at the 0.1% level (relative to its own cross sections)[5, 6].

EGSnrc also has implemented a variety of additional features, many of which have previously been extensively developed as additions to EGS4 by Namito, Hirayama and Ban at KEK as well[7, 8, 9, 10]. The EGSnrc approach differs from that of the KEK group, partially because once we were making fundamental changes to the code, we carried it through in a consistent manner. However, the KEK group have implemented several options which are not yet in EGSnrc (e.g. polarized photon scattering and electron impact ionization).

This report is meant to document the many changes that have occurred going from EGS4 to EGSnrc. Although this report is written by two people, the EGS system is obviously the child of many parents who have made a wide variety of contributions over the years. This goes right back to Richard Ford, then at SLAC, who was a major contributor to EGS3. Hideo Hirayama, S Ban and Yosh Namito of KEK have made innumerable contributions to EGS, especially concerning the low energy photon physics. Alex Bielajew worked on EGS at NRC from the early 80’s to late 90’s and his name is linked to a huge number of important contributions to EGS, perhaps most importantly the PRESTA algorithms, but also many other specific improvements to the physics, the unix based scripts and the NRC user codes. His name appears very extensively in the reference lists. The name of Walter Ralph Nelson is practically synonymous with EGS and all users of any version of the EGS system will forever be in Ralph’s debt. It has been his enthusiasm and willingness to help others and share this resource so selflessly which has made it the great success it is. To all of these people who have contributed so extensively to the EGS system, and to the countless others who have played a variety of roles, we all owe a huge debt of gratitude.

It is worth noting that NRC and SLAC have drawn up a formal agreement which recognizes that both have rights associated with EGS4 and EGSnrc. Thus, in this report there are sections which are taken verbatim from SLAC-265 (in particular the PEGS4 manual and the User’s guide to Mortran3) and we wish to thank SLAC for permission to reproduce them. We also draw attention to the copyright and licencing arrangements associated with EGSnrc which are similar to those for EGS4, but which are becoming more tightly controlled in this changing world we live in. Neither EGS4 nor EGSnrc are public domain software. They are both copyright protected by NRC and/or SLAC. The formal licence statement is more
precise and part of the package, but the general meaning is that individuals are granted a
without cost licence to use it for non-commercial purposes but that a licence from NRC is
needed for any commercial application, and by definition someone working for a for-profit
organization or working on a contract for such an organization is working on a commercial
application.

What is next?
In the section of the Preface to SLAC-265, there were 7 areas identified as needing more
work. The work on EGS is not complete, and at least 2 of the 7 are still open, viz:

• development of an efficient, general purpose geometry package tailored to the EGS
structure
• implementation of a general purpose energy loss straggling algorithm which properly
handles energy cutoffs

There are other issues which are still undone within EGSnrc:

• modelling of electron impact ionization
• some critical feature for your next application!!

We encourage users to contribute their improvements to the code. We will happily add those
which are of general interest and make available on the distribution site those additions which
are of special interest. We will also appreciate receiving bug reports. Although we have done
extensive QA on the system, there have been many changes and not all parts of the code are
as carefully checked as we would like. However, the pressure to release the code is forcing us
to proceed at this point.

We wish to thank our many colleagues at NRC who have helped with this work. In
particular Michel Proulx for his excellent help keeping the computer systems going smoothly,
Jan Seuntjens for his help with the user codes, Joanne Treurniet for her help with the most
recent version of the EGS-windows system and Blake Walters for his work on QA of the
system.

I.K and D.W.O.R. Feb 2000

Second printing: May 2001
The second printing contains a description of the use of RHOF (section 3.4.2, page 112) and
$SET-RHOF$ (section 3.4.1.7, page 109). There is a brief new discussion of combine_egsnrc,
a script for automatic analysis of the many files created by pprocess in parallel runs (section
8.7, page 269). There is a new section about terminating histories with WT=0.0
(section 3.8, page 126). Finally, a new section has been added which documents the few
minor changes made to EGSnrc since its initial release (section 8.10, page 271).

Third printing: April 2002
Minor changes reflecting code changes. See section 8.10.

Fourth printing: November 2003
Added references to EGSnrcMP and Report PIRS-877. A few minor changes related to the
major change in the operating system to make it Windows compliant. There is no associ-
ated change in the physics of the system. Table 7 re timing of random numbers has changed
substantially.
Contents

Preface
1. **Introduction**
 1.1 Intent of this report
 1.2 History of the EGS system
 1.3 Summary of Egsnrc Capabilities and Features
 1.4 Summary of changes from EGS4
 1.4.1 Physics changes
 1.4.2 System changes
 1.4.3 User code changes
 1.5 Outline of report
 1.6 Associated documents
 1.6.1 Refereed Papers
 1.6.2 Internal Reports
 1.6.3 Manuals etc

2. **Radiation transport in EGSnrc**
 2.1 Introduction
 2.2 Photon interactions
 2.2.1 Pair and triplet production
 2.2.1.i Cross section
 2.2.1.ii Simulation of pair production, particle energies
 2.2.1.iii Simulation of pair production, particle angles
 2.2.1.iv Russian Roulette for pair production events
 2.2.2 Incoherent (Compton) scattering
 2.2.2.i Cross section
 2.2.2.ii Simulation of incoherent scattering events
 2.2.3 Photo-electric absorption
 2.2.3.i Detailed simulation of photo-electric absorption
 2.2.3.ii Simplified simulation of photo-electric absorption
2.2.3.iii Photo-electron direction ... 45
2.2.4 Coherent (Rayleigh) scattering 46
2.3 Atomic Relaxations ... 46
2.4 Simulation of electron transport 50
 2.4.1 General discussion ... 50
 2.4.2 Bremsstrahlung .. 56
 2.4.2.i Cross sections .. 56
 2.4.2.ii Simulation of discrete bremsstrahlung events, photon energy 58
 2.4.2.iii Simulation of discrete bremsstrahlung events, angular distribution ... 61
 2.4.2.iv Radiative splitting ... 65
 2.4.3 Discrete inelastic collisions 65
 2.4.3.i Møller scattering .. 65
 2.4.3.ii Bhabha scattering ... 67
 2.4.4 Two Photon Positron-Electron Annihilation 68
 2.4.5 Collision stopping power ... 69
 2.4.6 Elastic scattering cross sections 74
 2.4.6.i Screened Rutherford elastic scattering 74
 2.4.6.ii Elastic scattering with spin 76
 2.4.7 Multiple elastic scattering 82
 2.4.7.i Multiple elastic scattering from the screened Rutherford cross section ... 82
 2.4.7.ii Multiple elastic scattering with spin effects 86
 2.4.8 Electron-step algorithm .. 88
 2.4.9 Boundary crossing algorithm 91
 2.4.10 Other condensed history aspects 92
 2.4.10.i Energy loss evaluation 92
 2.4.10.ii Distances between discrete interactions 94

3 EGSnrc Reference Manual .. 97
 3.1 Introduction ... 97
 3.1.1 Use of Mortran3 .. 97
3.2 General Description of Implementation .. 97
3.3 The COMMON Blocks ... 100
3.4 The Sequence of Operations .. 107
 3.4.1 User Over Ride Of EGS Macros and Defaults (Step 1) 107
 3.4.1.i $CALL-HOWNEAR(#) .. 108
 3.4.1.ii $IMPLICIT-NONE, $REAL, $INTEGER 108
 3.4.1.iii Array Dimensions .. 108
 3.4.1.iv Random Number Initialisation 109
 3.4.1.v $SET-RHOF .. 109
 3.4.1.vi Sines and Cosines ... 109
 3.4.1.vii Charged Particle Transport 110
 3.4.2 Pre-HATCH Call Initialisation (Step 2) 110
 3.4.2.i Emulating EGS4’s implementation of the Condensed History technique .. 115
 3.4.2.ii Emulating EGS4/PRESTA’s implementation of the Condensed History technique .. 115
 3.4.3 HATCH Call (Step 3) ... 115
 3.4.4 Initialisation For HOWFAR and HOWNEAR (Step 4) 116
 3.4.5 Initialisation For AUSGAB (Step 5) 116
 3.4.6 Initialisation For Variance Reduction (Step 5b) 116
 3.4.7 Determination Of Incident Particle Parameters (Step 6) 117
 3.4.8 SHOWER Call (Step 7) .. 117
 3.4.9 Output-Of-Results (Step 8) .. 117
3.5 Specifications for HOWFAR ... 118
 3.5.1 An example of HOWFAR .. 119
3.6 Specifications for HOWNEAR .. 121
3.7 Specifications for AUSGAB .. 121
 3.7.1 Checking for STACK overflow 124
 3.7.2 Status of the STACK at various AUSGAB calls 124
3.8 Terminating particle histories .. 126
3.9 Random number generators .. 126
3.10 Variance Reduction Options .. 128
3.10.1 Range rejection .. 128
3.10.2 Bremsstrahlung Splitting 129
3.10.3 Russian Roulette .. 130
3.11 Complete Users Codes Examples 130
3.12 Some Utility codes .. 131
 3.12.1 SUBROUTINE WATCH .. 131
 3.12.2 ranlux_test.mortran and ranmar_test.mortran 131
 3.12.3 EXAMIN .. 131
 3.12.4 test_distribution ... 132

4 Some Short EGSnrc Tutorial Programs 133
 4.1 tutor1.mortran: 20 MeV e\(^{-}\) through 1 mm of Ta 133
 4.2 tutor2.mortran: energy transmitted, reflected, deposited 144
 4.3 tutor3.mortran: NaI response function 147
 4.4 tutor4.mortran: use of SUBROUTINE WATCH 150
 4.5 tutor5.mortran: using LATCH and Rayleigh scattering 156
 4.6 tutor6.mortran: modifying the transport options 162
 4.7 tutor7.mortran: using SUBROUTINE GET_INPUTS 170
 4.8 Sophisticated User Codes .. 170

5 Adapting EGS4 User Codes to EGSnrc 171
 5.1 Introduction .. 171
 5.2 Short description of changes 172
 5.2.1 The system .. 172
 5.2.2 EGS4 COMMON blocks ... 172
 5.2.3 NRC extensions to EGS4 173
 5.2.4 New EGSnrc COMMON blocks of interest 173
 5.2.5 Explicit data typing ... 174
 5.2.6 Changes in EGS4 subroutines 174
 5.2.7 New EGSnrc subroutines 175
 5.3 REPLACE vs APPEND ... 176
 5.4 Use of explicit data typing 177
5.5 The scoring routine ... 178
5.6 HOWNEAR ... 179
5.7 Use of electron range rejection 180
5.8 Input of electron transport parameters and cross section options 181
5.9 Adapting user codes: cook book instructions 182
5.10 Example: adapting XYZDOSnrc 185

6 PEGS4 User Manual .. 191
6.1 Some new documentation ... 191
 6.1.1 Some additional outputs- unrestricted cross sections 191
 6.1.2 Use of ICRU Report 37 Collision Stopping Powers 192
 6.1.3 Use of ICRU Report 37 Radiative Stopping Powers 193
 6.1.4 A Bug in PEGS4 ... 193
6.2 Original PEGS4 User Manual 194

7 EGS User Guide to MORTRAN3 239
7.1 Introduction ... 241
7.2 Coding Rules ... 242
7.3 Structure .. 243
 7.3.1 Statements ... 243
 7.3.2 Blocks .. 243
 7.3.3 Conditional Statements 244
 7.3.4 Iteration ... 246
7.4 Miscellaneous Features ... 251
 7.4.1 Multiple Assignment ... 251
 7.4.2 I/O Abbreviations .. 252
 7.4.3 Operators ... 252
7.5 User-Defined Macros ... 252
 7.5.1 String Replacement ... 252
 7.5.2 Parameters in Macros 254
7.6 Control Cards ... 255
 7.6.1 Column-One-Restricted Directives 256
EGSnrc System Considerations

8.1 Introduction ... 259
8.2 On not creating a Windows version 259
8.3 Overview .. 259
 8.3.1 A complication for multi-architecture systems 261
 8.3.2 System aliases and environment variables 261
8.4 PEGS4 ... 262
 8.4.1 Where pegs4 data is kept 263
 8.4.2 examin ... 263
8.5 Compilation (MORTRAN and Fortran) 263
 8.5.1 The user_code.configuration file 264
 8.5.2 Order is Important ... 266
 8.5.3 Batch compilations .. 266
 8.5.4 machine.mortran files .. 266
 8.5.5 get_machine, what if it fails? 266
8.6 Execution .. 266
 8.6.1 user_code.environment file 267
 8.6.2 Batch Queues .. 269
8.7 Parallel Processing .. 269
8.8 Distribution / Installation of EGSnrc 270
8.9 On-Line Manuals .. 271
8.10 Changes and bugs corrected since initial release 271
8.11 Known bugs/restrictions .. 272
List of Figures

1 Feynman diagram for the pair production process 25
2 CPU time for pair sampling 29
3 Feynman diagram for the Compton process 31
4 Incoherent scattering function 34
5 CPU times for Compton sampling 40
6 Interaction probabilities for different shells 43
7 Bremsstrahlung cross sections 59
8 BREMS bug in EGS4 60
9 CPU times for bremsstrahlung sampling 62
10 Low energy bremsstrahlung angular distribution 63
11 The Mott correction 78
12 Screening parameter 80
13 The $q^{(2+)}$ surface 84
14 Depth-dose curves in Beryllium and Uranium 87
15 Total discrete interaction cross sections 95
16 Total cross sections per unit energy loss 96
17 The structure of the EGSnrc code system when used with a user-code. 98
18 A 3 region geometry example for HOWFAR. The Y axis is into the paper. 120
19 tutor1.mortran without any comments. 134
20 Commented version of tutor1.mortran 136
22 AUSGAB subroutine from tutor2.mortran 145
23 Output from tutor2.mortran excluding some input data related outputs that are the same as in tutor1. 146
24 Portions of tutor3.mortran 147
25 Portions of output from tutor3.mortran. 149
26 Portions of tutor4.mortran showing the calls to SUBROUTINE WATCH. 151
27 Header of SUBROUTINE WATCH. 152
28 Portions of output from tutor4.mortran (slightly edited for space). 153
List of Tables

1. Relaxation transitions handled by EGSnrc. ... 49
2. Default atomic numbers, symbols, atomic weights, mass densities, and I values for elements in PEGS4. ... 71
3. Table describing the EGSnrc COMMONs which are accessible to the User. ... 100
4. EGSnrc COMMONs which are optionally accessible to the user. Not all elements in each COMIN are described since many of them are not to be accessed by the user. ... 106
5. Values of IARG which are on by default and for which energy is deposited. ... 122
6. Values of IARG which are off by default. ... 123
7 Calculation times for runs with CAVRZnrc for the same calculations along with estimates of the time taken by the random number generator at different luxury levels. The results for luxury level 0 are different when high precision is obtained. 128

8 The transport control variables set in tutor6.mortran and the COMINs they are contained in. These represent all user controllable transport variables. See the source code of tutor6.mortran and sections 3.3 and 3.4.2 for more detailed descriptions of the meaning of each. 163

9 The intrinsic variance reduction parameters set in tutor6.mortran. They are included in EGSnrc via COMIN/EGS-VARIANCE-REDUCTION. 163
1 Introduction

1.1 Intent of this report

The EGS (Electron–Gamma–Shower) system of computer codes is a general purpose package for the Monte Carlo simulation of the coupled transport of electrons and photons in an arbitrary geometry for particles with energies above a few keV up to several hundreds of GeV. This report introduces a new, enhanced version called EGSnrc. In addition to explaining and documenting the various enhancements and changes to the previous version (EGS4[12]), this document includes several introductory and advanced tutorials on the use of EGSnrc (section 4) and also contains the EGSnrc Reference Manual (section 3), the PEGS4 User Manual (section 6), and an EGS User Guide to Mortran3 (section 7). Our intention has been to make this document wholly self-contained so that the user need not refer to the original EGS4 User Manual[12] although it is on-line and available at http://www.slac.stanford.edu/pubs/slacreports/slac-r-265.html. The heart of the present report is Section 2 which documents the physics in EGSnrc. This has changed substantially from the EGS4 comparable Chapter 2 because of the many changes in EGSnrc. However, we have chosen not to repeat the general introduction to sampling and probability theory that was in Chapter 2 of SLAC-265.

For a basic introduction to the code, see the reference manual, section 3 (page 97).

We have not presented any comparisons with experiment in this document since it has become such an extensive field that we have no hope of reproducing a fraction of the data. Instead, we have prepared a separate report on QA which presents extensive comparisons between EGS4 and EGSnrc[13] (available on-line via http://www.irs.inms.nrc.ca/inms/irs/EGSnrc/EGSnrc.html). There are significant differences in many situations because of the improved physics in EGSnrc. Two papers[5, 6] discuss many of the details of the new physics, especially as related to ion chamber calculations (which are perhaps the toughest test of any electron-photon Monte Carlo transport code). These papers provide analytic models which explain many of the shortcomings of the EGS4/PRESTA system in this very difficult problem. The cover of this report shows a comparison of the two codes run in their standard default modes.

1.2 History of the EGS system

As stated in the Preface, EGSnrc is the child of many parents who have made a wide variety of contributions over the years. We will not repeat the preface here except to note that Walter “Ralph” Nelson has been the key player in the development of the system over the years and we all owe him a debt of gratitude.
1.3 Summary of Egsnrc Capabilities and Features

The following is a summary of the main features of the EGSnrc Code System, including statements about the physics that has been put into it and what can be realistically simulated.

- The radiation transport of electrons (+ or −) or photons can be simulated in any element, compound, or mixture. The data preparation package, PEGS4, creates data to be used by EGSnrc, using cross section tables for elements 1 through 100. In addition there are other data files which must be read in to implement many of the new options.

- Both photons and charged particles are transported in steps of random length rather than in discrete steps.

- The dynamic range of charged particle kinetic energies goes from a few tens of keV up to a few hundred GeV. Conceivably the upper limit can be extended higher, but the validity of the physics remains to be checked.

- The dynamic range of photon energies lies between 1 keV and several hundred GeV (see above statement).

- The following physics processes are taken into account by the EGSnrc Code System:
 - Bremsstrahlung production using either Bethe-Heitler cross sections or the NIST cross sections.
 - Positron annihilation in flight and at rest (the annihilation quanta are followed to completion).
 - Multiple scattering of charged particles by coulomb scattering from nucleii is handled using a new multiple scattering theory which overcomes the shortcomings of Molière multiple scattering theory. It allows for steps of any size and moves seamlessly from a single scattering model for short steps to an accurate multiple scattering model at large steps. The user has the option of scattering based on Rutherford scattering or scattering accounting for relativistic and spin effects.
 - Møller (e^-e^-) and Bhabha (e^+e^-) scattering. Exact rather than asymptotic formulae are used.
 - Continuous energy loss applied to charged particle tracks between discrete interactions.
 * Total restricted charged particle stopping power consists of soft bremsstrahlung and collision loss terms.
 * Collision loss determined by the restricted Bethe-Bloch stopping power with Sternheimer treatment of the density effect in the general case but with provision of using an arbitrary density effect correction and data supplied to use the density effect recommended by the ICRU in Report 37.
 - Pair production.
 - Compton scattering, either Klein-Nishina or bound Compton.
Coherent (Rayleigh) scattering can be included by means of an option.

Photoelectric effect.

Relaxation of excited atoms after vacancies are created (eg after photoelectric or Compton scattering events) to create fluorescent photons (K, L, M shells) and Auger and Coster-Kronig electrons may be produced and tracked if requested.

• PEGS4 is a stand-alone data preprocessing code consisting of 12 subroutines and 85 functions. The output is in a form for direct use by EGSnrc.

 - PEGS4 constructs piecewise-linear fits over a large number of energy intervals of the cross section and branching ratio data.

 - In general, the user need only use PEGS4 once to obtain the media data files required by EGSnrc.

 - PEGS4 control input uses the NAMELIST read facility of the FORTRAN language (in Mortran3 form).

 - In addition to the options needed to produce data for EGSnrc, PEGS4 contains options to plot any of the physical quantities used by EGSnrc.

 - In addition to the material specific data files produced by PEGS4, EGSnrc uses a variety of other data files as input for the calculations.

• EGSnrc is a package of subroutines plus block data with a flexible user interface.

 - This allows for greater flexibility without requiring one to be overly familiar with the internal details of the code.

 - Together with the macro facility capabilities of the Mortran3 language, this reduces the likelihood that user edits will introduce bugs into the code.

 - EGSnrc uses material cross section and branching ratio data created and fit by the companion code, PEGS4.

 - The geometry for any given problem is specified by a user-written subroutine called HOWFAR which, in turn, can make use of auxiliary subprograms.

 - Auxiliary geometry routines for planes, cylinders, cones, spheres, etc., are provided with the EGSnrc Code System for those who do not wish to write their own.

 - Macro versions of these routines are also provided in the set of defining macros (i.e., in the egsnrc.macros file) which, if used, generally result in a faster running simulation.

 - Transport can take place in a magnetic field by writing a specially designed HOWFAR subprogram, or in a more general manner (eg., including electric field) by making use of Mortran3 macro templates that have been appropriately placed for that purpose in subroutine ELECTR. The file emf_macros.mortran contains Bielajew’s macros to implement this.

• The user scores and outputs information in the user-written subroutine called AUSGAB.
• By setting various AUSFLG flags, the user can arrange to have access to the simulation parameters under many different situations to allow scoring of almost any parameter of interest with out delving into the code itself.

• Auxiliary subprogram WATCH is provided in order to allow an event-by-event or step-by-step tracking of the simulation, either to the terminal or for 3-D graphics display using the program EGS_Windows.

• EGSnrc allows for the implementation of importance sampling and other variance reduction techniques (e.g., leading particle biasing, splitting, path length biasing, Russian roulette, etc.).

 – EGSnrc introduces options to allow for efficient bremsstrahlung splitting and Russian Roulette of secondary charged-particles, but only if “turned on” by the user.

 – EGSnrc calculates the range and distance of the particle to the nearest boundary on every step as part of the electron transport algorithm and there is an option to do range rejection on any particle that cannot get out of the current region.

• Initiation of the radiation transport:

 – An option exists for initiating a shower with two photons from pi-zero decay (i.e., use IQI = 2 in the CALL SHOWER statement).

 – The user has the choice of initiating the transport by means of a monoenergetic particle, or by sampling from a known distribution (e.g., a synchrotron radiation spectrum).

 – Transport can also be initiated from sources that have spatial and/or angular distributions.
1.4 Summary of changes from EGS4

This is a brief listing of these changes which are discussed more fully in section 2 and in section 5.2.

1.4.1 Physics changes

- A completely new electron transport algorithm is used which removes all known shortcomings of the EGS4/PRESTA algorithm. If the geometry permits, the new algorithm can take much larger steps with better accuracy than previously. As it crosses a boundary, it goes into single scattering mode to ensure an accurate boundary crossing. The EGS4/PRESTA algorithm is still available as an option.

- A new multiple scattering theory is used which gets around the shortcomings of Moliere multiple scattering theory. It seamlessly goes from a single scattering mode for short steps to a multiple scatter mode for long steps.

- Within the new multiple scattering theory an option has been added to include relativistic spin effects in the cross section instead of just the Rutherford cross section which underlies Moliere theory.

- If desired, it is possible to do the entire calculation modelling elastic scattering in a single scattering mode. This is at the cost of a great deal of computing time and also does not model the inelastic energy losses in a single scattering model.

- A relaxation simulation feature has been added which allows creation and following of fluorescent photons from K, L, M shells, Auger electrons and Coster-Kronig electrons. Currently this can be called after photo-electric and Compton scattering events.

- If relaxation is not being modelled, then a photo-electron in EGSnrc carries the entire energy of the incident photon. This is a better approximation in most cases than dumping the binding energy locally and subtracting the binding energy from the photo-electron’s energy (as done in EGS4).

- Sampling the angular distribution of the photo-electron is available as an option.

- Bound compton scattering can be simulated as well as Klein-Nishina Compton scattering.

- Bremsstrahlung angular sampling has been changed from a fixed angle approximation to allowing the angular distribution to be sampled in one of two ways.

- A bug was fixed in the bremsstrahlung photon energy sampling routine which affected simulations for which AP was not small relative to the electron energy. Doing this led to a complete rewrite of the sampling routine which also increased its efficiency.

- A second bremsstrahlung photon energy sampling option was added which uses the more accurate NIST differential cross sections.
• PEGS4 has been modified to pick up the data files which scale the radiative cross sections to produce the NIST/ICRU 37 radiative stopping powers.

• A variety of variance reduction techniques which were commonly used with EGS4 have been “built in” with EGSnrc to improve the efficiency
 - bremsstrahlung splitting is done within the routine BREMS, thereby avoiding repeatedly calculating several constants
 - Russian Roulette of secondary charged particles is done in a manner which sometimes avoids sampling the particles phase space unless it survives.
 - range rejection, viz the termination of a particle history, when it cannot escape the local region, is implemented naturally and very efficiently since the particle range and distance to the nearest boundary are already calculated on every step.

• Subroutine HATCH has been modified considerably to allow initialization for the many new options.

• The Moller sampling routine was corrected as first done in the 1997 release of EGS4.

• The efficiency of the annihilation sampling routine has been improved.

• The sampling of the azimuthal angle has been recoded and saves a noticeable amount of time in a real calculation (2% in one example).

• Various changes have been made in the COMIN blocks to accomodate the above changes. Also LATCH and LATCHI are now a default part of STACK.

• Several more AUSGAB calls are available to score Auger and Coster-Kronig electrons and fluorescent x-rays.

1.4.2 System changes pre-EGSnrcMP (see ref[11] for the MP changes)

• The various source files have been rationalized and various add-on features to EGS4 have been made part of EGSnrc.

• Two options for random number generator are available. The default is the RANLUX generator which allows various “luxury levels” of generator to be used and the RANMAR generator, which had become the standard for the unix distribution of EGS4, is also available, although re-coded. Both generators have the ability to generate sequences which are known to be independent and thus can be used for parallel processing. At the default luxury level of 1, the RANLUX generator is slightly slower than the recoded RANMAR generator, but the difference has a negligible impact on overall computing time.

• The default for calculating sines is now a function call because modern machines do this very rapidly and the table lookup method is known to be inaccurate for very small angles.
• The EGS.Windows code for generating 3-D interactive displays has been ported to run on any X-windows platform using non-proprietary software.

• The entire code has been written using IMPLICIT NONE. Further, all declarations have been done using $REAL and $INTEGER constructs which allow conversion to running double precision by redefining 2 macros, as long as the user codes do the same thing!

• Subroutine WATCH has been modified to accommodate the changes in the physics.

1.4.3 User code changes

• The tutor codes have been rewritten to work with EGSnrc and a new version of tutor6 has been written to demonstrate control of all variables available to EGSnrc users.

• Four of the standard NRC user codes for cylindrical geometry problems are now distributed with the system, DOSRZnrc, FLURZnrc, CAVRZnrc and SPRRZnrc.

• The above user codes have been extensively reworked to use a new generalized input package which makes it much easier for the user to generate the input files since the inputs are text oriented. Also, the geometry and physics transport inputs are common for all codes.

• The output routines have been reworked to avoid the use of VAX extensions to Fortran which were not available with many unix compilers.

• The user codes have been cleaned up to some extent although not as much as desirable! The main user codes systematically use $IMPLICIT-NONE and $REAL, $INTEGER constructs to allow compatibility with EGSnrc and the ability to change to double precision at will.

• a bug in the energy sampling routine which caused problems in some cases has been removed. An entirely new code which is faster and more accurate is used now.

1.5 Outline of report

In the remainder of this report there are 7 sections.

Section 2 (page 23) presents a detailed description of the physics in EGSnrc. While this section provides very important documentation of what the code is doing, it is not essential reading in order to get the code working. Arguably it is essential reading before you can use the code really well!

Section 3 (page 97) provides a detailed reference manual which tells you what must be done to write your own user code.

Section 4 (page 133) presents a series of short tutorial programs which demonstrate the essential elements of EGSnrc user codes. These are designed for those who learn by seeing examples (like DWOR).
Section 5 (page 172) presents a summary of the changes compared to EGS4 and a step by step procedure for upgrading an EGS4 user code to work with EGSnrc.

Section 6 (page 191) is the PEGS4 Users manual taken directly from SLAC-265 along with a few additional pieces of documentation, mostly about the upgrades since the original PEGS4 was released.

Section 7 (page 239) is an EGS user guide to Morran3, again taken directly from SLAC-265.

Section 8 (page 259) outlines various system considerations associated with running EGSnrc in a Unix environment. It also discusses installation and distribution of the code.

We also draw your attention to the index which may help find things.

1.6 Associated documents

There are a variety of papers which have been written about EGSnrc and several NRC reports which are part of the distribution. These are listed below. There are also a large number of papers which have been written about EGS4 and a highly biased listing of these is available on-line at http://www.irs.inms.nrc.ca/inms/irs/papers/egs.biblio/egs.biblio.html

In time a similar bibliography related to EGSnrc papers will be available on-line from the EGSnrc distribution site at http://www.irs.inms.nrc.ca/inms/irs/EGSnrc/EGSnrc.html

1.6.1 Refereed Papers

- **Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version:**
 Describes the overall implementation of the new electron transport physics in EGSnrc.

- **Accurate condensed history Monte Carlo simulation of electron transport. II. Application to ion chamber response simulations:**
 Quantifies which problems in EGS4 led to the difficulties simulating ion chamber response accurately and demonstrates that EGSnrc does not have these problems.

- **Monte Carlo study of Spencer-Attix cavity theory at low photon energies:**
 Uses code to explore the accuracy of Spencer-Attix cavity theory. Paper demonstrates the accuracy of the EGSnrc code system for calculations related to real ion chambers.

- **On the representation of electron multiple elastic-scattering distributions for Monte Carlo calculations:**
 Describes the multiple scattering theory used in EGSnrc.
• **On the condensed history technique for electron transport:**
 Describes the electron transport algorithm used in EGSnrc and demonstrates its improved accuracy compared to all other published algorithms.

1.6.2 Internal Reports

• **Monte Carlo calculated wall and axial non-uniformity corrections for primary standards of air kerma,**
 Describes extensive EGSnrc calculations of ion chamber response and comparison to experimental data from standards labs of response vs wall thickness. Also notes that results for these calculations, which are or correction factors, are the same as for EGS4/PRESTA calculations. On-line via http://www.irs.inms.nrc.ca/inms/irs/irs.html

1.6.3 Manuals etc

• **NRC User Codes for EGSnrc**
 Describes the EGSnrc user codes DOSRZnrc, CAVRZnrc, FLURZnrc and SPRRZnrc as well as the generalized input routine developed for use with EGSnrc user codes. On-line via http://www.irs.inms.nrc.ca/inms/irs/EGSnrc/EGSnrc.html

• **EGS_Windows4.0 User’s Manual,**
 Describes the latest version of EGS_Windows which works on any X-windows based system and can be used to display EGSnrc histories in 3-D. On-line via http://www.irs.inms.nrc.ca/inms/irs/EGS_Windows/distribution.html

• **QA tests and comparisons of the EGSnrc system with EGS4,**

• **EGSnrcMP: the multi-platform environment for EGSnrc,**
 Describes the changes in the system of scripts used to run the EGSnrc system. These major changes mean that EGSnrc now works under the Windows OS and there are GUI’s for installing and running the system.

2 Radiation transport in EGSnrc

2.1 Introduction

Photons interact with surrounding matter via four basic processes: materialisation into an electron/positron pair in the electromagnetic field of the nuclei and surrounding atomic electrons, incoherent (Compton) scattering with atomic electrons, photo-electric absorption and coherent (Rayleigh) scattering with the molecules (or atoms) of the medium. The first three collision types transfer energy from the photon radiation field to electrons\(^1\), one of them dominate depending on energy and the medium in which the transport takes place. The pair production process\(^2\) dominates at high energies. At some intermediate energies incoherent scattering is the most important process, at low energies the photo-electric process dominates.

Electrons, as they traverse matter, lose energy by two basic processes: inelastic collisions with atomic electrons and radiation. Radiative energy loss, which occurs in form of bremsstrahlung and positron annihilation, transfers energy back to photons and leads to the coupling of the electron and photon radiation fields. The bremsstrahlung process is the dominant mechanism of electron energy loss at high energies, inelastic collisions are more important at low energies. In addition, electrons participate in elastic collisions with atomic nuclei which occur at a high rate and lead to frequent changes in the electron direction.

Inelastic electron collisions and photon interactions with atomic electrons lead to excitations and ionisations of the atoms along the paths of the particles. Highly excited atoms, with vacancies in inner shells, relax via the emission of photons and electrons with characteristic energies.

The coupled integro-differential equations that describe the electromagnetic shower development are prohibitively complicated to allow for an analytical treatment except under severe approximations. The Monte Carlo (MC) technique is the only known solution method that can be applied for any energy range of interest.

Monte Carlo simulations of particle transport processes are a faithful simulation of physical reality: particles are “born” according to distributions describing the source, they travel certain distances, determined by a probability distribution depending on the total interaction cross section, to the site of a collision and scatter into another energy and/or direction according to the corresponding differential cross section, possibly producing new particles that have to be transported as well. This procedure is continued until all particles are absorbed or leave the geometry under consideration. Quantities of interest can be calculated by averaging over a given set of MC particle “histories” (also referred to as “showers” or “cases”). From mathematical points of view each particle “history” is one point in a \(d\)-dimensional space (the dimensionality depends on the number of interactions) and the averaging procedure corresponds to a \(d\)-dimensional Monte Carlo integration. As such, the Monte Carlo estimate of quantities of interest is subject to a statistical uncertainty which depends on \(N\).

\(^1\) In this report, we often refer to both positrons and electrons as simply electrons. Distinguishing features will be brought out in the context.

\(^2\) Occasionally the materialisation into an \(e^+e^-\) pair takes place with the participation of an atomic electron which, after receiving sufficient energy, is set free. Such processes are known as triplet production.
the number of particle histories simulated, and usually decreases as $N^{-1/2}$. Depending on the problem under investigation and the desired statistical accuracy, very long calculation times may be necessary.

An additional difficulty occurs in the case of the Monte Carlo simulation of electron transport. In the process of slowing down, a typical fast electron and the secondary particles it creates undergo hundreds of thousands of interactions with surrounding matter. Because of this large number of collisions, an event-by-event simulation of electron transport is often not possible due to limitations in computing power. To circumvent this difficulty, Berger [15] developed the “condensed history” (CH) technique for the simulation of charged particle transport. In this method, large numbers of subsequent transport and collision processes are “condensed” to a single “step”. The cumulative effect of the individual interactions is taken into account by sampling the change of the particle’s energy, direction of motion, and position, at the end of the step from appropriate multiple scattering distributions. The CH technique, motivated by the fact that single collisions with the atoms cause, in most cases, only minor changes in the particle’s energy and direction of flight, made the MC simulation of charged particle transport possible but introduced an artificial parameter, the step-length. The dependence of the calculated result on the step-length has become known as a step-size artifact [16].

EGSnrc is a general purpose package for the Monte Carlo simulation of coupled electron and photon transport that employs the CH technique. It is based on the popular EGS4 system [12] but includes a variety of enhancements in the CH implementation and in some of the underlying cross sections. We recognise that many of the modifications that we have made to the original EGS4 implementation are not important for high energy applications, initially EGS4’ primary target. On the other side, the energy range of application of the EGS4 system has shifted over the years to lower and lower energies. To facilitate this transition many enhancements to the original EGS4 implementation has been developed, e.g. the PRESTA algorithm [17], the inclusion of angular distribution of bremsstrahlung photons [18], the low energy photon cross section enhancements by the group at KEK/Japan [7], to mention only some of them. The availability of these improvements, recent advances in the theoretical understanding of the condensed history technique [4, 5] and multiple elastic scattering [1], as well as unpublished results of our recent research have motivated us to undertake a major re-work of the EGS4 system the result of which is EGSnrc.

It is the purpose of this report to summarise the current stage of the EGSnrc system. We have attempted a self-consistent presentation and so, some of the material contained in this report is not new. In particular, various parts come from the EGS4 manual, SLAC-265 by Nelson et al[12].

This report does not attempt to provide a complete treatment of Monte Carlo methods or probability and sampling theory. Readers not familiar with the Monte Carlo technique are encouraged to read one of the many excellent reviews available.

2: Radiation transport in EGSnrc
2.2 Photon interactions

2.2.1 Pair and triplet production

2.2.1.i Cross section

The Feynman diagram for the production of electron-positron pairs in the nuclear field is given in Fig. 1. The triplet production process is similar but the interaction takes place with one of the atomic electrons which receives sufficient energy to be set free. In this version of the EGSnrc system the triplet production process is not simulated explicitly but taken into account in an approximate way by using the total pair+triplet cross section to sample distances to subsequent pair production collisions. EGSnrc adopts the cross sections used in EGS4, i.e. extreme relativistic first Born approximation (Coulomb corrected above 50 MeV) differential cross sections as formulated in the article by Motz, Olsen and Koch [19]. For a photon energy k incident on the nucleus with the atomic number Z, the differential pair production cross section is

$$\frac{d\sigma_{\text{pair}}(Z, k, E_+)}{dE_+} = \frac{A'_p(Z, k)r_0^2\alpha Z(Z + \xi(Z))}{k}$$

$$\left\{ \left(E_+^2 + E^2 \right) \left[\phi_1(\delta) - \frac{4}{3} \ln Z - 4\tilde{f}_c(k, Z) \right] + \frac{2}{3}E_+E_- \left[\phi_2(\delta) - \frac{4}{3} \ln Z - 4\tilde{f}_c(k, Z) \right] \right\}$$

where E_+ and E_- are the total energies of the positron and electron,

$$\delta = 136Z^{-1/3}2\Delta, \quad \Delta = \frac{km}{2E_+E_-}$$

Figure 1: Feynman diagram for the pair production process
and $\tilde{f}_c(Z)$ is the Coulomb correction,

$$
\tilde{f}_c(Z) = \begin{cases}
 f_c(Z), & k \geq 50 \text{ MeV} \\
 0, & \text{else}
\end{cases}
$$

(2.1.3)

where $f_c(Z)$ was derived by Davies, Bethe and Maximon [20],

$$
f_c(Z) = a^2 \sum_{\nu=1}^{\infty} \frac{1}{\nu(\nu^2 + a^2)}, \quad a = \alpha Z.
$$

(2.1.4)

The empirical correction factor $A'_p(k, Z)$ is introduced in order to improve the total pair production cross section at lower energies and is defined as “The best estimate of the total cross section available divided by the total cross section resulting from the integration of Eq. (2.1.1) with $A'_p(k, Z) = 1$”. For energies above 50 MeV A'_p is taken to be unity, for energies below 50 MeV the total pair+triplet cross sections compiled by Storm and Israel [21] are used. The replacement $Z^2 \rightarrow Z(Z + \xi(Z))$ takes into account the triplet production process, where $\xi(Z)$, evaluated by the PEGS4 function XSIF, is given by

$$
\xi(Z) = \frac{L'_{rad}(Z)}{L_{rad}(Z) - f_c(Z)}
$$

(2.1.5)

where $f_c(Z)$ is defined in Eq. (2.1.3) and L, L' are Tsai’s radiation logarithms [22],

$$
L'_{rad}(Z) = \begin{cases}
 Z^{-2/3} \ln 1194, & \text{if } Z > 4 \\
 6.144, & \text{if } Z = 1 \\
 5.621, & \text{if } Z = 2 \\
 5.805, & \text{if } Z = 3 \\
 5.924, & \text{if } Z = 4 \\
 Z^{-1/3} \ln 184.15, & \text{if } Z > 4 \\
 5.310, & \text{if } Z = 1 \\
 4.790, & \text{if } Z = 2 \\
 4.740, & \text{if } Z = 3 \\
 4.710, & \text{if } Z = 4
\end{cases}
$$

$$
L_{rad} = \begin{cases}
 Z^{-2/3} \ln 1194, & \text{if } Z > 4 \\
 6.144, & \text{if } Z = 1 \\
 5.621, & \text{if } Z = 2 \\
 5.805, & \text{if } Z = 3 \\
 5.924, & \text{if } Z = 4 \\
 Z^{-1/3} \ln 184.15, & \text{if } Z > 4 \\
 5.310, & \text{if } Z = 1 \\
 4.790, & \text{if } Z = 2 \\
 4.740, & \text{if } Z = 3 \\
 4.710, & \text{if } Z = 4
\end{cases}
$$

(2.1.6)

The functions $\phi_1(\delta)$ and $\phi_2(\delta)$, which account for screening effects, are given by

$$
\phi_1(\delta) = 4 \int_{\Delta}^{1} \frac{dq}{q^3}(q - \Delta)^2 \left[1 - F(q, Z)\right]^2 + 4 + \frac{4}{3} \ln Z,
$$

$$
\phi_2(\delta) = 4 \int_{\Delta}^{1} \frac{dq}{q^4} \left[q^3 - 6\Delta^2 q \ln \left(q^2 \Delta^2 + 3\Delta^2 q + 4\Delta^3\right) \left[1 - F(q, Z)\right]^2 + \frac{10}{3} + \frac{4}{3} \ln Z
$$

(2.1.7)

where q is the momentum transfer and $F(q, Z)$ the corresponding atomic form factor for an atom with atomic number Z. For a Thomas-Fermi potential $\phi_1(\delta)$ and $\phi_2(\delta)$ are independent of Z and Butcher and Messel have approximated them [23] as

$$
\phi_1(\delta) = \begin{cases}
 20.867 - 3.242\delta + 0.625\delta^2, & \delta \leq 1 \\
 21.12 - 4.184 \ln(\delta + 0.952), & \delta > 1
\end{cases}
$$

$$
\phi_2(\delta) = \begin{cases}
 20.029 - 1.93\delta - 0.086\delta^2, & \delta \leq 1 \\
 \phi_1(\delta), & \delta > 1
\end{cases}
$$

(2.1.8) (2.1.9)
The differential pair production cross section for compounds and mixtures is derived from the independent atom approximation and can be approximately written in the same form as Eq. (2.1.1) but replacing

\[Z(Z + \xi(Z)) \text{ with } Z_{\text{eff}}^2 \equiv \sum p_i Z_i(Z_i + \xi(Z_i)) \]
\[\frac{1}{3} \ln Z + \tilde{f}_c(k, Z) \text{ with } Z_V \equiv \sum p_i Z_i(Z_i + \xi(Z_i)) \left[\frac{1}{3} \ln Z_i + \tilde{f}_c(k, Z_i) \right] \]
\[\delta \text{ with } \delta_C 2\Delta, \quad \delta_C \equiv \frac{136}{Z_{\text{eff}}^2} \sum p_i Z_i(Z_i + \xi(Z_i))Z_i^{-1/3} \quad (2.1.10) \]

where \(p_i \) is the normalised fraction of atoms of type \(i \) in the molecule.

It is worth noticing that, due to the use of the extreme relativistic approximation, the differential cross section as defined in Eq. (2.1.1) becomes inaccurate for energies close to the threshold energy for pair production (2 \(m \)). In the EGS4 implementation, the entire photon energy was given to one of the pair particles for \(k \leq 2 \). We have defined a macro \$SELECT-LOW-ENERGY-PAIR-PRODUCTION\ which, in its default replacement, samples \(E_+ \) uniformly in the allowed range \(m \cdots k/2 \). If the user is aware of a better approach, this simplistic treatment can be modified by the appropriate replacement of this macro.

2.2.1.ii Simulation of pair production, particle energies

The sampling algorithm implemented in EGS4 becomes extremely inefficient as the incident photon energy approaches the threshold energy. This is due to the following two facts: (i) The electron and positron energies, \(E_- \) and \(E_+ \), are sampled in the range \(0 \cdots k/2 \), the allowed range becomes a small fraction of the above interval for \(k \to 2m \). (ii) The rejection functions used are normalised to their maximum at \(\delta = 0 \). For photon energies that are not much larger than \(2m \) the actual possible maximum is much smaller.

We have slightly modified the EGS4 pair production sampling algorithm to improve its efficiency. If we define the functions

\[B(\delta) = 3[\phi_1(\delta) - 4Z_V] - [\phi_2(\delta) - 4Z_V] \]
\[C(\delta) = 3[\phi_1(\delta) - 4Z_V] + [\phi_2(\delta) - 4Z_V] \quad (2.1.11) \]

which will serve as rejection functions, and make a change of variables,

\[\varepsilon = \frac{E_+ - m}{k - 2m} \], \quad (2.1.12) \]

the differential pair production cross section can be rewritten as

\[\frac{d\sigma_{\text{pair}}}{d\varepsilon} = N \left\{ \frac{B(\delta)}{B_{\text{max}}} + \left(1 - \frac{2m}{k} \right)^2 \frac{A_{\text{max}}}{3B_{\text{max}}} A(\delta) \left[12 \left(\varepsilon - \frac{1}{2} \right)^2 \right] \right\} \quad (2.1.13) \]

where \(N \) combines all constant factors that are irrelevant for the sampling algorithm and \(A_{\text{max}} \) and \(B_{\text{max}} \) are the maxima of the rejection functions \(A(\delta) \) and \(B(\delta) \),

\[A_{\text{max}} = A \left(\frac{4\delta_C m}{k} \right), \quad B_{\text{max}} = B \left(\frac{4\delta_C m}{k} \right) \quad (2.1.14) \]
The sampling algorithm, which determines the energy of the lower energy “electron” is then as follows:

1. Calculate $A_{\text{max}}, B_{\text{max}}$ and α,

 \[
 \alpha = \frac{1}{1 + (1 - 2m/k)^2 A_{\text{max}}/3/B_{\text{max}}} \tag{2.1.15}
 \]

 To save time at high energies, use $A_{\text{max}} = A(0)$ and $B_{\text{max}} = B(0)$ for $k \geq 50$ MeV.

2. Draw a random number r_1

3. If $r_1 > \alpha$, then sample ε from $12(\varepsilon - 1/2)^2$, i.e.

 \[
 \varepsilon = \frac{1}{2} \left(1 - \text{Max}\{r_2, r_3, r_4\}\right) \tag{2.1.16}
 \]

 and use $A(\delta)/A_{\text{max}}$ as a rejection function in step 5

4. Else, sample ε uniformly, i.e.

 \[
 \varepsilon = \frac{1}{2} r_2 \tag{2.1.17}
 \]

 and use $B(\delta)/B_{\text{max}}$ as a rejection function in step 5

5. Calculate δ and the rejection function $R = A(\delta)/A_{\text{max}}$ or $B(\delta)/B_{\text{max}}$

6. If $r_5 < R$, accept ε, else go to step 2.

Fig. 2 shows the CPU time in μs on a 500 MHz PIII computer running Linux necessary to sample a pair energy using the algorithms discussed here (solid lines) and the original EGS4 algorithm (dashed lines) for aluminum and lead as a function of the incident photon energy (this is just the time for energy sampling, excluding angle sampling and rotations). Note the logarithmic scale and the dramatic increase in CPU time for the EGS4 algorithm and a photon energy less then 20 or 30 MeV. The discontinuity in the EGSnrc algorithm around 50 MeV is due change in the approach to calculate A_{max} and B_{max} (see item 1).

2.2.1.iii Simulation of pair production, particle angles

In the original EGS4 version electrons and positrons were produced at a fixed polar angle θ_{\pm} with respect to the direction of the incoming photon given by $\theta_{\pm} = m/k$. This approach was subsequently improved as discussed in PIRS Report 0287 [24] which introduced the \texttt{SET-PAIR-ANGLE} macro as an NRC extension to the EGS4 system. This macro is now included in the EGSnrc system. The angle selection procedure is controlled by the variable \texttt{IPRDST} which can assume the following values:

\texttt{IPRDST} = 0: The original EGS4 approach is used, i.e. $\theta_{\pm} = m/k$
Figure 2: CPU time in μs on a 500 MHz PIII computer to sample a pair energy.

IPRDST=1: The leading order term of the angular distribution is employed, *i.e.*

$$\frac{d\sigma}{d\Omega_{\pm}} = N \frac{1}{(1 - \beta_{\pm} \cos \theta_{\pm})^2}$$

(2.1.18)

where N is again a normalisation constant and β_{\pm} denotes the velocity of the positron or electron in units of the speed of light.

IPRDST=2: The formula 3D-2003 of the article by Motz *et al.* [19] is used, which is the cross section, differential in electron/positron energy and angle:

$$\frac{d\sigma}{dE_{\pm}d\Omega_{\pm}} = \frac{N}{(u^2 + 1)^2} \left\{ -(E_+ - E_-)^2 - \frac{16u^2E_+E_-}{(u^2 + 1)^2} + \left[E_+^2 + E_-^2 + \frac{4u^2E_+E_-}{(u^2 + 1)^2} \right] \ln M(k, E_{\pm}, u) \right\}$$

$$u = E_{\pm}\theta_{\pm} , \quad \frac{1}{M(k, E_{\pm}, u)} = \left(\frac{k}{2E_+E_-} \right)^2 + \left(\frac{Z_{\text{eff}}^{1/3}}{111(u^2 + 1)^2} \right)^2$$

(2.1.19)

where all energies are measured in units of m. Note that Eq. (2.1.19) is based on an
extreme relativistic, small angle approximation where

\[(1 - \beta_\pm \cos \theta_\pm)^2 \approx \left[1 - \beta_\pm \left(1 - \frac{\theta_\pm^2}{2}\right)\right]^2 = (1 - \beta_\pm)^2 \left[1 - \frac{\beta_\pm + \theta_\pm^2}{1 - \beta_\pm} \right]^2 \approx (1 - \beta_\pm)^2 (1 + u^2)^2.\]

(2.1.20)

Perhaps, it would be a good idea to replace \(1 + u^2\) with \(1 - \beta_\pm \cos \theta_\pm\) in the denominator outside of the curled brackets of Eq. (2.1.19), but we have not undertaken this modification.

The sampling algorithm for Eq. (2.1.19) is discussed extensively in Ref. [24]. It should be noted that this algorithm becomes progressively more inefficient with increasing energies. Given this fact and the approximations involved which make its use questionable at low energies, we have chosen IPRDST=1 as the default pair angle selection scheme in EGSnrc. The generation of electron and positron polar angles from the distribution (2.1.18) is trivial, it is accomplished by

\[\cos \theta_\pm = \frac{2r - 1 + \beta_\pm}{\beta_\pm(2r - 1) + 1}\]

(2.1.21)

where \(r\) is an uniformly distributed random number between zero and unity. As pair-production is a three-body process, separate polar angles for the electron and positron are needed. The two azimuthal angles are chosen to be opposite. This is, strictly speaking, not correct, but due to lack of a better alternative, adopted from the original EGS4 version.

2.2.1.iv Russian Roulette for pair production events

It is wasteful to simulate all pair production events if the user intends to play Russian Roulette with electrons set in motion in photon interactions. We have therefore implemented an EGSnrc internal Russian Roulette scheme which is turned on by setting the flag i.play_RR which is in COMIN/EGS-VARIANCE-REDUCTION/ to 1. The survival probability for the electrons is prob_RR, also in COMIN/EGS-VARIANCE-REDUCTION/. If i.play_RR is set, the following actions are taken at the beginning of subroutine PAIR:

1. Pick a random number \(r\)
2. If \(r > \text{prob}_\text{RR}\), reduce the stack size by one, return to PHOTON (i.e. save the simulation of the pair event). If the stack becomes empty, a zero weight, zero energy photon is left on the stack so that the PHOTON routine can exit properly.
3. If \(r < \text{prob}_\text{RR}\), increase the weight of the current photon by \(1/\text{prob}_\text{RR}\) and simulate the pair event as usual.

For more discussion of Russian Roulette see sections 3.10.3 and 3.4.6.

2.2.2 Incoherent (Compton) scattering

2.2.2.i Cross section

2: Radiation transport in EGSnrc
The Feynman diagram for the Compton scattering process is shown in Fig. 3. The circle in the line of the incoming atom A indicates that the electron is initially bound to the atom and represents the probability that an atomic electron with a four-momentum \(p = (E, \vec{p}) \) interacts with the incoming photon with a four-momentum \(k = (k, \vec{k}) \) into a final \(e^-\gamma' \) state given by \(k' = (k', \vec{k}') \) and \(p' = (E', \vec{p}') \). To simplify the notation, all energies will be measured in units of the electron's rest energy \(m \) and all momenta in units of \(m/c \) in the following equations of this section.

If the binding to the atom is neglected and the electron is considered to be initially at rest (i.e \(p = (1, 0, 0, 0) \)), the cross section for the process is given by the Klein-Nishina formula [25],

\[
\frac{d\sigma_{\text{KN}}}{d\cos \theta} = \pi r_0^2 Z \ X_{\text{KN}}, \quad X_{\text{KN}} = \left(\frac{k_e}{k}\right)^2 \left[\frac{k_e}{k} + \frac{k}{k_e} - \sin^2 \theta\right]
\]

(2.2.1)

where \(\theta \) is the polar angle of the scattered photon with respect to the initial direction and \(k_e \) is the energy of a photon scattered at an angle \(\theta \) by free electrons at rest,

\[
k_e = \frac{k}{1 + k(1 - \cos \theta)}
\]

(2.2.2)

The treatment of the Compton process in EGS4 is based on these equations with \(k' = k_e \). In EGSnrc we have included binding effects and Doppler broadening according to the impulse approximation (IA) [26]. The IA assumes that the potential in which the target electrons move is constant so that their states can be represented by plane waves. The double differential cross section for photon scattering into the final state \(k' = (k', \sin \theta \cos \phi, \sin \theta \sin \phi, k' \cos \theta) \) is given by (Eq. (15) of Ref. [27])

\[
\frac{d^2\sigma_{\text{comp}}}{dk'd\Omega} = \frac{r_0^2}{2} \frac{k'}{kq} \left[1 + p_z^2\right]^{-1/2} X J(p_z)
\]

(2.2.3)

where \(\Omega \) is the solid angle (\(\theta, \phi \)) and where

Figure 3: Feynman diagram for the Compton process
• q is the modulus of the momentum transfer vector $\vec{q} = \vec{k} - \vec{k}'$,

$$q = \sqrt{k^2 + k'^2 - 2kk'\cos \theta} \quad (2.2.4)$$

• p_z is the projection of the initial electron momentum on the direction of \vec{q},

$$p_z = \frac{\vec{p} \cdot \vec{q}}{q} = \frac{kk'(1 - \cos \theta) - k + k'}{q} \quad (2.2.5)$$

Note that the above equation is derived from a non-relativistic approximation and requires $|p_z| \leq 1$.

• X is defined as

$$X = \frac{R}{R'} + \frac{R'}{R} + 2 \left(\frac{1}{R} - \frac{1}{R'} \right) + \left(\frac{1}{R} - \frac{1}{R'} \right)^2$$

$$R = k \left[\sqrt{1 + p_z^2} + \frac{k - k'\cos \theta}{q}p_z \right]$$

$$R' = R - kk'(1 - \cos \theta) \quad (2.2.6)$$

Note that R and R' simplify to

$$R \approx k\left(1 + O(p_z)\right) \quad , \quad R' \approx k\left[1 - k_c(1 - \cos \theta)\right]\left(1 + O(p_z)\right) \quad (2.2.7)$$

for $p_z \ll 1$. In this limit

$$X = X_{KN} \left(1 + O(p_z)\right) \quad (2.2.8)$$

• The function $J(p_z)$ is the Compton profile,

$$J(p_z) = \int dp_x dp_y |\psi(\vec{p})|^2 \quad , \quad (2.2.9)$$

where $\psi(\vec{p})$ is the wave function of the bound electrons. Extensive tables of atomic and shell-wise Hartree-Fock Compton profiles for all elements have been published by Biggs et al [28]. Following Brusa et al [29], contributions from different electron shells are considered separately, so that the atomic or molecular Compton profile is the sum of one-electron shell Compton profiles $J_i(p_z)$, and binding effects are taken into account by rejecting interactions that transfer less energy to the electron than the binding energy U_i, i.e.

$$J(p_z) = \sum Z_i J_i(p_z) \Theta(k - k' - U_i) \quad (2.2.10)$$

Here, Z_i is the occupation number of shell i and the J_i have the normalisation

$$\int_{-\infty}^{\infty} dp_z J_i(p_z) = 1 \quad (2.2.11)$$
With all this, and after changing the cross section from differential in \(k' \) to differential in \(p_z \), Eq. (2.2.3) can be written as

\[
\frac{d^2\sigma_{\text{comp}}}{dp_z d\Omega} = \frac{r_0^2}{2} X_{KN} \left(\sum Z_i J_i(p_z) \Theta(k - k' - U_i) \right) F(k, \cos \theta, p_z)
\]

(2.2.12)

where the function \(F(k, \cos \theta, p_z) \) combines all remaining factors times \(dk'/dp_z \),

\[
F(k, \cos \theta, p_z) = \frac{k'}{k} \left[1 + p_z^2 \right]^{-1/2} \frac{X_{KN}}{X_{KN}} \left(1 + \frac{k_c k \cos \theta - k'}{k} \right)^{-1}
\]

(2.2.13)

Here, \(k' \) is a function of \(k, \cos \theta \) and \(p_z \) and follows from solving Eq. (2.2.5) with respect to \(k' \), i.e.

\[
k' = \frac{k_c}{1 - p_z^2 \varepsilon^2} \left[1 - p_z^2 \varepsilon \cos \theta + p_z \sqrt{1 - 2\varepsilon \cos \theta + \varepsilon^2 (1 - p_z^2 \sin^2 \theta)} \right], \quad \varepsilon = \frac{k_c}{k}
\]

(2.2.14)

The incoherent scattering cross section, differential in the photon scattering angle, is

\[
\frac{d\sigma_{\text{comp}}}{d\Omega} = \frac{r_0^2}{2} \left(\frac{k_c}{k} \right)^2 X_{KN} S(k, \cos \theta)
\]

(2.2.15)

where

\[
S(k, \cos \theta) = \sum Z_i \Theta(k - U_i) S_i, \quad S_i = \int_{-\infty}^{p_i} dp_z J_i(p_z) F(k, \cos \theta, p_z)
\]

(2.2.16)

can be identified with the incoherent scattering function. The upper limit of the \(p_z \) integration for the \(i \)th shell, \(p_i \),

\[
p_i = \frac{k(k - U_i)(1 - \cos \theta) - U_i}{\sqrt{2k(k - U_i)(1 - \cos \theta) + U_i^2}},
\]

(2.2.17)

follows from Eq. (2.2.5) with \(k' = k - U_i \) and assures that sufficient energy is transferred to the electron to set it free. To first order, \(S(k, \cos \theta) \) depends only on \(k \sqrt{(1 - \cos \theta)/2} \) and so, Namito et al [9] use tabulated incoherent scattering functions in their extension of the EGS4 system to include binding effects and Doppler broadening, when sampling the photon scattering angle. This approach introduces a slight inconsistency in their treatment of the Compton process.

As the Compton profiles are strongly peaked around \(p_z = 0 \), the main contributions to the integral come from small \(p_z \) values where the function \(F(k, \cos \theta, p_z) \) is very close to unity and so, Brusa et al [29] approximate \(S(k, \cos \theta) \) with

\[
S(k, \cos \theta) \approx S_A((k, \cos \theta) \equiv \sum Z_i \int_{-\infty}^{p_i} dp_z J_i(p_z) \Theta(k - U_i)
\]

(2.2.18)

for their implementation of binding effects and Doppler broadening in the PENELIOPE system [30]. This approach introduces a small error at low energies for high \(Z \) materials as

3They take into account \(F(k, \cos \theta, p_z) \), using its Taylor expansion up to \(O(p_z) \), for the sampling of \(p_z \).
Incoherent scattering function for \(k = 50 \text{ keV} \) and \(Z = 82 \)

\[
S(k, \cos \theta)/Z
\]

Incoherent scattering function for \(k = 50 \text{ keV} \) and \(Z = 82 \) with \(F(k, \cos \theta, p_z) \) without \(F(k, \cos \theta, p_z) \)

Figure 4: The incoherent scattering function for lead and \(k = 50 \text{ keV} \) calculated from Eq. (2.2.16) (solid line) and from Eq. (2.2.18) (dashed line) by numerical integration.

can be seen in Fig. 4 which shows \(S(k, \cos \theta) \) for 50 keV photons in lead calculated with or without taking into account \(F(k, \cos \theta, p_z) \).

To minimise the amount of data necessary for the simulation of the Compton process, and to make the calculation of the incoherent scattering function “on the fly” possible, we use the analytical approximations for the Compton profiles \(J_i(p_z) \) proposed by Brusa et al [29]:

\[
J_i(p_z) = J_{i,0}(1 + 2J_{i,0}|p_z|) \exp \left[\frac{1}{2} - \frac{1}{2} \left(1 + 2J_{i,0}|p_z| \right)^2 \right] \tag{2.2.19}
\]

where \(J_{i,0} \equiv J_i(0) \) is the value of the profile at \(p_z = 0 \) obtained from the Hartree-Fock orbital [28]. In addition, we approximate \(F(k, \cos \theta, p_z) \) by

\[
F((k, \cos \theta, p_z) = \begin{cases}
1 - \alpha p, & p_z \leq -p \\
1 + \alpha p_z, & |p_z| < p \\
1 + \alpha p, & p_z \geq p
\end{cases} \tag{2.2.20}
\]

2: Radiation transport in EGSnrc
where
\[
\alpha = \frac{q_c}{k} \left(1 + \frac{k_c(k_c - k \cos \theta)}{q_c^2} \right)
\]
\[
q_c = \sqrt{k^2 + k_c^2 - 2kk_c \cos \theta}.
\]
\tag{2.2.21}

Equation (2.2.20) results from a Taylor series expansion of \(F(k, \cos \theta, p_z) \) up to \(O(p_z) \). As this approximation becomes inaccurate for large \(p_z \) values it is applied only for \(|p_z| < p \), else the function values at \(\pm p \) are used. We have checked by numerical integration of Eq. (2.2.16) that the incoherent scattering function calculated with the approximation (2.2.20) agrees to better than 0.3\% with the incoherent scattering function calculated using the exact expression for \(F(k, \cos \theta, p_z) \) if \(p = 0.15 \) is used.

Combining now Eq. (2.2.16), (2.2.19) and (2.2.20), we obtain for \(S_i \)
\[
S_i(k, \cos \theta) = \begin{cases}
(1 - \alpha p) \frac{e^{-b}}{2}, & \text{if } p_i \leq -p \\
(1 + \alpha p_i) \frac{e^{-b}}{2} - \frac{\alpha}{4J_{i,0}} \sqrt{\frac{\pi}{2}} e^{1/2} \left[\text{Erf} \left(\frac{1 + 2J_{i,0}p_i}{\sqrt{2}} \right) - \text{Erf} \left(\frac{1 + 2J_{i,0}|p_i|}{\sqrt{2}} \right) \right], & \text{if } p_i \leq 0 \\
1 - (1 + \alpha p_i) \frac{e^{-b}}{2} - \frac{\alpha}{4J_{i,0}} \sqrt{\frac{\pi}{2}} e^{1/2} \left[\text{Erf} \left(\frac{1 + 2J_{i,0}p_i}{\sqrt{2}} \right) - \text{Erf} \left(\frac{1 + 2J_{i,0}|p_i|}{\sqrt{2}} \right) \right], & \text{if } p_i < p \\
1 - (1 + \alpha p) \frac{e^{-b}}{2}, & \text{else}
\end{cases}
\]
\tag{2.2.22}

where
\[
b = \frac{1}{2} (1 + 2J_{i,0}|p_i|)^2 - \frac{1}{2}
\]
\tag{2.2.23}

and Erf is the error function. It is worth noticing that \(S_i \) is always less or equal to unity. This fact allows for using it as a rejection function in the sampling algorithm discussed in the next section.

The total incoherent scattering cross section \(\sigma_{\text{comp}}^{(\text{tot})} \) can be obtained by a numerical integration over all scattering angles from Eq. (2.2.15), (2.2.16) and (2.2.22). To avoid substantial changes of the data preparation program PEGS4, we use instead the total Klein-Nishina cross section, \(\sigma_{\text{KN}}^{(\text{tot})} \), while tracking the photons through the geometry, and reject Compton interactions with the probability \(1 - \sigma_{\text{comp}}^{(\text{tot})}/\sigma_{\text{KN}}^{(\text{tot})} \) once at the interaction site (fictitious cross section method). This rejection probability results automatically (without calculating \(\sigma_{\text{comp}}^{(\text{tot})} \)) from the sampling algorithm, as we shall see in the next section.

Another advantage of this approach is that the user can turn on or off binding effects and Doppler broadening using the switch \text{IBCMP}, without preparing two separate material data files. The only additional data needed to simulate incoherent scattering in the impulse approximation are the Compton profile parameters \(J_{i,0} \), taken from the tabulations by Biggs \textit{et al} \cite{Biggs}, and the occupation numbers \(Z_i \) and binding energies \(U_i \) for all elements, taken from Lederer and Shirley \cite{Lederer}. These data are read in in subroutine \text{init.compton} which is called from \text{HATCH}.

2.2.2.ii Simulation of incoherent scattering events

The incoherent scattering cross section, differential in the photon scattering angle $\Omega = (\theta, \phi)$ and the Doppler broadening parameter p_z, per interaction site sampled from the total Klein-Nishina cross section is

$$\frac{d^2\sigma_{\text{comp}}}{\sigma_{\text{tot}}^{\text{KN}}} = \sum \frac{Z_i}{Z} \Theta(k - U_i) \sigma_i \ d\Omega \ dp_z$$ \hspace{1cm} (2.2.24)

$$\sigma_i \ d\Omega \ dp_z = \frac{S_i}{2\pi} \frac{d\phi}{2\pi} \frac{X_{\text{KN}}(\cos\theta) \ d\cos\theta}{\int_{-1}^{1} X_{\text{KN}}(\cos\theta) d\cos\theta} \frac{J_i(p_z) F(k, \cos\theta, p_z) \Theta(p_i - p_z) dp_z}{\int_{-\infty}^{p_i} dp_z J_i(p_z) F(k, \cos\theta, p_z)}$$

It is then clear that the following algorithm produces the required number of rejections and samples the differential cross section correctly, if the interaction is accepted:

1. Sample the shell number i using the probabilities Z_i/Z

2. If the incident photon energy k is smaller than the binding energy U_i, reject the interaction, else, sample $\cos\theta, \phi$ and p_z using the differential cross section σ_i of the selected shell as follows:

3. Sample the photon polar scattering angle θ using

$$P_1(\cos\theta) = \frac{X_{\text{KN}}(\cos\theta) \ d\cos\theta}{\int_{-1}^{1} X_{\text{KN}}(\cos\theta) d\cos\theta}$$

which is a normalised probability distribution function (PDF). The method for sampling $\cos\theta$ will be explained below.

4. Calculate the maximum possible value of p_z, p_i, from Eq. (2.2.17), and S_i from Eq. (2.2.22).

5. If a uniformly distributed random number is greater then S_i, reject the interaction

6. Sample p_z from

$$P_2(p_z) = \frac{J_i(p_z) F(k, \cos\theta, p_z) \Theta(p_i - p_z) dp_z}{\int_{-\infty}^{p_i} dp_z J_i(p_z) F(k, \cos\theta, p_z)}$$

which is a normalised PDF for p_z. The sampling technique employed for this distribution function is explained below.

7. Sample the azimuthal scattering angle from $d\phi/(2\pi)$

8. Calculate the energy k' of the scattered photon from Eq. (2.2.14)

9. The electron set in motion has then a kinetic energy of $k - k' - U_i$, a polar scattering angle θ_e given by

$$\cos\theta_e = \frac{k - k' \cos\theta}{\sqrt{k^2 + k'^2 - 2kk' \cos\theta}}$$ \hspace{1cm} (2.2.25)

and an azimuth opposite to the photon’s azimuth.
Note that if the user does not want to take into account binding effects and Doppler broadening (the switch \texttt{IBCMP} is set to zero), the sampling algorithm consists of steps 3, 7 and 9 with $k' = k_c$ and $U_i = 0$.

As the shell with which the interaction takes place is explicitly determined in step 1, at the end of the sampling algorithm the vacancy created by the Compton process is known. The relaxation of shell vacancies with binding energies above the specified transport threshold energies is performed in subroutine \texttt{relax} (see section 2.3) and may lead to the creation of additional fluorescent photons and Auger and Coster-Kronig electrons on the stack. Many of the EGS4 based user codes assume that the outcome of an incoherent scattering process is a scattered photon and a Compton electron. This assumption is obviously not satisfied for EGSnrc, the outcome of an incoherent event may by any one of the following:

1. The original photon, if the interaction was rejected due to the one of the rejection criteria

2. A scattered photon and a Compton electron, if all relaxation particles had energies below the specified transport threshold energies (\texttt{ECUT} and \texttt{PCUT})

3. A scattered photon, a Compton electron plus n relaxation particles, else.

See section 3.7.2 (page 124) for more information.

Finally, the portion of the binding energy that resulted in the creation of sub-threshold relaxation particles is made known to the user via a call to the scoring routine \texttt{AUSGAB} with the argument \texttt{IARG}=4.

We conclude this section with some details about steps 3, 4 and 6 of the sampling algorithm.

Step 3, sampling of $\cos \theta$: Following the EGS4 manual\cite{12} we rewrite the PDF P_1 in terms of $\varepsilon = k_c/k$,

$$ P_1(\varepsilon) = P_1(\cos \theta) \frac{d\varepsilon}{d \cos \theta} = N \left(\frac{1}{\varepsilon + \varepsilon - \sin^2 \theta} \right) $$

(2.2.26)

where N is a normalisation constant that is irrelevant for the sampling algorithm. The minimum and maximum possible values for ε, ε_{min} and ε_{max}, follow from $\cos \theta = -1$ and $\cos \theta = 1$, respectively, and are given by

$$ \varepsilon_{\text{min}} = \frac{1}{1 + 2k} , \quad \varepsilon_{\text{max}} = 1 . $$

(2.2.27)

Equation (2.2.26) can be further rewritten as

$$ P_1(\varepsilon) = N(\alpha_1 + \alpha_2) \left\{ \frac{\alpha_1}{\alpha_1 + \alpha_2} \left(\frac{1}{\varepsilon \alpha_1} \right) + \frac{\alpha_2}{\alpha_1 + \alpha_2} \left(\frac{\varepsilon}{\alpha_2} \right) \right\} \left[1 - \frac{\varepsilon \sin^2 \theta}{1 + \varepsilon^2} \right] $$

(2.2.28)

with

$$ \alpha_1 = \ln (1 + 2k) , \quad \alpha_2 = \frac{1 - \varepsilon_{\text{min}}^2}{2} $$

(2.2.29)
and ε/α_2 are normalised PDFs, they can be used to sample ε with the probability $\alpha_1/(\alpha_1 + \alpha_2)$ and $\alpha_2/(\alpha_1 + \alpha_2)$, respectively. The expression of the square brackets has a maximum of unity for $\varepsilon = 1 (\sin \theta = 0)$ and is thus a valid rejection function. The sampling algorithm is then as follows:

3.1 Calculate $\varepsilon_{\text{min}}, \alpha_1, \alpha_2$ and $w = \alpha_1/(\alpha_1 + \alpha_2)$
3.2 Pick three random numbers r_1, r_2 and r_3
3.3 If $r_1 \leq w$,
 \[\varepsilon = \varepsilon_{\text{min}} \exp(r_2 \alpha_1), \]
 else,
 \[\varepsilon = \sqrt{\varepsilon_{\text{min}}^2 + 2r_2 \alpha_2} \]
3.4 Calculate the rejection function (g), if $r_3 > g$ go to step 3.2
3.5 Deliver ε (and $\cos \theta$)

The efficiency of this algorithm goes to unity for $k \to \infty$ and therefore this is the most efficient algorithm at high incident photon energies. For $k \to 0$, the efficiency approaches $2/3$. In addition, the necessity to calculate a logarithm and an exponential function, two CPU intensive calculations, makes this algorithm slower than a simple rejection technique with a uniform sampling of ε. The rejection function in this case is given by

\[g = \frac{1}{g_{\text{max}}} \left(\frac{1}{\varepsilon} + \frac{\varepsilon - \sin^2 \theta}{\varepsilon_{\text{min}}} \right), \quad g_{\text{max}} = \frac{1}{\varepsilon_{\text{min}}} + \varepsilon_{\text{min}} \]

and the algorithm is as follows

3.1 Calculate ε_{min} and g_{max}
3.2 Pick two random numbers r_1 and r_2
3.3 Set
 \[\varepsilon = r_1 + (1 - r_1) \varepsilon_{\text{min}} \]
 and calculate g
3.4 If $r_2 > g$, go to step 3.2
3.5 Deliver ε (and $\cos \theta$)

The efficiency of this algorithm is $2/3$ for low energies and decreases with increasing k. Because there are no CPU intensive calculations involved, it is faster up to $k \sim 2$ and used by EGSnrc in this energy range.

Step 4, calculation of S_i: The calculation of S_i requires two numerically intensive operations, the computation of $\exp(-b)$ and the calculation of the error function that depends...
on \(p_i \). The former is necessary for the sampling of \(p_z \) in step 6, the latter can be avoided by using an approximate formula for \(\text{Erf} \) (Eq. 7.1.25 of Abramowitz and Stegun [32]):

\[
e^{1/2} \text{Erf} \left(\frac{1 + 2J_{i,0} |p_i|}{\sqrt{2}} \right) = e^{1/2} - e^{-b} t (a_1 + a_2 t + a_3 t^2) \tag{2.2.34}
\]

\[
t = \frac{1}{1 + 0.332673 (1 + 2J_{i,0} |p_i|)}, \quad a_1 = 0.34802, \quad a_2 = -0.0958798, \quad a_3 = 0.7478556
\]

which is accurate enough for our purposes.

Step 6, sampling \(p_z \): \(p_z \) can be sampled using \(J_i(p_z) \) as a PDF and \(F \) as a rejection function. To determine the maximum of \(F \) we note that \(\alpha \) (given by Eq. (2.2.21)) is always positive except for a small \(\cos \theta \)-range for \(k > 3 \). For such high incident photon energies the influence of \(F \) is negligible and so we ignore it if \(\alpha < 0 \) (i.e. we set \(\alpha = 0 \)). The maximum of the rejection function, \(F_{\text{max}} \), is then:

\[
F_{\text{max}} = \begin{cases}
1 - \alpha p &, \quad p_z \leq -p \\
1 + \alpha p_i &, \quad |p_i| < p \\
1 + \alpha p &, \quad p_i \geq p
\end{cases} \tag{2.2.35}
\]

and the algorithm for sampling \(p_z \) as follows:

6.1 Calculate \(F_{\text{max}} \) from Eq. (2.2.35)

6.2 Pick two random numbers, \(r_1 \) and \(r_2 \), calculate \(r' = r_1 e^{-b} \) (\(e^{-b} \) is known from step 4 of the main algorithm)

6.3 Set

\[
p_z = \begin{cases}
\frac{1 - \sqrt{1 - 2 \ln(2r')}}{2J_{i,0}} &, \quad r' < 1/2 \\
\frac{\sqrt{1 - 2 \ln(2(1-r'))} - 1}{2J_{i,0}} &, \quad r' \geq 1/2
\end{cases} \tag{2.2.36}
\]

6.4 Calculate \(F(p_z) \), if \(r_2 > F(p_z)/F_{\text{max}} \), go to step 6.2

6.5 Deliver \(p_z \)

It is easy to see that the sampling of incoherent scattering events with binding effects and Doppler broadening taken into account requires substantially more numerical work compared to the free electron case (using the Klein-Nishina cross section). Fig. 5 shows the CPU time per incoherent scattering event for EGS4 (solid line), EGSnrc without (dotted line) and with binding effects (dashed line) as a function of the incident photon energy. The long dashed line would result if the function \(F(k, \cos \theta, p_z) \) was ignored. EGSnrc without binding effects is faster than EGS4 for low photon energies due to the use of the uniform sampling technique. The inclusion of binding effects increases the CPU time per Compton event by not more than a factor of two and so has only a minor effect on the overall simulation time when electron transport is included. Binding effects and Doppler broadening for coherent scattering are therefore turned on by default in the block data sub-program (the switch IBCMP is set to unity).
2.2.3 Photo-electric absorption

In the photo-electric absorption process a photon is absorbed by an atom and an electron is emitted with an energy given by the incident photon energy minus its binding energy. The atom, left in an excited state with a vacancy in the ionised shell, relaxes via the emission of fluorescent photons and Auger and Coster-Kronig electrons.

In the original default EGS4 implementation the emission of relaxation particles following photo-electric absorption events was ignored. This approach was later modified to include the production of K_α and K_β fluorescent radiation. However, for incident photon energies below the K-shell binding energy, the entire photon energy is deposited locally. Another shortcoming of the EGS4 approach is that the K-shell binding energy is always subtracted from the energy of the electron set in motion, even though there is a certain probability that
the photo-absorption process takes place with a shell other than the K-shell (for high-Z materials this probability is of the order of 20%). Finally, the use of the fluorescent option in EGS4 requires the user to select an “effective” atomic number for each material. The photo-absorption then always takes place with this atomic number. The meaningful selection of an “effective” Z proves to be a difficult task for mixtures, especially when only a small fraction of a high-Z element is present.

Although this release of EGSnrc uses the total photo-absorption cross sections from PEGS (which are taken from the compilation by Storm and Israel [21]) the simulation of the photo-absorption process is completely changed and is controlled by the flag IEDGFL. If IEDGFL of the region is non-zero, a detailed simulation is performed, otherwise a simplified treatment of the photo-absorption process is undertaken. The default setting of IEDGFL is one.

2.2.3.i Detailed simulation of photo-electric absorption

1. For compounds and mixtures, the first step is to sample the atomic number of the element the photon is interacting with. If Z_i denotes the atomic number of the i'th element in the molecule, p_i its stoichiometric index, and $\sigma_{ph}(k, Z)$ the photo-electric absorption cross section for a photon of energy k by an element with atomic number Z, then the probability $w_i(k)$ that the photon is absorbed by the element Z_i is

$$w_i(k) = \frac{p_i\sigma_{ph}(k, Z_i)}{\sum p_i\sigma_{ph}(k, Z_i)}.$$ \hfill (2.3.1)

The sampling of the element therefore requires the knowledge of all elemental photo-absorption cross sections at run time, not just the total photo-absorption cross sections that comes from the PEGS data set. To minimise the amount of additional data required, we use fit formulas for the $\sigma_{ph}(k, Z_i)$’s which are accurate to within 1-2% and have the form

$$\sigma_{ph}(k, Z) = \frac{A_K(Z)}{k} + \frac{B_K(Z)}{k^2} + \frac{C_K(Z)}{k^{3/2}} + \frac{D_K(Z)}{k^4}, \quad \text{if } k \geq U_K(Z)$$

$$= \exp \left[A_j(Z) + B_j(Z)t + C_j(Z)t^2 + D_j(Z)t^3 \right], \quad \text{else if } k \geq U_j(Z)$$ \hfill (2.3.2)

where $t = \ln k$ and where $U_K(Z)$ is the K-shell binding energy and $U_j(Z)$ binding energies for shells other then the K-shell. We have obtained The coefficients $A_K, B_K, ...$ and $A_j, B_j, ...$ by fitting the photo-absorption cross sections from the XCOM program [33] and are found in the file photo_cs.data (only shells with a binding energy above 1 keV are included). The algorithm to select the element that absorbs the incident photon is then:

1.1 Calculate all $\sigma_{ph}(k, Z_i)$ and their sum

1.2 Pick a random number r_1

1.3 In a loop over the number of elements, calculate $r_1 = r_1 - w_i$, if $r_1 \leq 0$ exit the loop and take Z_i as the element interacting with the photon.
Note that, at least in principle,

$$\sum p_i \sigma_{ph}(k, Z_i) = \sigma_{ph}(k)$$

where $\sigma_{ph}(k)$ is the photo-absorption cross section for the material under consideration. This cross section is interpolated using the PEGS supplied data in the photon transport routine in order to determine the interaction type. One could make the element selection algorithm more efficient by employing

1.1’ Pick a random number r_1

1.2’ Set $i = 1$

1.3’ Calculate $\sigma_{ph}(k, Z_i)$ and $r_1 = r_1 - p_i \sigma_{ph}(k, Z_i)/\sigma_{ph}(k)$.

1.4’ If $r_1 > 0$ and i less then the number of elements, then $i = i + 1$, go to step 1.3’.

1.5’ Deliver i.

as this saves the evaluation of one or more $\sigma_{ph}(k, Z_i)$ (especially if elements are ordered by decreasing probability for photo-absorption prior to the actual simulation). We have not implemented this more efficient algorithm as the photo-absorption cross section interpolated using the PEGS supplied data becomes inaccurate around absorption edges. This potential improvement is left for future releases of the system (which are anticipated to not make use of PEGS data sets).

2. Once the absorbing element is determined, the shell with which the interaction takes place has to be sampled. The probability ν_j that the photon is absorbed by the j’th shell is close to energy independent for the K-shell but depends on the incident photon energy for other shells. This means that shell-wise photo-absorption cross sections would be required to be available at run time in order to sample the shell if one wanted to perform a complete modelling of the photo-absorption process. In this release of the EGSnrc system we use instead energy independent interaction probabilities ν_j which are determined as follows. If $\phi(k)$ is the fluence of the photon radiation field, the number of photo-absorption events by the element Z per unit volume, N, is given by

$$N = n(Z) \int dk \phi(k) \sigma_{ph}(k, Z)$$

(2.3.3)

where n is the density of scattering centres. The number of photo-absorptions by the shell j of this element per unit volume is

$$N_j = n(Z) \int dk \phi(k) \sigma_{ph,j}(k, Z)$$

(2.3.4)

where $\sigma_{ph,j}(k, Z)$ is the photo-absorption cross section of the j’th shell. The ratio of N_j to N is the average interaction probability for absorption by the j’th shell, ν_j', for the radiation field described by $\phi(k)$,

$$\nu_j' = \frac{N_j}{N} = \frac{\int dk \phi(k) \sigma_{ph,j}(k, Z)}{\int dk \phi(k) \sigma_{ph}(k, Z)}$$

(2.3.5)
The actual quantity used in the simulation of photo-electric absorption is the probability ν_j that the photon is absorbed by the shell j if it was not absorbed by one of the shells $1 \cdots j - 1$, which is given by

$$
\nu_j = \frac{\int dk \phi(k) \sigma_{\text{ph},j}(k, Z)}{\sum_{i=j}^{N_{\text{sh}}} \int dk \phi(k) \sigma_{\text{ph},i}(k, Z)}
$$

(2.3.6)

where N_{sh} is the total number of shells. To calculate ν_j one needs $\phi(k)$, a quantity that is not known (but intended to be calculated by the Monte Carlo simulation). Nevertheless, one could calculate ν_j by making a guess about the photon fluence, this approach is the basis for the generation of group interaction coefficients for discrete ordinate methods (see e.g. the book by Lewis and Miller [34]). Figure 6 shows the interaction probabilities ν_j of the K, L_I, L_{II} and L_{III} shells and an “average” M shell (see next paragraph) as a function of the atomic number Z for $\phi(k) = \text{const}$ (dashed line) and $\phi(k) = \text{const}/k$ (solid line). Shell-wise photo-absorption cross section from the Evaluated Photon Data Library (EPDL) [35] were used to generate this figure, the upper limit of the k-integration was set to 1 MeV. The dependence of the ν_js on the weighting function $\phi(k)$ is negligible except for the L_I shell where the difference is

![Figure 6: Interaction probabilities ν_j for different shells as calculated from Eq. (2.3.6) using $\phi(k) = 1/k$ (solid lines) or $\phi(k) = \text{const}$ (dashed lines).](image-url)
of the order of 10%. This fact was the motivation for using the energy independent interaction probabilities ν_j, a better approach is scheduled for a future release of the system.

The use of an interaction probability for an “average” M-shell is motivated by the fact that relaxation transitions from and to M-shells are treated in an average way, see section 2.3. Given the definition of the ν_j’s, $\nu_{\langle M \rangle}$ is

$$\nu_{\langle M \rangle} = 1 - \prod (1 - \nu_{Mi}) \quad (2.3.7)$$

where the product runs over the number of M-sub-shells available for the element Z (up to 5). The interaction probabilities $\nu_K, \nu_{Li}, \nu_{LiI}, \nu_{LiII}$ and $\nu_{\langle M \rangle}$, calculated with the $1/k$ weighting function, are stored in the file photo_relax.data and read in by the subroutine edgset which is called from HATCH.

With all this, the algorithm for selecting the shell that absorbs the incident photon is as follows:

2.1 Determine the inner-most shell j that has a binding energy lower than the incident photon energy and pick a random number r_2

2.2 If $r_2 < \nu_j$ or $j > \langle M \rangle$ \(^4\), then deliver j

2.3 Set $r_2 = (1 - r_2)/(1 - \nu_j), \ j = j + 1$, go to step 2.2

3. Once the element and its shell absorbing the photon is determined, a photo-electron with the kinetic energy $k - U_j(Z)$ is set-up, where $U_j(Z)$ is the binding energy of the selected shell. The vacancy created is treated in the routine (relax, see section 2.3), this significant change compared to EGS4 is motivated by the fact that shell vacancies are created also in other processes, e.g. Compton scattering (see section 2.2.2). The sampling of the photo-electron direction is discussed in section 2.2.3.iii.

2.2.3.ii Simplified simulation of photo-electric absorption

If the flag IEDGFL for the current region is set to zero, a simplified simulation of the photo-absorption process is undertaken. This simplified treatment consists of one step:

1. Set-up a photo-electron with a kinetic energy k

There are several reasons which motivated us to change the logic compared to the current EGS4 version (where the K-shell binding energy is always subtracted):

- The treatment is greatly simplified
- If the flag IEDGFL is set to zero, it is reasonable to assume that the detailed calculation of the spread of energy released in photo-absorption events is not important for the situation under investigation

\(^4\)The outer-most shell treated is the M shell, if the photon was not absorbed by it, it is assumed that it is absorbed by the N shell.
• The effect of the production of relaxation particles in the de-excitation cascade following photo-electric absorption is to spread out the binding energy around the point of interaction. By giving the photo-electron the entire incident photon energy, this effect is at least partially simulated.

2.2.3.iii Photo-electron direction

The behaviour of the sampling of the photo-electron direction is controlled by the switch `IPHTER` which set on a region by region basis. If set to zero, the photo-electron “inherits” the direction of the incident photon. If set to non-zero (the default selection), the direction is sampled from the Sauter distribution [36]. The implementation as discussed in detail in Ref. [37] is adopted. For completeness, we give a brief summary here.

Sauter’s distribution in the polar angle $\mu = \cos \theta$ with respect to the incident photon direction may be cast in the form [37]

$$f(\mu)d\mu = \frac{1 - \mu^2}{(1 - \beta \mu)^2} \left[1 + \kappa(1-\beta \mu)\right]d\mu$$

(2.3.8)

where β is the electron’s velocity in units of the speed of light and

$$\kappa = \frac{\gamma}{2}(\gamma - 1)(\gamma - 2) , \quad \gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

(2.3.9)

This equation can be sampled by generating candidate μ values from

$$g(\mu) = \frac{\kappa}{2\gamma^2(\kappa + \gamma)^2} \frac{1 + \kappa(1-\beta \mu)}{(1 - \beta \mu)^2} ,$$

(2.3.10)

which is a normalised PDF for μ, and using

$$h(\mu) = \frac{\gamma + 1}{2\gamma} \frac{1 - \mu^2}{1 - \beta \mu}$$

(2.3.11)

which is always positive and has a maximum of unity, as a rejection function. To generate μ values from $g(\mu)$, one uses

$$\mu = \frac{1}{\beta} \left[1 - \left(\sqrt{\left(\frac{\kappa + \frac{1}{1+\beta}}{1+\beta}\right)^2 + 4\beta^2(\kappa + \gamma^2)r_1 - \kappa}\right)^{-1}\right]$$

(2.3.12)

where r_1 is an uniformly distributed random number.

It is worth noticing that, strictly speaking, Sauter’s distribution is valid only for the K-shell and also derived from an extreme relativistic approximation. The treatment of the photo-electron angular distribution is therefore left as a macro `$SELECT-PHOTOELECTRON-DIRECTION;` and can therefore be replaced, if the user has a better approach.
2.2.4 Coherent (Rayleigh) scattering

In this release, EGSnrc has “inherited” the treatment of the coherent photon scattering process from EGS4 [12]. This means that the total coherent scattering cross sections from Storm and Israel [21] and the atomic form factors $F_T(q, Z)$ from Hubbel and Øverbø [38] are used. The form factors for molecules are calculated from the independent atom approximation, i.e.

$$[F_T(q)]^2 = \sum p_i [F_T(q, Z_i)]^2$$

(2.4.1)

where p_i is the stoichiometric index of the i'th element, Z_i its atomic number and q the momentum transfer when a photon with an energy k is scattered by an angle θ,

$$q = k \sqrt{1 - \cos \theta} / 2$$

(2.4.2)

The coherent scattering cross section, differential in the photon angle $\Omega = (\theta, \phi)$ is

$$\frac{d\sigma_R}{d\Omega} = \frac{r_0^2}{2} (1 + \cos^2 \theta) |F_T(q)|^2.$$

(2.4.3)

This equation is sampled by re-writing it in terms of q^2,

$$\frac{d\sigma_R}{dq^2} = \frac{4\pi r_0^2}{k^2} A(q_{\text{max}}^2) \frac{1 + \cos^2 \theta}{2} \frac{|F_T(q)|^2}{A(q_{\text{max}}^2)}$$

(2.4.4)

where

$$A(q^2) = \int_0^{q^2} dq'[F_T(q')]^2$$

(2.4.5)

and $q_{\text{max}} = k$ is the maximum possible momentum transfer, and using $[F_T(q)]^2/A(q_{\text{max}}^2)$ as a PDF for q^2 and $(1 + \cos^2 \theta)/2$ as a rejection function.

The actual sampling, accomplished in the macro $\text{\$RAYLEIGH-SCATTERING;}$, is performed only if the switch IRAYLR is set to non-zero for the current region. By default, IRAYLR is set to zero in the block data subprogram. The motivation for this choice is the fact that the $\text{\$RAYLEIGH-SCATTERING;}$ macro requires the function $A(q^2)$ to be included in the PEGS data set. This additional data is only included, if the user specifically requested it from PEGS. We recommend the Rayleigh scattering option to be used for low energy calculations (say, below 1 MeV). It is worth noticing that inclusion of coherent scattering without the use of the bound Compton scattering option (see section 2.2.2) results in too much photon scattering, binding effects for incoherent scattering should therefore always be turned on if the Rayleigh option is used.

2.3 Atomic Relaxations

Excited ions, produced by the interaction of photons and charged particles when they travel through matter, relax to their ground state by migration of the initial vacancy to outer shells
via the emission of characteristic X-rays and/or Auger or Coster-Kronig electrons (see e.g. Ref. [39]).

In the current standard version of EGS4, only K-shell relaxations following photo-electric absorption via the emission of $K\alpha$ and $K\beta$ fluorescence are treated and are intrinsically associated with the PHOTO routine. An extension to include L-shell fluorescence was developed by the KEK group [7] and is available for use with the EGS4 system.

In EGSnrc we have extended the treatment of atomic relaxations to include higher shells as well as the production of Auger and Coster-Kronig electrons. With these extensions, the treatment within the PHOTO routine has become unpractical. In addition, the relaxation cascade is a separate process, it can be initiated after any photon or electron interaction that has produced an inner shell vacancy. The most general approach for treating excited atoms or ions would have been to define a separate particle type, an excited atom or ion, and to put such particles on the stack whenever they are produced. Such an approach would have been too a large departure from the EGS4 logic and potentially render many user codes unusable. We have therefore abandoned this idea and decided to treat relaxations in a separate routine (relax), which is called whenever an inner shell vacancy is created. In this release of EGSnrc, such vacancies can be created in photo-absorption events (see section 2.2.3) and in Compton scattering events (see section 2.2.2). It is anticipated that the next release of the system will include the explicit modelling of inner shell ionizations by electron or positron impact.

The de-excitation cascade is a complex process, there are hundreds of possible transitions for high-Z elements. A complete treatment goes beyond the scope of a general purpose code for the simulation of electron and photon transport such as EGSnrc. In addition, we consider 1 keV to be the lowest limit for the applicability of the code. We have therefore imposed a lower limit of 1 keV on the relaxation process, i.e. only vacancies in shells with binding energies above 1 keV are treated.\(^5\) If we then take into account that only elements with $Z \geq 52$ have M-shells with binding energies above the limit of 1 keV and that M-shells have binding energies less than 10 keV for all elements (the M_I binding energy for lead is 3.8 keV and 7.2 keV for Einsteinium [39]), it is a reasonable approach to model transitions from and transitions to M-shells in an “average” way. There is of course no unique procedure to set the binding energies of the “average” M-shells for the elements, $U_{(M)}(Z)$, to be used in the de-excitation cascade. Assuming that for most applications K to M transitions are more important than L to M or M to a lower shell, we have defined $U_{(M)}(Z)$ to be the weighted average of the binding energies $U_{M_j}(Z)$ of the element Z with weights given by the K to M_j transition probabilities ν_{KM_j}: \[U_{(M)}(Z) \equiv \frac{\sum \nu_{KM_j} U_{M_j}}{\sum \nu_{KM_j}} \] (3.0.6)

For instance, $U_{(M)}$ determined by this procedure using transition probabilities from the Evaluated Atom Data Library (EADL) [39] for lead is 3.1 keV, the M_I binding energy is 3.8 keV and the M_V binding energy 2.5 keV. A simple averaging with the occupation numbers would result in an average M-shell binding energy of 2.9 keV. If distinguishing between any of the above numbers is important for your application, EGSnrc is most likely not the most

\(^5\)Another motivation for imposing this limit is the fact that uncertainties on transition probabilities rapidly increase with decreasing binding energies, they are perhaps 10 or 20% even for L-shells.
appropriate simulation package for your purposes.

Having said all this, it is apparent that \(N \) shells are also treated in an average way. The only elements with “average” \(N \)-shell binding energies above 1 keV are those with \(Z > 95 \).

In an implementation consistent with the overall logic of the EGS system, the relaxation algorithm should put all particles produced in the course of the de-excitation cascade on the particle stack, they would then be discarded in the \texttt{PHOTON} or \texttt{ELECTR} routines if their energies were below the specified transport threshold energies. It is easy to see that such an approach may become extremely wasteful if the transport threshold energies are large compared to the lower limit of 1 keV for the de-excitation cascade. We have therefore decided to stop the relaxation process for vacancies with binding energies less then \(E_{\text{min}} \),

\[
E_{\text{min}} = \max\{1 \text{ keV}, \min\{\text{PCUT}, \text{ECUT} - m\}\}
\]

and to score their energy locally. In addition, the energy of photons or electrons that are below the thresholds are also deposited locally, even if they were produced in transitions from vacancies with binding energies above \(E_{\text{min}} \). The total sub-threshold energy is collected in the variable \texttt{EDEP}, which is in the \texttt{COMON/EPCONT/}, and made known to the user via an \texttt{IARG=4} call to the scoring routine.

To facilitate the handling of the relaxation cascade, we define a shell number \(n \) for each of the shells treated. \(K \)-shells have \(n = 1 \), \(L_I \) through \(L_{III} \) have \(n = 2 \) to 4, \(\langle M \rangle \) corresponds to \(n = 5 \), \(\langle N \rangle \) to \(n = 6 \), all other shells have \(n = 7 \). A list of possible transitions, \(L_n \), is associated with each shell,

\[
L_n = \{ (\nu_1, s_1), (\nu_2, s_2), \ldots, (\nu_k, s_k) \}
\]

where \(k_n \) is the number of possible transitions for the shell of type \(n \) and \(\nu_i \) the transition probabilities for a transition into final state \(s_i \). The final states \(s_i \) are defined as follows:

\[
s_i = \begin{cases}
 n_i & \text{for fluorescent transitions} \\
 10 + n_i & \text{for Coster-Kronig transitions} \\
 100n_{i,1} + n_{i,2} & \text{for Auger transitions}
\end{cases}
\]

where \(n_i \) or \(n_{i,1} \) and \(n_{i,2} \) are the shell numbers of the new vacancies created in fluorescent and Coster-Kronig or Auger transitions. Table 1 summarizes all transitions handled in the current version of the relaxation routine.

In addition, we define a “vacancy stack” which holds all vacancies at a given stage of the relaxation cascade.

With these definitions in place, the simulation of the relaxations cascade becomes fairly simple:

1. Put the initial vacancy in the “vacancy stack”, set the “vacancy stack” counter \(m \) to 1
2. If \(m = 0 \), return control to the calling routine
3. Take the top vacancy, to be denoted by \(n_i \) in the following, from the “vacancy stack”, reduce \(m \) by 1
Table 1: Relaxation transitions handled by EGSnrc.

<table>
<thead>
<tr>
<th>initial vacancy</th>
<th>shell code</th>
<th>transition</th>
<th>final state code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>Fluorescent $K \rightarrow L_{II}$</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K \rightarrow L_{III}$</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K \rightarrow \langle M \rangle$</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K \rightarrow \langle N \rangle$</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Auger $K \rightarrow L_{I}L_{II}$</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K \rightarrow L_{II}L_{I}$</td>
<td>302</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K \rightarrow L_{III}L_{II}$</td>
<td>402</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K \rightarrow \langle M \rangle L_{I}$</td>
<td>502</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K \rightarrow \langle M \rangle L_{II}$</td>
<td>503</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K \rightarrow \langle M \rangle L_{III}$</td>
<td>504</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K \rightarrow \langle M \rangle \langle M \rangle$</td>
<td>505</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K \rightarrow \langle N \rangle L_{I}$</td>
<td>602</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K \rightarrow \langle N \rangle L_{II}$</td>
<td>603</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K \rightarrow \langle N \rangle L_{III}$</td>
<td>604</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K \rightarrow \langle N \rangle \langle M \rangle$</td>
<td>605</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K \rightarrow \langle N \rangle \langle N \rangle$</td>
<td>606</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Fluorescent $L_{I} \rightarrow \langle M \rangle$</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L_{I} \rightarrow \langle N \rangle$</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coster-Kronig $L_{I} \rightarrow L_{II}$</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L_{I} \rightarrow L_{III}$</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Auger $L_{I} \rightarrow \langle M \rangle \langle M \rangle$</td>
<td>505</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L_{I} \rightarrow \langle N \rangle \langle M \rangle$</td>
<td>605</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L_{I} \rightarrow \langle N \rangle \langle N \rangle$</td>
<td>606</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Fluorescent $L_{II} \rightarrow \langle M \rangle$</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L_{II} \rightarrow \langle N \rangle$</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coster-Kronig $L_{II} \rightarrow L_{III}$</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Auger $L_{II} \rightarrow \langle M \rangle \langle M \rangle$</td>
<td>505</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L_{II} \rightarrow \langle N \rangle \langle M \rangle$</td>
<td>605</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L_{II} \rightarrow \langle N \rangle \langle N \rangle$</td>
<td>606</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Fluorescent $L_{III} \rightarrow \langle M \rangle$</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L_{III} \rightarrow \langle N \rangle$</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Auger $L_{III} \rightarrow \langle M \rangle \langle M \rangle$</td>
<td>505</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L_{III} \rightarrow \langle N \rangle \langle M \rangle$</td>
<td>605</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L_{III} \rightarrow \langle N \rangle \langle N \rangle$</td>
<td>606</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Fluorescent $\langle M \rangle \rightarrow \langle N \rangle$</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Auger $\langle M \rangle \rightarrow \langle N \rangle \langle N \rangle$</td>
<td>606</td>
</tr>
</tbody>
</table>
4. If $U_{n_i} < E_{\text{min}}$, then $\text{EDEP} = \text{EDEP} + U_{n_i}$, go to step 2

5. Pick a random number r, set $j = 1$

6. If $r \leq \nu_j$, go to step 8

7. $r = (1 - r)/(1 - \nu_j)$, $j = j + 1$, go to step 6

8. j is the number of the selected transition,

8.1 if $s_j < 10$, then the new vacancy is in shell $n_j = s_j$, put it on the “vacancy stack”, increase m by one, produce a fluorescent photon with energy $E = U_{n_i} - U_{n_j}$. If $E < \text{PCUT}$, then $\text{EDEP} = \text{EDEP} + E$, else, select the photon direction uniformly and put it on the EGSnrc particle stack

8.2 else if $s_j < 100$, then the new vacancy is in shell $n_j = s_j - 10$, put it on the “vacancy stack”, increase m by one, produce a Coster-Kronig electron with kinetic energy $E = U_{n_i} - U_{n_j}$. If $E < \text{ECUT} - m$, then $\text{EDEP} = \text{EDEP} + E$, else, select the electron direction uniformly and put it on the EGSnrc particle stack

8.3 else, the two new vacancies are $n_{j,1} = (s_j \mod 100)$ and $n_{j,2} = s_j - 100 n_{j,1}$, put them on the “vacancy stack”, increase m by two, produce an Auger electron with a kinetic energy $E = U_{n_i} - U_{n_{j,1}} - U_{n_{j,2}}$. If $E < \text{ECUT} - m$, then $\text{EDEP} = \text{EDEP} + E$, else, select the electron direction uniformly and put it on the EGSnrc particle stack

9. Go to step 2

Finally, we have defined for each of the steps 8.1 to 8.3 new calls to the routine AUSGAB with arguments IARG = 25 to 27. This gives the possibility for the user to take some actions with the relaxation particles, e.g., set their LATCH variable to an appropriate value, or play Russian Roulette with them.

2.4 Simulation of electron transport

2.4.1 General discussion

The Condensed History (CH) Technique was introduced by M. Berger in the early sixties [15]. In this technique, many track segments of the real electron random walk are grouped into a single “step”. The cumulative effect of elastic and inelastic collisions during the step are taken into account by sampling energy and direction changes from appropriate multiple scattering distributions at the end of the step. This approach is justified by the observation that the changes of the electron state in a single collision are usually very small and fails when this condition is not satisfied (at very low energies). Berger also defined two different implementations of the CH technique, which he called Class I and Class II schemes.

EGSnrc uses a Class II CH scheme for the simulation of electron transport. That is to say, bremsstrahlung processes that result in the creation of photons above an energy threshold k_c, and inelastic collisions that set in motion atomic electrons with kinetic energies
above T_e are both simulated explicitly and the secondaries transported. Such interactions are also referred to as “catastrophic” collisions. Sub-threshold inelastic and radiative events and elastic collisions are subject to grouping.

Every CH scheme must provide rules for selecting a path-length Δs_n, an energy loss ΔE_n, a change in direction from Ω_n to Ω_{n+1} and a spatial displacement $\Delta \vec{x}_n$ for each step of the CH random walk. For transport in heterogeneous geometries a boundary crossing algorithm is also required.

In the following we give a brief transport-theoretical treatment of a Class II CH technique which will help to establish the motivation and definitions of various quantities used in the CH implementation.

The transport equation for the electron fluence $\Phi(\vec{x}, \vec{\Omega}, E, t)$ in a medium with a density of scattering centres (atoms or molecules) $n(\vec{x})$ is given by

$$\frac{d\Phi(\vec{x}, \vec{\Omega}, E, t)}{dt} = S(\vec{x}, \vec{\Omega}, E, t) + vI[\Phi] \quad (4.1.1)$$

where

- $S(\vec{x}, \vec{\Omega}, E, t)$ is the number of electrons with energy E and velocity $\vec{v} = (v, \vec{\Omega})$ at a position \vec{x} per unit volume, energy and solid angle interval, imparted per unit time by an external source or by photons interacting with the medium at time t. This latter part of the source term causes the coupling of the electron and photon fluences.
- $d\Phi/dt$ is the total time derivative, in the absence of external force fields it is given by
 $$\frac{d\Phi(\vec{x}, \vec{\Omega}, E, t)}{dt} = \frac{\partial \Phi(\vec{x}, \vec{\Omega}, E, t)}{\partial t} + \vec{v} \vec{\nabla} \Phi(\vec{x}, \vec{\Omega}, E, t) . \quad (4.1.2)$$
- The collision term $I[\Phi]$ represents the changes of the particle fluence due to collisions with the atoms or molecules of the surrounding medium,

$$I[\Phi] = - n(\vec{x}) \Phi(\vec{x}, \vec{\Omega}, E, t) \int_0^E dE' \int_0^{4\pi} d\Omega' \sigma(E, E', \Omega', \vec{x})$$

$$+ n(\vec{x}) \int_{E'}^\infty dE' \int_0^{4\pi} d\Omega' \Phi(\vec{x}, \vec{\Omega}', E', t) \sigma(E', E' - E, \Omega' \cdot \vec{\Omega}, \vec{x}) \quad (4.1.3)$$

where $\sigma(E, E', \Omega, \vec{x})$ is the microscopic cross section at a position \vec{x} for all possible interactions in which an electron with energy E loses energy E' and changes its direction by $\vec{\Omega}$.

The collision integral $I[\Phi]$ represents the balance between particle losses and gains due to interactions described by the cross section $\sigma(E, E', \Omega, \vec{x})$.

In a Monte Carlo simulation the solution of Eq. (4.1.1) is usually obtained via

$$\Phi(\vec{x}, \vec{\Omega}, E, t) = \int_0^t dt_0 \int_E^\infty dE_0 \int_{\vec{x}_0} d\vec{x}_0 \int_{4\pi} d\vec{\Omega}_0 S(\vec{x}_0, \vec{\Omega}_0, E_0, t_0) \Phi_0(\vec{x}, \vec{\Omega}, E, t) \quad (4.1.4)$$
where \(\Phi_0(\vec{x}, \vec{\Omega}, E, t) \) is a short hand notation for \(\Phi(\vec{x}_0, \vec{\Omega}_0, E_0, t_0; \vec{x}, \vec{\Omega}, E, t) \) which is the solution of Eq. (4.1.1) for a source

\[
S_0 = \delta^{(3)}(\vec{x} - \vec{x}_0)\delta^{(2)}(\vec{\Omega} - \vec{\Omega}_0)\delta(E - E_0)\delta(t - t_0)
\]

(4.1.5)
i.e. a single particle set in motion at time \(t_0 \) with energy \(E_0 \), direction \(\vec{\Omega}_0 \) at a position \(\vec{x}_0 \). The integration of Eq. ((4.1.4)) is of course performed by a Monte Carlo technique:

1. Pick particles from the source \(S(\vec{x}, \vec{\Omega}, E, t) \), denote their co-ordinates by \(E_0, \vec{x}_0, \vec{\Omega}_0, t_0 \).
2. Solve the transport equation for these particles by a Monte Carlo simulation (i.e. solve the transport equation for \(\Phi_0 \)).

Usually the Monte Carlo simulation is initiated by a single particle from an external source, which is put on a “particle stack”. In EGSnrc this is accomplished by a call to the subroutine \texttt{SHOWER}. Then, at each stage of the Monte Carlo simulation, the source corresponds to all particles currently on the stack.

Sometimes it is customary to use the macroscopic cross section \(\Sigma \),

\[
\Sigma(E, E', \Omega, \vec{x}) = n(\vec{x})\sigma(E, E', \Omega, \vec{x})
\]

(4.1.6)

which, when integrated over \(E' \) and \(\Omega' \), represents the number of interactions per unit length for electrons with energy \(E \). The atom or molecule density \(n \) is given by

\[
n = \rho \frac{N_A}{M_A} = \rho \frac{uA}{M_A}
\]

(4.1.7)

where \(N_A = 6.022045 \times 10^{23} \text{ mol}^{-1} \) is Avogadro constant, \(M_A \) the molar mass in \text{ mol}^{-1}, \(u = 1.0665655 \times 10^{-24} \text{ g} \) is the atomic mass unit and \(A \) the relative atomic or molecular mass. Macroscopic cross sections \(\Sigma \) are thus obtained from microscopic cross sections \(\sigma \) by multiplication with one of the above factors.

For electrons, \(\sigma \) is the sum of the bremsstrahlung cross section \(\sigma_{\text{brem}} \), the cross section for inelastic collisions with atomic electrons, \(\sigma_{\text{inel}} \), and the elastic scattering cross section \(\sigma_{\text{el}} \):

\[
\sigma(E, E', \Omega, \vec{x}) = \sigma_{\text{brem}}(E, E', \Omega, \vec{x}) + \sigma_{\text{inel}}(E, E', \Omega, \vec{x}) + \sigma_{\text{el}}(E, \Omega, \vec{x})\delta(0)
\]

(4.1.8)

where Dirac’s \(\delta \) function expresses the fact that elastic collisions are zero energy loss events. Positrons interact in addition via the annihilation process described by \(\sigma_{\text{annih}} \), this cross section enters only the third term of Eq. (4.1.1), however, as annihilation leads merely to particle loss (at least when looking just at the electron fluence, the corresponding “gain” term appears as a source term for the photon fluence).

In a Class II CH implementation the collision integral is divided into two parts \(I_>[\Phi_0] \) and \(I_<[\Phi_0] \). The former includes only interactions with change in energy larger than \(T_c \) (inelastic collisions) or \(k_c \) (bremsstrahlung), the latter only collision with energy change less than \(T_c \) or \(k_c \). Elastic interactions, being a zero energy loss processes, are included in \(I_<[\Phi_0] \). For
In brevity we will drop the \vec{x} and time dependence of the various quantities in the following equations. We have for $I_>[\Phi_0]$

$$I_>[\Phi_0] = \int_{E + T_c}^{\infty} dE' \int_{4\pi} d\Omega' \Phi_0(\Omega', E') \Sigma_{\text{inel}}(E', E' - E, \Omega \cdot \Omega')$$

$$+ \int_{E + k_c}^{\infty} dE' \int_{4\pi} d\Omega' \Phi_0(\Omega', E') \Sigma_{\text{brem}}(E', E' - E, \Omega \cdot \Omega') - \Phi_0(\Omega, E) \left[\Sigma^{(\text{tot})}_{\text{inel}}(E) + \Sigma^{(\text{tot})}_{\text{brem}}(E) \right]$$

where $\Sigma^{(\text{tot})}_{\text{inel}}(E)$ and $\Sigma^{(\text{tot})}_{\text{brem}}(E)$ are the total macroscopic cross sections for “catastrophic” inelastic or bremsstrahlung collisions, respectively:

$$\Sigma^{(\text{tot})}_{\text{inel,brem}}(E) = \int_{T_c, k_c}^{E} dE' \int_{4\pi} d\Omega' \Sigma_{\text{inel,brem}}(E, E', \Omega').$$

The $I_<[\Phi_0]$ part reads

$$I_<[\Phi_0] = \int_{4\pi} d\Omega' \left[\Phi_0(\Omega', E) \Sigma_{\text{el}}(E, \Omega \cdot \Omega') - \Phi_0(\Omega, E) \Sigma_{\text{el}}(E, \Omega') \right] + I_{\Delta E}[\Phi_0]$$

where $I_{\Delta E}[\Phi_0]$ is the part of the sub-threshold collision term that is associated with energy loss:

$$I_{\Delta E}[\Phi_0] =$$

$$\int_{E + T_c}^{E + T_c} dE' \int_{4\pi} d\Omega' \Phi_0(\Omega', E') \Sigma_{\text{inel}}(E', E' - E, \Omega \cdot \Omega') - \Phi_0(\Omega, E) \int_{0}^{T_c} dE' \int_{4\pi} d\Omega' \Sigma_{\text{inel}}(E, E', \Omega') +$$

$$\int_{E + k_c}^{E + k_c} dE' \int_{4\pi} d\Omega' \Phi_0(\Omega', E') \Sigma_{\text{brem}}(E', E' - E, \Omega \cdot \Omega') - \Phi_0(\Omega, E) \int_{0}^{k_c} dE' \int_{4\pi} d\Omega' \Sigma_{\text{brem}}(E, E', \Omega').$$

At this point, the usual approximation made is to assume that angular deflections in small energy loss collisions are either negligible or can be taken into account by modifying the elastic collision part in an appropriate way. To our knowledge, this approximation is made, in one way or another, in all general purpose condensed history codes available. With this approximation and after a change of the integration variables, Eq. (4.1.12) can be re-written as

$$I_{\Delta E}[\Phi_0] = \int_{0}^{T_c} dE' \left[\Phi_0(\Omega, E + E') \Sigma_{\text{inel}}(E + E', E') - \Phi_0(\Omega, E) \Sigma_{\text{inel}}(E, E') \right]$$

$$+ \int_{0}^{k_c} dE' \left[\Phi_0(\Omega, E + E') \Sigma_{\text{brem}}(E + E', E') - \Phi_0(\Omega, E) \Sigma_{\text{brem}}(E, E') \right]$$
where the cross sections not depending on Ω are integrated over all angles. If we now use a Taylor series expansions for the first terms in the square brackets,

$$\Phi_0(\vec{\Omega}, E + E')\Sigma_{\text{inel,brem}}(E + E', E') \approx \Phi_0(\vec{\Omega}, E)\Sigma_{\text{inel,brem}}(E, E')$$

$$+ \frac{\partial}{\partial E} \left[\Phi_0(\vec{\Omega}, E)\Sigma_{\text{inel,brem}}(E, E') \right] E' + \cdots$$

(4.1.14)

the collision term $I_{\Delta E}[\Phi]$ simplifies to

$$I_{\Delta E}[\Phi_0] \approx \frac{\partial}{\partial E} \left[\Phi_0(\vec{\Omega}, E)L(E, T_c, k_c) \right]$$

(4.1.15)

where $L(E, T_c, k_c)$ is the restricted stopping power for threshold energies T_c and k_c,

$$L(E, T_c, k_c) = L_{\text{coll}}(E, T_c) + L_{\text{rad}}(E, k_c)$$

$$L_{\text{coll}}(E, T_c) = \int_0^{T_c} dE'\Sigma_{\text{inel}}(E, E') E'$$

$$L_{\text{rad}}(E, k_c) = \int_0^{k_c} dE'\Sigma_{\text{brem}}(E, E') E'$$

(4.1.16)

With all this, the transport equation can be written as

$$\frac{1}{v} \frac{\partial \Phi_0(\vec{x}, \vec{\Omega}, E, t)}{\partial t} + \vec{\nabla} \cdot \Phi_0(\vec{x}, \vec{\Omega}, E, t) = \Sigma_{\text{inel}}(\vec{x}, E') + \Sigma_{\text{brem}}(\vec{x}, E')$$

$$+ \int_{E+T_c}^{\infty} dE' \int d\vec{\Omega}' \Phi_0(\vec{x}, \vec{\Omega}', E', t)\Sigma_{\text{inel}}(\vec{x}, E', E' - E, \vec{\Omega} \cdot \vec{\Omega}')$$

$$+ \int_{E+k_c}^{\infty} dE' \int d\vec{\Omega}' \Phi_0(\vec{x}, \vec{\Omega}', E', t)\Sigma_{\text{brem}}(\vec{x}, E', E' - E, \vec{\Omega} \cdot \vec{\Omega}')$$

$$+ \int_{4\pi} d\vec{\Omega}' \left[\Phi_0(\vec{x}, \vec{\Omega}', E, t)\Sigma_{\text{el}}'(\vec{x}, E, \vec{\Omega} \cdot \vec{\Omega}') - \Phi_0(\vec{x}, \vec{\Omega}, E, t)\Sigma_{\text{el}}'(\vec{x}, E, \vec{\Omega}') \right]$$

$$+ \frac{\partial}{\partial E} \left[\Phi_0(\vec{x}, \vec{\Omega}, E, t)L(\vec{x}, E, T_c, k_c) \right]$$

(4.1.17)

where we have put back the position dependence of the fluence, stopping power and cross sections, and the prime on the elastic scattering cross section means that it includes in some way contributions from angular deflections due to sub-threshold energy loss processes.
We now define the variable s, called the path-length, which satisfies
\[
\frac{dt}{ds} = \frac{1}{v}, \quad \frac{dE}{ds} = -L(E, E_c, k_c), \quad \text{or} \quad s = \int_{E_0}^{E} \frac{dE'}{L(E', E_c, k_c)}
\] (4.1.18)

The approximation of Eq. (4.1.14), together with Eq. (4.1.18), is known as continuous-slowing-down approximation (CSDA). CSDA is used in EGSnrc (and also in EGS4) to describe sub-threshold energy loss processes. This is not a necessary approximation, and one could replace it, for instance, by the theory of Vavilov [40]. We have postponed the implementation of Vavilov energy loss straggling into EGSnrc until the implementation of more realistic small energy loss inelastic scattering cross sections (which obviously affect the treatment of the integrals in Eq. (4.1.13)).

Equation (4.1.17) can be solved by the following Monte Carlo algorithm:

1. Pick the next electron from the “particle stack”, we denote its energy by E_0, its direction by $\vec{\Omega}_0$ and its position by \vec{x}_0.

2. Sample the energy E at which the next “catastrophic” interaction occurs from the probability distribution

\[
P(E) = \exp \left(-\int_{E}^{E_0} dE' \left[\Sigma_{\text{inel}}(E') + \Sigma_{\text{brem}}(E') \right] \right)
\] (4.1.19)

where we have defined

\[
\Sigma_{\text{inel, brem}}^{(\text{tot})}(E) = \frac{\Sigma_{\text{inel, brem}}^{(\text{tot})}(E)}{L(E, E_c, k_c)}
\] (4.1.20)

which are the total cross sections for bremsstrahlung or inelastic collisions for discrete interactions per unit energy loss.

3. Modify the particles position, direction, and energy, in such a way as to approximate as closely as possible the exact solution of the transport equation

\[
\frac{\partial \Phi_0(\vec{x}, \vec{\Omega}, s)}{\partial s} + \vec{\Omega} \cdot \vec{\nabla} \Phi_0(\vec{x}, \vec{\Omega}, s) =
\int_{4\pi} d\Omega' \left[\Phi_0(\vec{x}, \vec{\Omega}', s) \Sigma_{\text{el}}(\vec{x}, \vec{\Omega}', s) - \Phi_0(\vec{x}, \vec{\Omega}, s) \Sigma_{\text{el}}(\vec{x}, \vec{\Omega}, s) \right]
\] (4.1.21)

where the s dependence of all quantities is understood in the sense of Eq. (4.1.18).

4. Once at the interaction site, select the interaction type from the total interaction cross sections at the current position and for the current energy, sample energy and direction changes from the appropriate differential cross section, put all resulting particles on the stack and go to step 1.
5. Repeat steps 1-4 until the stack is empty or all energies have fallen below the specified threshold.

The procedure for positrons is similar but involves the annihilation cross section in addition to bremsstrahlung and inelastic collisions with atomic electrons.

After this discussion, it is clear that we need the following quantities and algorithms for a Class II condensed history simulation of electron and positron transport:

1. Restricted stopping powers due to sub-threshold processes. The collision part of the restricted stopping power deserves an extra paragraph, it is discussed in section 2.4.5, the radiative part of the restricted stopping power is discussed in association with the bremsstrahlung cross section (section 2.4.2).

2. Total and differential cross sections, as well as the associated sampling technique, for bremsstrahlung processes with an energy loss greater than \(k_c\) (section 2.4.2), inelastic collisions with energy loss larger than \(T_c\) (section 2.4.3), and positron annihilation (section 2.4.4)

3. Elastic scattering cross sections that take into account angular deflections due to sub-threshold inelastic collisions (section 2.4.6)

4. A procedure to sample the distance between discrete interactions on the basis of Eq. (4.1.19) (see section 2.4.10)

5. A procedure to calculate the path-length from a given change in energy or vice versa according to Eq. (4.1.18) (section 2.4.10)

6. A procedure for the approximate solution of Eq. (4.1.21) which describes the transport process between subsequent discrete events. This is perhaps the most difficult part of a Class II condensed history algorithm. It involves the construction of a multiple elastic scattering theory, which is necessary for modelling angular deflections, and an “electron-step” algorithm, which relates the spatial displacement to the path-length (and possibly multiple elastic scattering angle). These two aspects of the EGSnrc CH implementation are discussed in sections 2.4.7 and 2.4.8.

2.4.2 Bremsstrahlung

2.4.2.i Cross sections

The bremsstrahlung and pair production processes are cross-symmetric (i.e. the Feynman diagram for electron bremsstrahlung is obtained from Fig. 1 by flipping the incoming photon and outgoing positron lines) and therefore their cross sections closely related. In EGSnrc the treatment of the bremsstrahlung process is determined by the parameter \(ibr_{\text{nist}}\) which is \texttt{COMMON/BREMPR/}. If \(ibr_{\text{nist}} = 0\) (this is the default), the EGS4 cross sections are employed, i.e.

- Coulomb corrected extreme relativistic cross sections above 50 MeV, as formulated in the article by Koch and Motz [41]
• First Born approximation Bethe-Heitler cross sections with an empirical correction factor below 50 MeV [41]

If $ibr_{\text{nist}} = 1$, the bremsstrahlung process is modelled according to the NIST bremsstrahlung cross section data base [42, 43] which is the basis for the radiative stopping powers recommended by the ICRU [44] and which is based on

• Coulomb corrected extreme relativistic cross sections above 50 MeV
• Partial wave analysis calculations by Pratt et al. below 2 MeV
• Spline interpolations for 2 to 50 MeV

In addition, a more elaborate procedure for the contribution of atomic electrons to the bremsstrahlung process is employed.

The default bremsstrahlung cross section for an electron with a total energy E incident on an atom with atomic number Z, differential in the photon energy k, is

$$
\frac{d\sigma_{\text{brem}}(E, Z)}{dk} = A'(E, Z) r_0^2 \alpha Z (Z + \xi(Z)) \left\{ \left(1 + \frac{E'^2}{E^2} \right) \left[\phi_1(\delta) - \frac{4}{3} \ln Z - 4 \tilde{f}_c(E, Z) \right] - \frac{2}{3} \frac{E'}{E} \left[\phi_2(\delta) - \frac{4}{3} \ln Z - 4 \tilde{f}_c(E, Z) \right] \right\} \tag{4.2.1}
$$

where $E' = E - k$ is the electron energy after the emission of the photon, r_0 the classical electron radius, α the fine structure constant,

$$
\delta = 136 Z^{-1/3} 2 \Delta , \quad \Delta = \frac{km}{2EE'} , \tag{4.2.2}
$$

the functions $\phi_1(\delta), \phi_2(\delta), \xi(Z)$ and $\tilde{f}_c(E, Z)$ have the same definitions as for the pair production process (see section 2.2.1), and $A'(E, Z)$ is an empirical correction factor (see below). For compounds and mixture the the cross section can be approximated in the same form with the replacements given by Eq. (2.1.10) in section 2.2.1 (page 25).

Also relevant for the condensed history simulation are the moments M_m,

$$
M_m(E, Z; k_{\text{min}}, k_{\text{max}}) \equiv \int_{k_{\text{min}}}^{k_{\text{max}}} dk k^m \frac{d\sigma_{\text{brem}}(E, Z)}{dk} . \tag{4.2.3}
$$

$M_0(E, Z; k_c, T)$ is the total cross section for bremsstrahlung interactions by an electron with energy E (kinetic energy $T = E - m$) in a medium Z that produce photons with an energy above the threshold energy k_c. This cross section is required for sampling distances between subsequent “catastrophic” radiative events. $M_1(E, Z; 0, T)$, multiplied with the density of scattering centres (atoms or molecules), n, is the average energy lost to radiation per unit path-length, i.e. the radiative stopping power. $M_1(E, Z; 0, k_c)n$ is then the restricted radiative stopping power corresponding to k_c. With these definitions in place we can turn back to the discussion of the empirical correction factor $A'(E, Z)$. In the original EGS4 implementation $A'(E, Z)$ is based on the data provided in the article by Koch and Motz [41]. In
Ref. [45] a correction factor $A'(E, Z)$ based on the ICRU-37 radiative stopping powers was implemented into the EGS4 data preparation package PEGS4, it is defined as

$$A'(E, Z) = \frac{M_1(E, Z; 0, T)}{M_{\text{NIST}}^1(E, Z; 0, T)}$$

(4.2.4)

where M_{NIST}^1 is defined in the same way as in Eq. (4.2.3) but the cross section is replaced by the NIST bremsstrahlung cross section. EGSnrc, having “inherited” the use of the PEGS4 package, has both options available. The selection is made via the parameter IAPRIM when generating the PEGS4 data set with IAPRIM=0 corresponding to the original A' method and IAPRIM=1 to the approach of Ref. [45]. The third option available in EGSnrc is to use the NIST cross sections directly, this is accomplished by setting ibr$_{\text{nist}}$=1. The result of doing so is

1. The total discrete bremsstrahlung cross section is calculated using 64-point Gauss-Legendre quadrature in subroutine init$_{\text{nist brems}}$ and the cross section interpolation coefficients coming from the PEGS4 data set modified accordingly.

2. Alias-sampling tables are prepared from the NIST cross sections differential in the photon emission energy k (which are available only in a numerical form). These tables are then used at run-time to sample the photon energy.

3. The contribution from sub-threshold bremsstrahlung processes to the restricted stopping power is NOT corrected. This introduces a slight inconsistency in the treatment of the bremsstrahlung process which is irrelevant if $k_c << T$ or if the restricted radiative stopping power is small compared to the restricted collision stopping power, or both. A self-consistent implementation is left for the next release of EGSnrc which will not rely on PEGS4 data sets.

Before we discuss the sampling of the photon energy from Eq. (4.2.1), we compare the default EGSnrc (and also EGS4) differential bremsstrahlung cross section (with IAPRIM=1 which is default with EGSnrc but was an option with EGS4)) to the NIST data base for gold and incident electron kinetic energies of 10 keV, 100 keV, 1 MeV, 10 MeV, 50 MeV and 100 MeV in Fig. 7. The behaviour for other materials is qualitatively similar. As one can expect, the two cross sections are virtually identical at high energies, but there are significant differences at low energies (although the radiative stopping power is the same due to the use of A' from Eq. (4.2.4)).

2.4.2.ii Simulation of discrete bremsstrahlung events, photon energy

In the course of the re-work of the EGS4 sampling routines we have found an error in the sampling algorithm used in EGS4. The error, which was most likely not discovered before because it shows up only if the incident electron energy is not much larger than the threshold energy k_c, is demonstrated in Fig. 8. This figure compares the distribution sampled by the EGS4 routine BREMS (points) for 100 keV electrons in aluminum, expressed in terms of x,

$$x = \frac{\ln k/k_c}{\ln T/k_c}.$$

(4.2.5)

2: Radiation transport in EGSnrc
Figure 7: Differential bremsstrahlung cross sections for gold at various incident electron energies from the NIST data base [42, 43] (thick lines) compared to the default EGSnrc (and EGS4) cross sections (thin lines). In both cases $\text{IAPRIM} = 1$, which is the default in the EGSnrc system and was an option in the EGS4 system.
to the theoretically expected result (solid line). The threshold energy k_c was 10 keV (k_c is called AP in EGS4 and EGSnrc). This finding was a sufficient motivation to completely recode the BREMS routine.

The most efficient algorithm for sampling photon energies on the basis of Eq. (4.2.1) appears to be the following: after a change of variables from k to x, we have

$$\frac{d\sigma_{\text{brem}}(E,Z)}{dx} = C \left\{ \left(1 + \frac{E'}{E^2} \right) \left[\phi_1(\delta) - \frac{4}{3} \ln Z - 4\tilde{f}_c(E,Z) \right] \right. $$
$$\left. - \frac{2}{3} \frac{E'}{E} \left[\phi_2(\delta) - \frac{4}{3} \ln Z - 4\tilde{f}_c(E,Z) \right] \right\} \quad (4.2.6)$$

where C is a constant combining factors irrelevant for the sampling algorithm. Apart from a normalization constant, the function in the curled brackets, to be denoted in what follows with R, is the quantity $kd\sigma_{\text{brem}}/dk/Z^2$, shown with the thin lines in Fig. 7. As can be seen, it is relatively flat and can therefore be employed as a rejection function in conjunction with

Figure 8: The distribution of photon energies sampled by the EGS4 routine BREMS (points) for 100 keV electrons in aluminum, expressed in terms of x, defined in Eq. (4.2.5), compared to the theoretical expectation.

2: Radiation transport in EGSnrc
a uniform sampling of x. R retains its absolute maximum\(^6\), R_{max}, for $k = 0$. It is given by

$$R_{\text{max}} = 28.381 - \frac{4}{3}Z_v$$

(4.2.7)

where Z_v is defined in Eq. (2.1.10) in section 2.2.1 and we have made use of Eq. (2.1.8) for the functions $\phi_1(\delta)$ and $\phi_2(\delta)$. The algorithm is then

1. Calculate $b = \ln T/k_c$ \(^7\)
2. Pick two random numbers, r_1 and r_2
3. Set $k = k_c \exp(r_1b)$, calculate R/R_{max}
4. If $r_2 > R/R_{\text{max}}$, go to step 2
5. Deliver k

Figure 9 shows CPU times in μs necessary to sample one photon energy on a 500 MHz PIII computer using the new algorithm (solid line), the EGS4 algorithm (dotted line) and using the alias sampling technique in the case ibr_nist is set to 1. The threshold energy used was $k_c = 10$ keV and the material was aluminum. The precise amount of CPU time spent for sampling the photon energy is somewhat dependent on k_c and Z, but the qualitative behaviour remains the same for other values of k_c. Apart from being more accurate, the new algorithm is also more efficient. The CPU time for the alias sampling technique is energy independent, as one can expect. It is faster at lower energies but slower at high energies and so the use of the ibr_nist=1 option is not meaningful above 50 MeV (where also the cross sections are identical). The small “waves” in the EGS4 curves are due to the technique employed to sample the distribution $(1 - \varepsilon)/\varepsilon$ (see the EGS4 manual, Ref [12]) which is at the same time the reason for the error shown in Fig. 8.

2.4.2.iii Simulation of discrete bremsstrahlung events, angular distribution

In the original EGS4 implementation, the polar angle of bremsstrahlung emission with respect to the initial electron direction was fixed and given by m/E. In Ref. [18] an improved angle selection scheme based on equation 2BS in the article by Koch and Motz [41] was implemented for use with EGS4. This implementation was adopted in EGSnrc with slight modifications.

Equation 2BS, which is the bremsstrahlung cross section, differential in the photon energy k and the photon emission angle θ, is [41]

$$d\sigma_{\text{brem}}(k, \theta) = 4\alpha Z^2 r_0^2 \frac{dk}{k} \frac{y dy}{(y^2 + 1)^2} \left\{ \frac{16y^2r}{(y^2 + 1)^2} - (1 + r)^2 + \left[1 + r^2 - \frac{4y^2r}{(y^2 + 1)^2} \right] \ln M(y) \right\}$$

$$r = \frac{E'}{E} , \quad y = \frac{E}{m \theta} , \quad \frac{1}{M(y)} = \Delta^2 + \left(\frac{Z^{1/3}}{111(y^2 + 1)} \right)^2$$

(4.2.8)

\(^6\)The actual maximum for a threshold energy k_c is slightly smaller and obtained for $k = k_c$, the difference between the two is negligible except at low electron energies.

\(^7\)As the logarithm of the kinetic energy is known prior to the call to the BREMS routine (because also used for other purposes), the time consuming evaluation of the logarithm is not necessary if $\ln(k_c)$ is stored in the computer memory for each medium.
Figure 9: CPU times (in μs), as function of the incident electron kinetic energy T, necessary to sample one photon energy using various algorithms.
where all definitions following Eq. (4.2.1) apply. Eq. (4.2.8) is the result of an extreme relativistic, first Born and small angle approximation, but it includes a screening correction based on a Thomas-Fermi potential. The effect of the screening of the nucleus by atomic electrons is contained by the expression in the brackets for \(1/M(y)\). This can easily be verified by comparing Eq. (4.2.8) to equation 2BN(a) from the article by Koch and Motz which is derived with the same approximations but using a bare nuclear potential. In order to investigate the performance of Eq. (4.2.8) at low incident electron energies, we can compare it to formula 2BN of the article by Koch and Motz which is for a bare nucleus but does not involve the extreme relativistic and small angle approximations. For a “fair” comparison, screening corrections must be negligible, this is the case if

\[
\Delta^2 \gg \left(\frac{Z^{1/3}}{111(y^2 + 1)} \right)^2 \quad \text{or} \quad \frac{km}{E^2} \gg \frac{2Z^{2/3}}{111^2},
\]

(4.2.9)

a condition which is satisfied in a wide range of photon/electron energy combinations. Figure 10 shows a typical result of such a comparison. The modification to 2BS that we have undertaken, shown as a dashed line and obviously at a much better agreement with formula

\[
\text{T = 100 keV, k = 10 keV}
\]

\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{figure10.png}
\caption{Angular distribution for emission of 10 keV bremsstrahlung photons by 100 keV electrons in aluminum. Solid line represents equation 2BS of Koch and Motz (Eq. (4.2.8) in this report), the dotted line equation 2BN of Koch and Motz, the dashed line is 2BS with modifications as discussed in the text.
}
\end{figure}

10 shows a typical result of such a comparison. The modification to 2BS that we have undertaken, shown as a dashed line and obviously at a much better agreement with formula

2.4 Simulation of electron transport
2BN, is fairly simple and allows most of the considerations of Ref. [18] to be applied for the sampling procedure. We note that the leading term of the distribution 2BN is \((1 - \beta \cos \theta)^{-2}\) where \(\beta\) is the electron velocity in units of the speed of light. Approximated for small angles and high energies it is equivalent to the leading term of 2BS \((1 + y^2)^{-2}\), apart from a normalization constant:

\[
(1 - \beta \cos \theta)^2 \approx \left[1 - \beta \left(1 - \frac{\theta^2}{2}\right)\right]^2 = (1 - \beta)^2 \left[1 + \theta^2 \frac{\beta}{1 - \beta}\right]^2
\]

\[
= (1 - \beta)^2 \left(1 + \beta(1 + \beta)\theta^2 \frac{E}{m}\right)^2 \approx (1 - \beta)^2 (1 + y^2)^2 \quad (4.2.10)
\]

We then use

\[
y^2 = \beta(1 + \beta) \frac{E^2}{m^2} (1 - \cos \theta) \quad (4.2.11)
\]

in Eq. (4.2.8)\(^8\) and otherwise apply the results of Ref. [18] so that the sampling algorithm is as follows:

1. Calculate the maximum of the function in the curled brackets (to be denoted by \(f(y)\)), \(f_{\text{max}}\), which is obtained for \(y^2 = 0, y^2 = 1\) or \(y^2 = y_{\text{max}}^2 \equiv 2\beta(1 + \beta) (E/m)^2\) for the current \(E\) and \(k\)

2. Pick two random numbers \(r_1\) and \(r_2\)

3. Sample \(y^2\) from \(ydy/(1 + y^2)^2\) using

\[
y^2 = \frac{r_1 y_{\text{max}}^2}{1 + y_{\text{max}}^2 (1 - r_1)} \quad (4.2.12)
\]

4. If \(r_2 > f(y)/f_{\text{max}}\) go to step 2

5. Deliver \(\cos \theta\),

\[
\cos \theta = 1 - \frac{y^2 m^2}{\beta(1 + \beta) E^2} = 1 - \frac{y^2}{2y_{\text{max}}^2} \quad (4.2.13)
\]

The efficiency of this algorithm is close to unity for low energies and decreases logarithmically with increasing energy. In addition, it requires several logarithm evaluations (3 in step 1, 1 for each repetition of step 4) and is therefore rather slow. We have therefore implemented a second bremsstrahlung angle selection scheme which uses only the leading term of the angular distribution and can be selected by the user by setting the parameter IBRST in COMMON/BREMPR/ to zero (the default IBRST value is 1, i.e. modified 2BS from Koch and Motz). We have found that the original EGS4 fixed angle approach is not faster than using the leading term of the angular distribution and have therefore removed it.

\(^8\)One could go one step further and modify terms containing \(y^2\) in the nominator as they obviously come from expressions with \(\sin^2 \theta\) but this turns out to not improve the agreement to 2BN significantly
2.4.2.iv Radiative splitting

If the radiative splitting option is set (nbr_split > 1), the result of a bremsstrahlung event will be nbr_split photons, each having the fraction 1/nbr_split of the weight of the electron, and an electron with an energy given by its initial energy minus the energy of the last bremsstrahlung photon produced. Note that this violates energy conservation on an event-by-event basis, energy is conserved only on average. The motivation to “inline” the bremsstrahlung splitting technique was that various quantities, necessary for the sampling of photon energies, emission angles, and associated rotations, can be calculated only once and then re-used nbr_split times.

It is worth noticing that if nbr_split is set to zero, the bremsstrahlung event will be skipped. This gives the possibility to study, for instance, the influence of the neglect of bremsstrahlung production on calculated quantities\(^9\), should this be of any use to someone.

2.4.3 Discrete inelastic collisions

At the present stage, binding effects are disregarded in the treatment of electron and positron inelastic scattering with atomic electrons in EGSnrc (and also in the default EGS4 version). Namito et al have implemented various electron impact ionization cross sections for use with EGS4 [7]. We have studied their approach but decided to postpone the inclusion of binding effects until a more general treatment becomes available that can easily be applied to “catastrophic” and sub-threshold inelastic collisions.

When the binding of atomic electrons is ignored, electron-electron scattering can be described by the Møller cross section [46] and positron-electron scattering by the Bhabha cross section [47].

2.4.3.i Møller scattering

The Møller cross section, which is the cross section for electron-electron scattering differential in the kinetic energy \(T'\) of the scattered electron which is initially at rest, is [44]

\[
\frac{d\sigma_{\text{inel}}^-}{dT'} = \frac{2\pi r_0^2 m}{\beta^2} \frac{1}{T'^2} \left[1 + \frac{T'^2}{(T-T')^2} + \frac{T'^2}{(T+1)^2} \left(\frac{T'}{T} \right)^2 - 2\tau + 1 \right. \\
\left. \left(\frac{T'}{T} \right)^2 \right]
\]
(4.3.1)

where \(\beta\) is the incident electron velocity in units of the speed of light, \(T\) the incident kinetic energy and \(\tau = T/m\). Because the two electrons are indistinguishable, Eq. (4.3.1) is symmetric with respect to exchange of the energies of the two scattered particles. Per definition, the electron with the higher energy after the collision is considered to be the primary, so that the total cross section for Møller interactions is obtained via integration of Eq. (4.3.1) from \(T_c\) to \(T/2\):

\[
\sigma_{\text{inel}}^- = \int_{T_c}^{T/2} \frac{d\sigma_{\text{inel}}^-}{dT'} dT'
\]
(4.3.2)

\(^9\)A similar result can be achieved by using IUNRST=4 when generating the PEGS data but in this case the average energy lost to radiation will be still subtracted and deposited locally.
In EGS4 and EGSnrc T_c is called TE and the corresponding total energy AE. The threshold kinetic energy above which Møller events can occur is obviously $2T_c$. The integration of Eq. (4.3.2) is trivial, and is evaluated by the PEGS function $AMOLTM$.

To sample the energy of the scattered electron on the basis of Eq. (4.3.1), one makes a change of variables to $\varepsilon = T'/T$, which can take values between $\varepsilon_0 = T_c/T$ and $1/2$, and after re-arranging obtains [12]

$$\frac{d\sigma_{\text{inel}}^-}{d\varepsilon} = C \left(\frac{\varepsilon_0}{1 - 2\varepsilon_0} \right) \frac{1}{\varepsilon^2} g(\varepsilon)$$

(4.3.3)

where C is a constant irrelevant for the sampling algorithm, the expression in the brackets is a normalized PDF for ε and $g(\varepsilon)$ will be used as a rejection function. At this point it is worth noticing that there is an error in the EGS4 manual for the rejection function $g(\varepsilon)$ and the resulting error in the MOLLER sampling routine was not corrected in EGS4 until 1996 [48]. The proper rejection function reads

$$g(\varepsilon) = \frac{1 + g_2 \varepsilon^2 + r(r - g_3)}{g_{\text{max}}}$$

$$g_{\text{max}} = 1 + \frac{5}{4} g_2, \quad g_2 = \frac{\tau^2}{(\tau + 1)^2}, \quad g_3 = \frac{2\tau + 1}{(\tau + 1)^2}, \quad r = \frac{\varepsilon}{1 - \varepsilon}. \quad (4.3.4)$$

The algorithm used to sample ε is then as follows:

1. Calculate quantities dependent only on T, namely
 $$\tau, \ g_2, \ g_3, \ g_{\text{max}}$$
2. Pick two random numbers, r_1 and r_2
3. Sample ε from the expression in the brackets in Eq. (4.3.3) using
 $$\varepsilon = \frac{T_c}{T - (T - 2T_c)r_1} \quad (4.3.5)$$
4. Calculate $g(\varepsilon)$, if $r_2 > g(\varepsilon)$ go to step 2
5. Deliver ε

The efficiency of this algorithm is close to unity for low incident energies T but goes to $4/9$ at high energies. A better approach would be the following: We can rewrite Eq. (4.3.2) as

$$\frac{d\sigma_{\text{inel}}^-}{dT'} = \frac{2\pi r_0^2 m}{\beta^2} \left[F(T') + F(T - T') \right]$$

$$F(T') = \frac{1}{T'^2} + \frac{1}{2(T + m)^2} - \frac{2\tau + 1}{(\tau + 1)^2} \frac{1}{TT'}.$$

(4.3.6)

If we now extend the range for T' to $T - T_c$, we can drop $F(T - T')$, and sample T' from $F(T')$ only. At the end T' will be set to $\text{Min}(T', T - T')$. There are several possibilities to sample T' from $F(T')$. For instance, one can use $1/T'^2$ as a PDF and

$$g'(T') = \frac{1}{g_{\text{max}}} \left(1 + \frac{T'^2}{2(T + m)^2} - \frac{2\tau + 1}{(\tau + 1)^2} \frac{T'}{T} \right)$$

(4.3.7)
as a rejection function. Here,

\[
g_{\text{max}} = \begin{cases}
1, & \text{if } \tau \leq 2 + \sqrt{6} \\
\frac{3\tau^2}{2(\tau+1)^2}, & \text{else}
\end{cases}
\] (4.3.8)

The efficiency of such an algorithm is \(2/3\) at high energies and therefore 1.5 times better than the one used in EGS4 and EGSnrc. Anticipating changes in the treatment of discrete inelastic scattering, in order to take into account electron binding effects, in the near future we have not implemented this more efficient algorithm.

The polar scattering angles \(\theta\) and \(\theta'\) in Møller events are uniquely determined by the kinematics. They are given by

\[
\cos \theta = \sqrt{\frac{T - T'}{T} \frac{T + 2m}{T - T' + 2m}}, \quad \text{for the higher energy electron,}
\]

\[
\cos \theta' = \sqrt{\frac{T'}{T} \frac{T + 2m}{T' + 2m}}, \quad \text{for the lower energy electron.}
\] (4.3.9)

The azimuthal angles are opposite and sample uniformly between zero and \(2\pi\).

2.4.3.2 Bhabha scattering

The Bhabha cross section, which is the cross section for positron-electron scattering differential in the kinetic energy \(T'\) of the scattered electron which is initially at rest, is given by [12]

\[
d\sigma^+_{\text{inel}} = \frac{2\pi r_0^2 m}{T^2} \left[\frac{1}{\varepsilon} \left(\frac{1}{\varepsilon \beta^2} - B_1 \right) + B_2 + \varepsilon(B_4 - B_3) \right]
\] (4.3.10)

where \(T\) is the incident positron kinetic energy and the following definitions apply:

\[
\varepsilon = \frac{T'}{T}, \quad \tau = \frac{T}{m}, \quad y = \frac{1}{\tau + 2}, \quad \beta^2 = \frac{\tau(\tau + 2)}{(\tau + 1)^2}
\]

\[
B_1 = 2 - y^2, \quad B_2 = (1 - 2y)(3 + y^2), \quad B_3 = B_4 + (1 - 2y)^2, \quad B_4 = (1 - 2y)^3
\] (4.3.11)

The range of possible \(T'\) values is \(T_c \cdots T\) (i.e. the positron may have energy less than \(T_c\) after Bhabha scattering). The total discrete Bhabha cross section is then obtained by integrating Eq. (4.3.10) in the allowed range, i.e.

\[
\sigma^+_{\text{inel}} = \int_{T_c}^{T} dT' \frac{d\sigma^+_{\text{inel}}}{dT'}. \tag{4.3.12}
\]

The integration is trivial but the result rather lengthy and therefore not given here. The total discrete Bhabha cross section is evaluated by the PEGS function \texttt{BHABTM}.

The method employed to sample scattered electron energies on the basis of Eq. (4.3.10) is similar to the Møller method. The electron energy fraction \(\varepsilon\) is sampled from \(1/\varepsilon^2\), the rejection function \(g(\varepsilon)\) is

\[
g(\varepsilon) = 1 - \beta^2 \varepsilon(B_1 - \varepsilon(B_2 - \varepsilon(B_3 - \varepsilon B_4))). \tag{4.3.13}
\]

As in the case of Møller scattering, there was an error for the Bhabha scattering rejection function which was not corrected until 1996 [48]. Bhabha polar scattering angles are given by Eq. (4.3.9).
2.4.4 Two Photon Positron-Electron Annihilation

We have adopted the treatment of the two photon positron annihilation process from EGS4 without modifications. For completeness we give below the differential and total annihilation cross sections as used in EGS4 and EGSnrc.

The cross section, differential in the energy k of the one of the annihilation photons, for an incident positron with a total energy of E is [12]

$$
\frac{d\sigma_{\text{annih}}}{dk} = \frac{\pi r_0^2}{\tau(\tau + 2)} \left[S_1(\kappa) + S_1(\tau + 2 - \kappa) \right]
$$

(4.4.1)

where τ and κ are the positron kinetic energy and photon energy in units of m and

$$
S_1(x) = \frac{1}{x} \left(\tau + 2 + 2 \frac{\tau + 1}{\tau + 2} - \frac{1}{x} \right) - 1.
$$

(4.4.2)

Equation (4.4.1) is obviously symmetric under exchange of the annihilation photons, the second photon has the energy $E + m - k$.

The polar emission angles of the annihilation photons are uniquely determined by the kinematics and given by [12]

$$
k = \frac{m}{1 - a \cos \theta}, \quad a = \sqrt{\frac{\tau}{\tau + 2}}
$$

(4.4.3)

so that the minimum and maximum possible photon energies are

$$
k_{\text{min}} = \frac{m}{1 + a}, \quad k_{\text{max}} = \frac{m}{1 - a}.
$$

(4.4.4)

The total annihilation cross section is obtained by integrating Eq. (4.4.1) over the allowed k-range and can be written as

$$
\sigma_{\text{annih}} = \frac{\pi r_0^2}{\tau + 2} \left[\frac{\tau^2 + 5\tau + 6}{\tau(\tau + 2)} + \ln \left(\tau + 1 + \sqrt{\tau(\tau + 2)} \right) - \frac{\tau + 4}{\sqrt{\tau(\tau + 2)}} \right]
$$

(4.4.5)

At high energies ($\tau \gg 1$) σ_{annih} decreases as $(\ln \tau)/\tau$, for $\tau \to 0$ the cross section tends to infinity (i.e. positrons always annihilate at rest if they have not annihilated before).

The annihilation process is a “catastrophic” event and treated discretely.

To sample the energy of one of the photons from Eq. (4.4.1), one makes a change in variables to $\varepsilon = \kappa/(\tau + 2)$, drops the second S_1 because of the symmetry, and after re-arranging obtains

$$
\frac{d\sigma_{\text{annih}}}{d\varepsilon} = Cf(\varepsilon)g(\varepsilon)
$$

(4.4.6)

$$
f(\varepsilon) = \frac{1}{\ln[(1 - \varepsilon_0)/\varepsilon_0]} \frac{1}{\varepsilon}, \quad g(\varepsilon) = 1 - \frac{[\varepsilon(\tau + 2) - 1]^2}{\varepsilon(\tau^2 + 4\tau + 2)}
$$

(4.4.7)

2: Radiation transport in EGSnrc
where C is a constant that contains factors irrelevant for the sampling procedure and ε_0 the minimum possible value for ε,

$$
\varepsilon_0 = \frac{1}{(\tau + 2)(1 + a)}.
$$

(4.4.8)

The function $f(\varepsilon)$ is a normalized PDF, $g(\varepsilon)$ is always positive and has a maximum of 1 for $\varepsilon = 1/(\tau + 2)$ and thus is a valid rejection function10. The sampling algorithm is then as follows:

1. Compute quantities dependent on E, namely

 $$\tau, \quad A = \tau + 2, \quad a, \quad \varepsilon_0, \quad b = \ln\frac{1 - \varepsilon_0}{\varepsilon_0}$$

2. Pick two random numbers, r_1 and r_2

3. Set

 $$\varepsilon = \varepsilon_0 \exp (r_1 b)$$

 and calculate $g(\varepsilon)$

4. If $r_2 > g(\varepsilon)$, the go to step 2

5. Deliver ε

At this point one should perhaps mention that a single photon or three or more photon annihilation processes in the nuclear field are also possible. Messel and Crawford [49] point out that the ratio of one to two photon annihilation cross sections is small until higher energies are reached, at which point the absolute value of the cross section is small. Thus, the single photon annihilation process is ignored. Positron annihilation to three or more photons is even less likely than one photon annihilation and therefore also ignored.

If positrons do not annihilate in flight, they annihilate at rest producing two photons. As one can easily verify from Eq. (4.4.3) and (4.4.4), the photon energies go to m as τ goes to zero. In addition, the cross section differential in the photon emission angle becomes uniform in the limit $\tau \to 0$.

If radiative splitting is set ($\text{nbr_split} > 1$), the annihilation process will produce 2 nbr_split photons, each carrying the fraction $1/\text{nbr_split}$ from the positron weight. Simultaneous production of nbr_split annihilation events allows the quantity b (see step 1) as well as parameter related to angular rotations to be re-used nbr_split times.

2.4.5 Collision stopping power

EGSnrc “inherits” the treatment of restricted collision stopping powers from EGS4, \textit{i.e.} uses the formulas recommended by Seltzer and Berger [50] which are based on the Bethe-Bloch theory [51, 52, 53]. The standard treatment (see also ICRU report 37 [44] which was used as the source of the formulas below) assumes that there is a certain value for energy transfer to

10Note that out $g(\varepsilon)$ is the $g(\varepsilon)$ defined in Eq (2.12.26) of the the EGS4 manual divided by its maximum.
atomic electrons, T_{med}, that is (i) large compared to the binding energies (ii) corresponds to an impact parameter that is large compared to the atomic dimensions. Collision processes that are associated with energy loss T' less than T_{med} are treated according to the theory of Bethe, the main result of which is that

$$L^\pm_{coll}(T, T' < T_{med}) = \frac{2\pi r_0^2 mn}{\beta^2} \left[\ln \left(\frac{2m_0\beta^2 T_{med}}{(1 - \beta^2)T^2} \right) - \beta^2 - \delta \right]$$

(4.5.1)

where β is again the electron velocity in units of the speed of light, I is the mean ionization energy and δ the density effect correction that takes into account the polarization of the medium due to the electron field. As T_{med} is defined being large compared to the binding energies of the atom, collision processes with energy transfer larger than T_{med} can be treated using the Møller [46] (electrons) or Bhabha [47] (positron) cross section (see also section 2.4.3), i.e.

$$L^\pm_{coll}(T, T' > T_{med}) = \int_{T_{med}}^{T_c} dT' T' d\sigma^\pm_{inel}$$

(4.5.2)

Using some additional approximations, T_{med} drops out in the sum of $L^\pm_{coll}(E, T' < T_{med})$ and $L^\pm_{coll}(E, T' > T_{med})$ and one obtains

$$L^\pm_{coll}(T, T_c) = \frac{2\pi r_0^2 mn}{\beta^2} \left[\ln \left(\frac{T^2}{\beta^2} \right) + \ln(1 + \tau/2) + G^\pm(\tau) - \delta \right]$$

(4.5.3)

where $\tau = T/m$ and the functions G^\pm are different for electrons and positrons due differences in the Møller and Bhabha cross sections and are given by

$$G^-(\tau) = -1 - \beta^2 + \ln[\eta(1 - \eta)] + \frac{1}{1 - \eta} + (1 - \beta^2) \left[\frac{\tau^2 \eta^2}{2} + (2\tau + 1) \ln(1 - \eta) \right]$$

$$G^+(\tau) = \ln(4\eta) - \beta^2 \left[1 + (2 - y^2)\eta - (3 + y^2)\frac{yT}{2}\eta^2 + (1 + y\tau)^2 \frac{y^2 + y^2 + y^3}{3\eta}\right]$$

(4.5.4)

where $\eta = T_c/T$ and y is defined in Eq. (4.3.10).

From the above discussion and from the general discussion of a Class II condensed history implementation in section 2.4.1 it is clear that the formalism used to treat inelastic collisions with atomic electrons is only applicable if

$$T_c \gg \text{binding energies of the medium of interest.}$$

(4.5.5)

This imposes a rather severe limitation on the use of Class II condensed history codes in high-Z materials (the K-shell binding energy for lead is, for instance, 88 keV). We are therefore currently investigating a more realistic approach for situations when the condition (4.5.5) is not satisfied, but its implementation into EGSnrc is left for the next release of the system. One should probably also mention that the many successful studies carried out with the EGS4 system indicate that the implications of violating the requirement (4.5.5) are perhaps less severe than one might expect from purely theoretical arguments.

The only non-trivial parameters of the restricted stopping power formula are the mean ionization energy I and the density effect correction δ. The default mean ionization energies
for elements used in PEGS4, along with atomic numbers, weights, chemical symbols, and mass densities are summarized in Table 2. Mean ionization energies for compounds are derived from

$$\ln I = \sum p_i Z_i \ln I(Z_i)$$ (4.5.6)

where p_i is the stoichiometric index of the i'th element which has atomic number Z_i and a mean ionization energy $I(Z_i)$, unless the material belongs to a set of pre-defined materials to be found in Table 2.13.2 of the EGS4 manual [12] or listed in the BLOCK DATA section of pegs4.mortran.

The density effects correction has been treated extensively in the literature. The default PEGS4 approach is based on the formulation of Sternheimer and Peierls[54] which basically parameterizes the density effect in terms of 6 parameters ($\text{FACT, SK, X0, X1, CBAR, and IEV}$). This same parameterized approach was used for the calculations by Berger and Seltzer [55] and by Sternheimer, Berger and Seltzer [56] who fitted the parameters to the density effect as calculated for the ICRU for increasingly larger numbers of materials. The power of PEGS4 is that it will generate a density effect for any arbitrary material, if need be with no recourse to the fitted parameters. In this case it will use the Sternheimer and Peierls[54] general formula. There is also an option in PEGS4 which allows the 6 parameters to be read in directly (using the ISSB=1 option in PEGS4, see section 6.2 page 226). However, these parameterizations are only fits to the actual density effect data. An option was added to PEGS4 in 1989 which allowed the density effect data to be used directly[57] and the EGSnrc distribution includes a huge data base of all the density effect values calculated by Seltzer and Berger for ICRU Report 37[44]. To turn this option on the user must set the flag EPSTFL to 1 in the PEGS4 input file. See section 6.1.2 (page 192) for more details. In this case the density effect correction is calculated by interpolation from pre-computed values stored in a separate file. Selecting this option has the additional effect that the mean ionization energy of the material is taken directly from the density effect correction file. It should be noted that in general the differences in collision stopping powers between using the default Sternheimer and Peierls density effect, or the fitted parameters or the direct ICRU 37 values, are small, of the order of a few percent at most. These differences are only likely of importance for very detailed work.

Table 2: Default atomic numbers, symbols, atomic weights, mass densities, and I values for elements in PEGS4.

<table>
<thead>
<tr>
<th>Z</th>
<th>Symbol</th>
<th>Atomic weight (g/cm3)</th>
<th>Density (g/cm3)</th>
<th>I(eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>1.00797</td>
<td>0.0808</td>
<td>19.2</td>
</tr>
<tr>
<td>2</td>
<td>HE</td>
<td>4.00260</td>
<td>0.1900</td>
<td>41.8</td>
</tr>
<tr>
<td>3</td>
<td>LI</td>
<td>6.93900</td>
<td>0.5340</td>
<td>40.0</td>
</tr>
<tr>
<td>4</td>
<td>BE</td>
<td>9.01220</td>
<td>1.8500</td>
<td>63.7</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>10.81100</td>
<td>2.5000</td>
<td>76.0</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>12.01115</td>
<td>2.2600</td>
<td>78.0</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>14.00670</td>
<td>1.1400</td>
<td>82.0</td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td>15.99940</td>
<td>1.5680</td>
<td>95.0</td>
</tr>
</tbody>
</table>

continued on next page
<table>
<thead>
<tr>
<th>Z</th>
<th>Symbol</th>
<th>Atomic Weight</th>
<th>Density (g/cm³)</th>
<th>I(eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>F</td>
<td>18.99840</td>
<td>1.5000</td>
<td>115.0</td>
</tr>
<tr>
<td>10</td>
<td>NE</td>
<td>20.18300</td>
<td>1.0000</td>
<td>137.0</td>
</tr>
<tr>
<td>11</td>
<td>NA</td>
<td>22.98980</td>
<td>0.9712</td>
<td>149.0</td>
</tr>
<tr>
<td>12</td>
<td>MG</td>
<td>24.31200</td>
<td>1.7400</td>
<td>156.0</td>
</tr>
<tr>
<td>13</td>
<td>AL</td>
<td>26.98150</td>
<td>2.7020</td>
<td>166.0</td>
</tr>
<tr>
<td>14</td>
<td>SI</td>
<td>28.08800</td>
<td>2.4000</td>
<td>173.0</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>30.97380</td>
<td>1.8200</td>
<td>173.0</td>
</tr>
<tr>
<td>16</td>
<td>S</td>
<td>32.06400</td>
<td>2.0700</td>
<td>180.0</td>
</tr>
<tr>
<td>17</td>
<td>CL</td>
<td>35.45300</td>
<td>2.2000</td>
<td>174.0</td>
</tr>
<tr>
<td>18</td>
<td>AR</td>
<td>39.94800</td>
<td>1.6500</td>
<td>188.0</td>
</tr>
<tr>
<td>19</td>
<td>K</td>
<td>39.10200</td>
<td>0.8600</td>
<td>190.0</td>
</tr>
<tr>
<td>20</td>
<td>CA</td>
<td>40.08000</td>
<td>1.5500</td>
<td>191.0</td>
</tr>
<tr>
<td>21</td>
<td>SC</td>
<td>44.95600</td>
<td>3.0200</td>
<td>216.0</td>
</tr>
<tr>
<td>22</td>
<td>TI</td>
<td>47.90000</td>
<td>4.5400</td>
<td>233.0</td>
</tr>
<tr>
<td>23</td>
<td>V</td>
<td>50.94200</td>
<td>5.8700</td>
<td>245.0</td>
</tr>
<tr>
<td>24</td>
<td>CR</td>
<td>51.99800</td>
<td>7.1400</td>
<td>257.0</td>
</tr>
<tr>
<td>25</td>
<td>MN</td>
<td>54.93800</td>
<td>7.3000</td>
<td>272.0</td>
</tr>
<tr>
<td>26</td>
<td>FE</td>
<td>55.84700</td>
<td>7.8600</td>
<td>286.0</td>
</tr>
<tr>
<td>27</td>
<td>CO</td>
<td>58.93320</td>
<td>8.7100</td>
<td>297.0</td>
</tr>
<tr>
<td>28</td>
<td>NI</td>
<td>58.71000</td>
<td>8.9000</td>
<td>311.0</td>
</tr>
<tr>
<td>29</td>
<td>CU</td>
<td>63.54000</td>
<td>8.9333</td>
<td>322.0</td>
</tr>
<tr>
<td>30</td>
<td>ZN</td>
<td>65.37000</td>
<td>7.1400</td>
<td>330.0</td>
</tr>
<tr>
<td>31</td>
<td>GA</td>
<td>69.72000</td>
<td>5.9100</td>
<td>334.0</td>
</tr>
<tr>
<td>32</td>
<td>GE</td>
<td>72.59000</td>
<td>5.3600</td>
<td>350.0</td>
</tr>
<tr>
<td>33</td>
<td>AS</td>
<td>74.92160</td>
<td>5.7300</td>
<td>347.0</td>
</tr>
<tr>
<td>34</td>
<td>SE</td>
<td>78.96000</td>
<td>4.8000</td>
<td>348.0</td>
</tr>
<tr>
<td>35</td>
<td>BR</td>
<td>79.80800</td>
<td>4.2000</td>
<td>357.0</td>
</tr>
<tr>
<td>36</td>
<td>KR</td>
<td>83.80000</td>
<td>3.4000</td>
<td>352.0</td>
</tr>
<tr>
<td>37</td>
<td>RB</td>
<td>85.47000</td>
<td>1.5300</td>
<td>363.0</td>
</tr>
<tr>
<td>38</td>
<td>SR</td>
<td>87.62000</td>
<td>2.6000</td>
<td>366.0</td>
</tr>
<tr>
<td>39</td>
<td>Y</td>
<td>88.90500</td>
<td>4.4700</td>
<td>379.0</td>
</tr>
<tr>
<td>40</td>
<td>ZR</td>
<td>91.22000</td>
<td>6.4000</td>
<td>393.0</td>
</tr>
<tr>
<td>41</td>
<td>NB</td>
<td>92.90600</td>
<td>8.5700</td>
<td>417.0</td>
</tr>
<tr>
<td>42</td>
<td>MO</td>
<td>95.94000</td>
<td>9.0100</td>
<td>424.0</td>
</tr>
<tr>
<td>43</td>
<td>TC</td>
<td>99.00000</td>
<td>11.5000</td>
<td>428.0</td>
</tr>
<tr>
<td>44</td>
<td>RU</td>
<td>101.07000</td>
<td>12.2000</td>
<td>441.0</td>
</tr>
<tr>
<td>45</td>
<td>RH</td>
<td>102.90500</td>
<td>12.5000</td>
<td>449.0</td>
</tr>
<tr>
<td>46</td>
<td>PD</td>
<td>106.40000</td>
<td>12.0000</td>
<td>470.0</td>
</tr>
<tr>
<td>47</td>
<td>AG</td>
<td>107.87000</td>
<td>10.5000</td>
<td>470.0</td>
</tr>
<tr>
<td>48</td>
<td>CD</td>
<td>112.40000</td>
<td>8.6500</td>
<td>469.0</td>
</tr>
<tr>
<td>49</td>
<td>IN</td>
<td>114.82000</td>
<td>7.3000</td>
<td>488.0</td>
</tr>
<tr>
<td>50</td>
<td>SN</td>
<td>118.69000</td>
<td>7.3100</td>
<td>488.0</td>
</tr>
</tbody>
</table>

continued on next page
<table>
<thead>
<tr>
<th>Z</th>
<th>Symbol</th>
<th>Atomic Weight</th>
<th>Density (g/cm³)</th>
<th>I (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>SB</td>
<td>121.75000</td>
<td>6.6840</td>
<td>487.0</td>
</tr>
<tr>
<td>52</td>
<td>TE</td>
<td>127.60000</td>
<td>6.2400</td>
<td>485.0</td>
</tr>
<tr>
<td>53</td>
<td>I</td>
<td>126.90440</td>
<td>4.9300</td>
<td>491.0</td>
</tr>
<tr>
<td>54</td>
<td>XE</td>
<td>131.30000</td>
<td>2.7000</td>
<td>482.0</td>
</tr>
<tr>
<td>55</td>
<td>CS</td>
<td>132.90500</td>
<td>1.8730</td>
<td>488.0</td>
</tr>
<tr>
<td>56</td>
<td>BA</td>
<td>137.34000</td>
<td>3.5000</td>
<td>491.0</td>
</tr>
<tr>
<td>57</td>
<td>LA</td>
<td>138.91000</td>
<td>6.1500</td>
<td>501.0</td>
</tr>
<tr>
<td>58</td>
<td>CE</td>
<td>140.12000</td>
<td>6.9000</td>
<td>523.0</td>
</tr>
<tr>
<td>59</td>
<td>PR</td>
<td>140.90700</td>
<td>6.7690</td>
<td>535.0</td>
</tr>
<tr>
<td>60</td>
<td>ND</td>
<td>144.24001</td>
<td>7.0070</td>
<td>546.0</td>
</tr>
<tr>
<td>61</td>
<td>PM</td>
<td>147.00000</td>
<td>1.0000</td>
<td>560.0</td>
</tr>
<tr>
<td>62</td>
<td>SM</td>
<td>150.35001</td>
<td>7.5400</td>
<td>574.0</td>
</tr>
<tr>
<td>63</td>
<td>EU</td>
<td>151.98000</td>
<td>5.1700</td>
<td>580.0</td>
</tr>
<tr>
<td>64</td>
<td>GD</td>
<td>157.25000</td>
<td>7.8700</td>
<td>591.0</td>
</tr>
<tr>
<td>65</td>
<td>TB</td>
<td>158.92400</td>
<td>8.2500</td>
<td>614.0</td>
</tr>
<tr>
<td>66</td>
<td>DY</td>
<td>162.50000</td>
<td>8.5600</td>
<td>628.0</td>
</tr>
<tr>
<td>67</td>
<td>HO</td>
<td>164.92999</td>
<td>8.8000</td>
<td>650.0</td>
</tr>
<tr>
<td>68</td>
<td>ER</td>
<td>167.25999</td>
<td>9.0600</td>
<td>658.0</td>
</tr>
<tr>
<td>69</td>
<td>TM</td>
<td>168.93401</td>
<td>9.3200</td>
<td>674.0</td>
</tr>
<tr>
<td>70</td>
<td>YB</td>
<td>173.03999</td>
<td>6.9600</td>
<td>684.0</td>
</tr>
<tr>
<td>71</td>
<td>LU</td>
<td>174.97000</td>
<td>9.8500</td>
<td>694.0</td>
</tr>
<tr>
<td>72</td>
<td>HF</td>
<td>178.49001</td>
<td>11.4000</td>
<td>705.0</td>
</tr>
<tr>
<td>73</td>
<td>TA</td>
<td>180.94800</td>
<td>16.6000</td>
<td>718.0</td>
</tr>
<tr>
<td>74</td>
<td>W</td>
<td>183.85001</td>
<td>19.3000</td>
<td>727.0</td>
</tr>
<tr>
<td>75</td>
<td>RE</td>
<td>186.20000</td>
<td>20.5300</td>
<td>736.0</td>
</tr>
<tr>
<td>76</td>
<td>OS</td>
<td>190.20000</td>
<td>22.4800</td>
<td>746.0</td>
</tr>
<tr>
<td>77</td>
<td>IR</td>
<td>192.20000</td>
<td>22.4200</td>
<td>757.0</td>
</tr>
<tr>
<td>78</td>
<td>PT</td>
<td>195.08000</td>
<td>21.4500</td>
<td>790.0</td>
</tr>
<tr>
<td>79</td>
<td>AU</td>
<td>196.98700</td>
<td>19.3000</td>
<td>790.0</td>
</tr>
<tr>
<td>80</td>
<td>HG</td>
<td>200.59000</td>
<td>14.1900</td>
<td>800.0</td>
</tr>
<tr>
<td>81</td>
<td>TL</td>
<td>204.37000</td>
<td>11.8500</td>
<td>810.0</td>
</tr>
<tr>
<td>82</td>
<td>PB</td>
<td>207.19000</td>
<td>11.3400</td>
<td>823.0</td>
</tr>
<tr>
<td>83</td>
<td>BI</td>
<td>208.98000</td>
<td>9.7800</td>
<td>823.0</td>
</tr>
<tr>
<td>84</td>
<td>PO</td>
<td>210.00000</td>
<td>9.3000</td>
<td>830.0</td>
</tr>
<tr>
<td>85</td>
<td>AT</td>
<td>210.00000</td>
<td>1.0000</td>
<td>825.0</td>
</tr>
<tr>
<td>86</td>
<td>RN</td>
<td>222.00000</td>
<td>4.0000</td>
<td>794.0</td>
</tr>
<tr>
<td>87</td>
<td>FR</td>
<td>223.00000</td>
<td>1.0000</td>
<td>827.0</td>
</tr>
<tr>
<td>88</td>
<td>RA</td>
<td>226.00000</td>
<td>5.0000</td>
<td>826.0</td>
</tr>
<tr>
<td>89</td>
<td>AC</td>
<td>227.00000</td>
<td>1.0000</td>
<td>841.0</td>
</tr>
<tr>
<td>90</td>
<td>TH</td>
<td>232.03600</td>
<td>11.0000</td>
<td>847.0</td>
</tr>
<tr>
<td>91</td>
<td>PA</td>
<td>231.00000</td>
<td>15.3700</td>
<td>878.0</td>
</tr>
<tr>
<td>92</td>
<td>U</td>
<td>238.03000</td>
<td>18.9000</td>
<td>890.0</td>
</tr>
</tbody>
</table>
2.4.6 Elastic scattering cross sections

The treatment of electron and positron elastic scattering in EGSnrc is determined by the logical parameter `SPIN_EFFECTS` which is in `common/ET_Control/`. If set to `.true.`, (this is the default), elastic scattering cross sections that take into account spin effects are employed, they are discussed in section 2.4.6.ii. If `.false.`, elastic scattering is based on the screened Rutherford cross section. This is consistent with EGS4, although multiple elastic scattering (see section 2.4.7) is based on an exact theory rather than the small-angle theory of Molière[58] which is used in EGS4.

2.4.6.i Screened Rutherford elastic scattering

The screened Rutherford cross section, which is the cross section differential in the cosine \(\mu \) of the polar scattering angle of electrons or positrons incident on atoms of atomic number \(Z \), is

\[
\frac{d\sigma_{SR}}{d\mu} = \frac{2\pi r_0^2 Z^2}{\beta^2 \tau (\tau + 2)} \frac{1}{(1 - \mu + 2\eta)^2}
\]

where \(\beta \) is the particle velocity in units of the speed of light, \(\tau \) the kinetic energy \(T \) in units of \(m \) and \(\eta \) the screening parameter. The total elastic scattering cross section is obtained from Eq. (4.6.1) by integrating over \(\mu \) from -1 to 1 and is given by

\[
\sigma_{SR} = \frac{\pi r_0^2 Z^2}{\beta^2 \tau (\tau + 2)\eta(1 + \eta)}
\]

In EGS4 the screening parameter \(\eta \) is based on the single elastic scattering theory of Molière[59]. Molière performed a partial-wave analysis (PWA) expansion of the Klein-Gordon equation (i.e. he neglected spin effects) in the nuclear field described by the Thomas-Fermi potential, used a small-angle approximation (i.e. replaced the Legendre Polynomials by zeroth order Bessel functions \(J_0 \)), and employed a WKB-expansion of the resulting radial equation up to zeroth order in \(\hbar \) to calculate the phase shifts \(\phi(z) \) to arrive at

\[
\frac{d\sigma_M}{\chi d\chi} = 2\pi a^2 \left| \int_0^\infty dz J_0 \left(\frac{\chi}{2\sqrt{\eta_0}} \right) \left[\exp \left(-2ia'\phi(z) \right) - 1 \right] \right|^2
\]

2: Radiation transport in EGSnrc
where χ is the scattering angle, a is the Thomas-Fermi radius, η_0 is defined in Eq. (4.6.5) and α' given by

$$\alpha' = \frac{\alpha Z}{\beta}$$

($\alpha \approx 1/137$ is the fine structure constant). In addition he approximated the Thomas-Fermi potential by the sum of three exponential functions in which case the phase shifts $\phi(z)$ are given by zeroth order modified Bessel functions. He then required that the average scattering angle squared, calculated from a screened Rutherford cross section is the same as the average scattering angle squared resulting from Eq. (4.6.3) and, after studying the limiting cases $\alpha' \to 0$ and $\alpha' \to \infty$, arrived at the simple formula

$$\eta = \eta_0 (1.13 + 3.76 \alpha'^2)$$

for the effective screening parameter η^{11}. The treatment of elastic scattering in EGS4 is intrinsically associated with Molière’s multiple scattering theory\[58\]. In his treatment of multiple scattering Molière uses a small-angle approximation in which case the moments of the screened Rutherford cross section (see section 2.4.7) are given by first order modified Bessel functions K_1. In addition, a small argument expansion of K_1 is performed so that the elastic scattering cross section for compounds and mixtures can be expressed with two parameters, b_c and χ_{cc}, as follows:

$$b_c = 4\pi r_0^2 C_{TF}^2 \rho \frac{Z_S \exp(Z_E/Z_S)}{1.13 \alpha'^2 u A \exp(Z_X/Z_S)} = 7821.6 \text{ cm}^2/\text{g} \rho \frac{Z_S \exp(Z_E/Z_S)}{A \exp(Z_X/Z_S)}$$

$$\chi_{cc}^2 = 4\pi r_0^2 m^2 \rho \frac{Z_s}{u} A = 0.1569 \text{ cm}^2 \text{MeV}^2/\text{g} \rho \frac{Z_s}{A}$$

where A is the relative molecular mass and

$$Z_S = \sum p_i Z_i (Z_i + \xi_{MS})$$

$$Z_E = \sum p_i Z_i (Z_i + \xi_{MS}) \ln Z_i^{-2/3}$$

$$Z_X = \sum p_i Z_i (Z_i + \xi_{MS}) \ln (1 + 3.34 \alpha^2 Z_i^2)$$

Note that in the expression for Z_X α' was replaced by αZ_i and we have removed the factor 1.167 in the denominator of the expression for b_c in the EGS4 manual, this factor is not necessary when multiple scattering is treated with the exact formulation. The purpose of the parameter ξ_{MS} is to take into account contributions from sub-threshold inelastic scattering with atomic electrons. In PEGS4 a macro $\$FUDGEMS$ is used for ξ_{MS} with the intent to provide the user with the possibility of implementing a more realistic treatment of sub-threshold inelastic contributions. Experience shows that this capability is rarely used and so, PEGS4 generated data sets usually have $\xi_{MS} = 1$ (the default value). This leads to double counting of angular deflections due to sub-threshold inelastic collisions (see e.g. [60]). This problem remains present in EGSnrc if the screened Rutherford cross section is used to model elastic collisions (parameter SPIN EFFECTS is set to .false.). We have not attempted a

\[11\] Note that our η is Molière’s $\chi^2/4$, C_{TF} is the Thomas-Fermi constant.
correction in this case as the neglect of spin effects represents a more severe approximation than the double counting of inelastic collisions. A more realistic approach is used when spin effects are turned on, see next section.

In terms of the parameter \(b_c \) and \(\chi_{cc} \), which are called \(\text{BLCC} \) and \(\text{XCC} \), the screening parameter is

\[
\eta = \frac{\chi_{cc}^2}{4b_c m^2 \tau(\tau + 2)} \tag{4.6.8}
\]

and the total macroscopic cross section

\[
\Sigma_{SR} = \frac{b_c}{\beta^2} \tag{4.6.9}
\]

The latter formula involves the neglect of \(1 + \eta \) in the denominator of Eq. (4.6.2).

Sampling angular deflections in single elastic scattering events on the basis of Eq. (4.6.1) is trivial, it is accomplished by

\[
\mu = 1 - \frac{2\eta r}{1 - r + \eta} \tag{4.6.10}
\]

where \(r \) denotes a random number between zero and unity. Single elastic scattering deflections are necessary when boundary crossing between different media is modelled exactly, see section 2.4.9.

2.4.6.ii Elastic scattering with spin

Potentially the most accurate elastic scattering cross sections are those obtained from a PWA solution of the Dirac equation in the nuclear field screened by the atomic electrons. The general expression for the cross section, derived by Mott [61], is given by (see also the article by Motz, Olsen and Koch, [62])

\[
\frac{d\sigma_{\text{PWA}}}{d\Omega} = \frac{r_0^2}{4\alpha^2 \tau(\tau + 2)} \left[|f|^2 + |g|^2 \right]
\]

\[
f = \sum_{l=0}^{\infty} \left\{ (l + 1) \left[e^{2i\phi_l} - 1 \right] + l \left[e^{2i\phi_{l-1}} - 1 \right] \right\} P_l(\mu) \tag{4.6.11}
\]

\[
g = \sum_{l=0}^{\infty} \left\{ e^{2i\phi_{l-1}} - e^{2i\phi_l} \right\} P_l^1(\mu)
\]

where the definitions from the previous section for \(\tau \) and \(\alpha \) apply, \(P_l \) and \(P_l^m \) are Legendre and associated Legendre polynomials and \(\phi_l \) denotes the phase shifts. They are obtained from the asymptotic solution of the equation

\[
\frac{d^2F_l}{dr^2} + \left[pr + \frac{l(l + 1)}{r^2} - U_l \right] F_l = 0 \tag{4.6.12}
\]

when written in the form \(F_l(r \to \infty) = \sin(pr - l\pi/2 + \phi_l) \). Here, \(p = \sqrt{\tau(\tau + 2)} \) is the electron momentum in units of \(m/c \) and the nuclear and/or atomic charge structure is
contained in the effective Dirac potential U_l,
\begin{align}
U_l &= 2(\tau + 1)V - V^2 - \frac{l + 1}{r^2} \frac{D'}{D} + \frac{3}{4} \frac{D'^2}{D^2} - \frac{1}{2} \frac{D''}{D} \\
D &= \tau + 2 - V, \quad D' = \frac{dD}{dr}, \quad D'' = \frac{d^2D}{dr^2}
\end{align} \tag{4.6.13}

where V is a spherically symmetric potential arising from the charge structure of the nucleus and/or the atom. Mott has also presented [63] an analytical solution for the phase shifts for a bare nucleus (\textit{i.e.} $V = \pm Z/r$, where the plus sign is for positrons and the minus for electrons). His result can be written as [62]
\[\frac{d\sigma_{el}}{d\Omega} = \frac{r_0^2 Z^2}{\beta^2 \tau(\tau + 2)} \frac{R_{mott}(Z, \tau, \mu)}{(1 - \mu)^2} \] \tag{4.6.14}

where R_{mott} has become known as the Mott correction and is given by
\begin{align}
R_{mott} &= \frac{1 - \mu}{(\tau + 1)^2} |F_0 + F_1|^2 + \frac{2\beta^4}{\tau(\tau + 2)} \frac{(1 - \mu)^2}{1 + \mu} \frac{|G_0 + G_1|^2}{\alpha^2 Z^2} \\
F_0 &= \frac{i}{\Gamma(1 - i\alpha')} \left(\frac{1 - \mu}{2} \right) ^{i\alpha'} \\
G_0 &= -i\alpha' \frac{1 - \mu}{1 + \mu} F_0 \\
F_1 &= \frac{i}{2} \sum_{l=0}^{\infty} \left[l\phi_l - (l + 1)\phi_{l+1} \right] (1)^l P_l(\mu) \\
G_1 &= \frac{i}{2} \sum_{l=0}^{\infty} \left[l^2\phi_l - (l + 1)^2\phi_{l+1} \right] (1)^l P_l(\mu) \\
\phi_l &= \frac{\exp(-i\pi l)}{l + i\alpha'} \frac{\Gamma(l + i\alpha')}{\Gamma(l - i\alpha')} - \frac{\exp(-i\pi \rho_l)}{\rho_l + i\alpha'} \frac{\Gamma(\rho_l - i\alpha')}{\Gamma(\rho_l + i\alpha')} \\
\rho_l &= \sqrt{l^2 - \alpha^2 Z^2}
\end{align} \tag{4.6.15}

where Γ is the gamma function. The quantity α' is defined in Eq. (4.6.4) but now the atomic number Z is considered as being $-Z$ for electrons and $+Z$ for positrons. Due to this fact, the Mott correction is different for electrons and positrons. R_{mott} must be evaluated numerically. Fig. 11 gives some representative examples.

Berger and Wang [64] have implemented into ETRAN (see \textit{e.g.} Ref. [65]) the treatment of multiple elastic scattering according to the general Mott PWA cross section, equations (4.6.11) to (4.6.13). They have used the code by Riley [66] for the numerical solution of Eq. (4.6.12) in a nuclear field screened by an electron density distribution obtained from the multi-configuration Dirac-Fock program by Desclaux [67]. These cross sections were later implemented also in ITS [68]. Note that ETRAN and ITS use a Class I condensed history implementation where electron transport is performed on a pre-determined step-size grid. This allows the calculation of the multiple elastic scattering distribution (see section 2.4.7) for arbitrary complicated cross sections for the step-size grid used with a reasonable amount of pre-calculated data.

Last edited 2002-04-19 14:24:12-04
Figure 11: The Mott correction factor R_{mott} for gold and aluminum and various incident electron and positron energies.
The situation in a Class II code is more difficult as step-lengths are stochastic (see section 2.4.1). Using Riley’s code and Desclaux’ electron density functions, both kindly provided to us by Steve Seltzer of NIST, we have also generated an elastic scattering data base for all elements and energies from 1 keV to 16 MeV\(^{12}\). Using this data base, we have studied the construction of a multiple scattering theory but could not find a satisfactory procedure to keep the amount of pre-calculated data required at a reasonable level. We have therefore decided to approximate the elastic scattering cross section as

\[
\frac{d\sigma_{el}}{d\mu} = \frac{d\sigma_{SR}}{d\mu} R_{\text{mott}}(Z, \tau, \mu)
\]

where \(d\sigma_{SR}/d\mu\) is the screened Rutherford cross section given in Eq. (4.6.1). This approximation is known to be accurate for energies above 1 MeV (high-\(Z\) materials) or 100 keV (low-\(Z\) materials) as there the spin effect correction decouples from the screening correction [64]. To reproduce the average scattering at low energies we treat the screening parameter \(\eta\) as a free parameter and determine it by numerically solving the equation

\[
\int_{-1}^{1} d\mu \frac{d\sigma_{SR}}{d\mu} R_{\text{mott}}(Z, \tau, \mu)(1 - \mu) \equiv \int_{-1}^{1} d\mu \frac{d\sigma_{PWA}}{d\mu}(1 - \mu)
\]

The resulting screening parameter for electrons is shown as a function of \(\beta\) for 4 different elements in Fig. 12. In this figure \(\eta\) is expressed in units of \(\eta_M\), where

\[
\eta_M = \eta_0 (1.13 + 3.76\alpha^2 Z^2)
\]

is the screening parameter used in EGS4.

The elastic scattering cross section for compounds and mixtures is expressed in a similar form as Eq. (4.6.16) but now the Mott correction is

\[
R_{\text{mott}}(\tau, \mu) = \frac{\sum p_i Z_i^2 R_{\text{mott}}(Z_i, \tau, \mu)}{\sum p_i Z_i^2}
\]

and the screening parameter is determined from Eq. (4.6.17) where the partial-wave analysis cross section for the compound is calculated from the PWA cross sections of its elements using the independent atom approximation.

We can now turn to the discussion of the modifications necessary to take into account contributions from angular deflections due to sub-threshold processes. Various studies on this subject are available in the literature, see e.g. [69, 70, 64]. We have not attempted to implement one of them, instead, we take the simplistic point of view that the contributions to angular deflections for all inelastic collisions, sub-threshold and discrete, can be taken into account by replacing \(Z^2\) with \(Z(Z + \xi_0)\) in the screened Rutherford cross section, Eq. (4.6.1).

\(^{12}\)The calculation of the elastic scattering cross section from equations (4.6.11) to (4.6.13) becomes increasingly more difficult with increasing energy as more and more phase shifts have to be calculated and numerical round-off errors accumulate in the summations involved. We have modified Riley’s code to perform calculations in double precision, use more dense phase shifts calculation grid and more accurate interpolations for the electron density. This allowed calculations up to 16 MeV, for even higher energies the results become numerically unstable.
Figure 12: The screening parameter η, determined from Eq. (4.6.17), in units of η_M, defined in Eq. (4.6.18).
Here ξ_0 is an appropriate parameter, we use by default $\xi_0 = 1$ but this is not a necessary requirement. If now inelastic collisions with energy transfer larger than T_c are simulated explicitly, ξ_0 must be replaced with an energy and cut-off dependent parameter $\xi(T, T_c)$ as follows [71]

$$
\xi(T, T_c) = \xi_0 \left(1 - \frac{1}{Z + \xi_0 \frac{g_M(\tau, \tau_c)}{g_R(\eta)}}\right)
$$

(4.6.20)

where Z is the average atomic number of the compound and

$$
g_M(\tau, \tau_c) = \ln \left(\frac{\tau}{2\tau_c}\right) + \left[1 + \frac{(\tau + 2)^2}{(\tau + 1)^2}\right] \ln \left(\frac{2(\tau - \tau_c + 2)}{\tau + 4}\right) - \frac{([\tau + 2]^2 + (\tau + 2)(\tau + 1/2)] \ln \left(\frac{(\tau + 4)(\tau - \tau_c)}{\tau(\tau - \tau_c + 2)}\right)}{4} + \frac{(\tau - 2\tau_c)(\tau + 2)}{2} \left[\frac{1}{\tau - \tau_c} - \frac{1}{(\tau + 1)^2}\right].
$$

(4.6.21)

$(\tau_c = T_c/m)$ and

$$
g_R(\eta) = (1 + 2\eta) \left[\ln \left(1 + \frac{1}{\eta}\right) - 2\right]
$$

(4.6.22)

To summarize, when spin effects are turned on in EGSnrc (SPIN_EFFECTS = .true.), the elastic scattering cross section used is

$$
\frac{d\sigma_{el}}{d\mu} = \frac{2\pi r_0^2 Z(\xi(T, T_c))}{\beta^2 \tau(\tau + 2)} \frac{R_{mott}(Z, T, \mu)}{(1 - \mu + 2\eta)^2}
$$

(4.6.23)

where

- The screening parameter η is determined from the requirement that the above cross section reproduces the average scattering from PWA cross sections obtained via the numerical solution of equations (4.6.11) to (4.6.13) using Hartree-Fock electron densities. This parameter is different for electrons and positrons

- The parameter $\xi(T, T_c)$ takes into account contributions from sub-threshold inelastic collisions, it depends on energy and the threshold energy T_c

- R_{mott} is the Mott correction that is the result of the solution of the Dirac equation in the field of a bare nucleus.

All parameters necessary for the run-time interpolation of η, ξ and R_{mott} are initialized in the subroutine init_spin which is called from the subroutine mscati, executed at the end of HATCH.

Sampling of single elastic scattering events on the basis of Eq. (4.6.23) is performed using a rejection technique. One uses Eq. (4.6.10) to sample the screened Rutherford part, the μ sampled is accepted if a second random number is less than $R_{mott}/R_{mott,max}$. The efficiency of this algorithm is close to unity for low-Z materials but only close to 1/2 for high-Z materials.
2.4.7 Multiple elastic scattering

The multiple elastic scattering distribution for electron transport in an infinite, homogeneous medium for a path-length s, which corresponds to an energy loss $E_0 - E$, can be obtained from Eq. (4.1.21) by integrating it over the position, expanding Φ_0 and the cross sections in Legendre polynomials P_l to arrive at

$$
\Phi_0(\mu, \phi, E) = \frac{1}{2\pi} \sum_{l=0}^{\infty} \left(l + \frac{1}{2} \right) \exp(-G_l) P_l(\mu) \tag{4.7.1}
$$

where μ is the cosine of the polar angle θ and the process is considered in a frame where the electron is initially moving along the z axis. This expression was first obtained by Goudsmit and Saunderson [72, 73]. The Goudsmit-Saunderson (GS) moments G_l are given by

$$
G_l = \int_0^s ds' \kappa_l(s') = \int_{E_0}^{E} \frac{dE'}{L(E', E_c, k_c)} \kappa_l(E') \tag{4.7.2}
$$

where the κ_l denote the moments of the elastic scattering cross section,

$$
\kappa_l(E) = 2\pi \int_{-1}^{1} d\mu \Sigma_{el}^l(\mu, E) \left[1 - P_l(\mu) \right]. \tag{4.7.3}
$$

The moments κ_l depend on the energy and the material in which the transport takes place, so that the multiple elastic distribution is dependent on the energy, path-length (or corresponding energy loss), material, and threshold energies for discrete interactions. In a Class I condensed history implementation one uses the total stopping power (because discrete interaction are not explicitly modelled). In addition, possible path-lengths are limited to the energy-loss grid which is decided upon prior to the simulation. These two facts allow the MS distributions to be pre-computed and stored in the memory using a relatively small amount of data. In a Class II implementation path-lengths are stochastic and so a straightforward pre-calculation for all possible step-lengths is not possible. In the past this fact has favoured use of small-angle theories for the modelling of multiple elastic scattering, e.g. the theory of Molière which is used in EGS4. The limitations of Molière’s theory have been discussed extensively in the literature.

In EGSnrc we use an exact formulation, the multiple scattering distributions employed being dependent on the underlying elastic scattering cross sections (see section 2.4.6).

2.4.7.i Multiple elastic scattering from the screened Rutherford cross section

The multiple elastic scattering theory for the screened Rutherford cross section employed in EGSnrc was developed by Kawrakow and Bielajew in Ref. [1] and later refined by Kawrakow in Ref. [5] to better take into account energy loss.

The treatment of Ref. [1] starts with the MS distribution that results from the neglect of energy loss which can be written as

$$
2\pi \Phi_0(\mu, \phi, E) = e^{-\lambda} \delta(1 - \mu) + \lambda e^{-\lambda} \frac{1}{\sigma_{SR}} \frac{d\sigma_{SR}(\mu)}{d\mu} + \left(1 - e^{-\lambda} - \lambda e^{-\lambda} \right) F_{SR}^{(2+)}(\mu) \tag{4.7.4}
$$
where λ is the number of elastic free paths corresponding to the path-length s,
\[
\lambda = \Sigma_{SR}s ,
\]
and the screened Rutherford cross section is given in Eq. (4.6.1). The distribution $F^{(2+)}_{SR}$ is the normalized multiple scattering distribution that results from at least two elastic collisions described by the screened Rutherford cross section,
\[
F^{(2+)}_{SR}(\mu) = \int \frac{\exp(-G_{l,SR}) + [1 + \lambda - G_{l,SR}] \exp(-\lambda)}{1 - \exp(-\lambda) - \lambda \exp(-\lambda)} \, d\mu ,
\]
Here, we have put the subscript “SR” on the moments G_l to explicitly state that they are calculated using the screened Rutherford cross section. Equation (4.7.6) can be put in a more tractable form by a variable change,
\[
u = (1 + a) \left(1 - \frac{2a}{1 - \mu + 2a} \right)
\]
where the parameter a is chosen such as to make $q^{(2+)}_{SR}$,
\[
q^{(2+)}_{SR}(\nu) = F^{(2+)}_{SR}(\mu) \frac{d\mu}{d\nu} ,
\]
“as flat as possible”. After some straightforward manipulations one obtains [1]
\[
a = \kappa + \sqrt{\kappa^2 + \kappa}
\]
with the short hand notation
\[
\kappa = \frac{\langle 0 \rangle - 2\langle 1 \rangle + \langle 2 \rangle}{4\langle 1 \rangle}
\]
\[
\langle n \rangle = \sum_{l=0}^{\infty} \left(l + \frac{1}{2} \right) j_l^{(2+)} \sum_{m=0}^{\infty} \left(m + \frac{1}{2} \right) j_m^{(2+)} \int_{-1}^{1} d\mu \, \mu^n P_l(\mu)P_m(\mu) ,
\]
The quantity $\omega^2 = a/\eta$ (η is the screening parameter) is a function of λ and has a slight dependence on η. In terms of simulation efficiency, it is better to ignore the η dependence of ω and use a fit to the data obtained at run time from Eq. (4.7.9,4.7.10) for $\eta \rightarrow 0$. We use
\[
\frac{\omega^2}{\lambda + 4} = \begin{cases} 1.347 + t(0.209364 - t(0.45525 - t(0.50142 - 0.081234t))) & \text{if } \lambda < 10, \\ -2.77164 + t(2.94874 - t(0.1535754 - 0.00552888t)) & \text{else} \end{cases}
\]
\[
t = \ln \lambda
\]
The dependence of the distribution $q^{(2+)}_{SR}(\nu)$ on λ and η is rather weak, as can be seen in Fig. 13. $q^{(2+)}_{SR}$ can therefore be interpolated very accurately during run time using linear
Figure 13: The $q_{SR}^{(2+)}$ distribution for three step-lengths. The curve labelled “small-angle” limit is the distribution for $\eta \to 0$ (infinite energy), the curve for the maximum step-size corresponds to the maximum step-size for condensed history steps for which the data base was generated ($G_1 < 0.5$, see section 2.4.8.)
interpolation in ln λ and $G_{1,SR}$ from a pre-computed table. Here $G_{1,SR}$ denotes the first GS moment, see Eq. (4.7.2), resulting from screened Rutherford elastic scattering,

$$G_{1,SR} = 2\lambda\eta \left[(1 + \eta) \ln \left(1 + \frac{1}{\eta} \right) - 1 \right] \quad (4.7.12)$$

The $q^{(2+)}_{SR}$ data which are in a form of a 3 dimensional alias table, are stored in the file newms.data and read in by subroutine init_ms_SR.

To take into account energy loss, one uses the multiple scattering distribution for an “effective” step energy which is determined from the requirement [5]

$$\frac{G_2(E_0, E)}{G_1(E_0, E)} = \frac{\kappa_2(E_{eff})}{\kappa_1(E_{eff})} \quad (4.7.13)$$

for a path-length s_{eff},

$$s_{eff} = \frac{G_1(E_0, E)}{\kappa_1(E_{eff})}. \quad (4.7.14)$$

These two requirements guarantee that the first two GS moments are exactly reproduced, and gives at the same time a very accurate approximation for higher order GS so that the resulting multiple scattering distribution is virtually identical to the MS distribution calculated via numerical integration of the moments G_l, see Fig. 2 of Ref. [5].

For the screened Rutherford cross section the effective energy and path-length are given by

$$E_{eff} = E_0 \left[1 - \frac{\epsilon}{2} - \frac{\epsilon^2}{12(2-\epsilon)} \left(\frac{5\bar{\tau}^2 + 10\bar{\tau} + 6}{(\bar{\tau} + 1)(\bar{\tau} + 2)} + 2b(\bar{E}) \right) + O(\epsilon^3) \right]$$

$$s_{eff} = s \left[1 - \frac{\epsilon^2}{3(2-\epsilon)} \frac{\bar{\tau}^4 + 4\bar{\tau}^3 + 7\bar{\tau}^2 + 6\bar{\tau} + 4}{(\bar{\tau} + 1)^2(\bar{\tau} + 2)^2} + O(\epsilon^4) \right] \quad (4.7.15)$$

where we have defined

$$b(E) = \frac{E}{C(E)} \frac{dC(E)}{dE}, \quad C(E) = L(E)\beta^2, \quad (4.7.16)$$

β denoting the particle velocity in units of the speed of light. In the above equations $\epsilon = (E_0 - E)/E$ and $\bar{\tau} = 1/2(E_0 + E)/m$.

With all this, the algorithm for sampling multiple elastic scattering angles is as follows:

1. Calculate s_{eff} and E_{eff} from Eq. (4.7.15).
2. Calculate λ from Eq. (4.7.5) and (4.6.9), $t = \ln \lambda$ and η from Eq. (4.6.8)
3. Pick a random number number r_1.
4. If $r_1 < e^{-\lambda}$, then the scattering angle is zero, return control to the calling routine
5. Else if $r_1 < e^{-\lambda}(1+\lambda)$, then sample μ from the single scattering distribution according to Eq. (4.6.10), return control to the calling routine
6. Else, we must sample μ from the $q_{SR}^{(2+)}$ distribution. Calculate $G_{1,SR}$ from Eq. (4.7.12), ω^2 from Eq. (4.7.11) and $a = \omega^2 \eta$

7. Determine the table look-up indices for $\ln \lambda$ and $G_{1,SR}$

8. Sample u from the corresponding $q_{SR}^{(2+)}(u)$ distribution

9. Deliver μ,

$$\mu = \frac{2au}{1 - u + a} \tag{4.7.17}$$

2.4.7.ii Multiple elastic scattering with spin effects

In principle, the approach developed in Ref. [1] could be applied to more complicated single elastic scattering cross sections than the screened Rutherford cross section. We have found, however, that the direct use of this approach for the cross section with spin effects (see section 2.4.6.ii) does not lead to a satisfactory interpolation accuracy. We have therefore implemented a rejection technique for the sampling of multiple scattering angles when $\text{SPIN_EFFECTS} = \text{true}$.

We can write the multiple scattering distribution that results from at least 2 elastic scattering processes as

$$F^{(2+)}(\lambda, \eta, Z, \mu) = F_{SR}^{(2+)}(\lambda, \eta, \mu)R(\lambda, \eta, Z, \mu) \tag{4.7.18}$$

where $F_{SR}^{(2+)}$ is the 2+ distribution from a screened Rutherford cross section for a path-length corresponding to λ elastic mean-free paths and a screening angle η and $R(\lambda, \eta, Z, \mu)$ is defined as

$$R(\lambda, \eta, Z, \mu) = \frac{F^{(2+)}(\lambda, \eta, Z, \mu)}{F_{SR}^{(2+)}(\lambda, \eta, \mu)} \tag{4.7.19}$$

(i.e. Eq. (4.7.18) is the identity $F^{(2+)} = F^{(2+)}$). The function $R(\lambda, \eta, Z, \mu)$ is a three dimensional surface for each medium. Numerical experiments show that the way which requires the minimum amount of pre-calculated data to interpolate the function $R(\lambda, \eta, Z, \mu)$ between pre-calculated data is to use for each medium

- Linear interpolation in the quantity q,

$$q = \frac{2G_{1,SR}(\lambda, \eta)}{1 + 2G_{1,SR}(\lambda, \eta)} \tag{4.7.20}$$

Obviously q can take only values between zero and unity. For $q \to 0$, $R(\lambda, \eta, Z, \mu)$ converges to $R_{\text{mott}}(E, Z, \mu)$, see section 2.4.6.ii. For $q \to 1$, $R(\lambda, \eta, Z, \mu)$ goes to unity for all angles μ. The rate at which the function R changes from the one limit to the other depends on the energy.

- Linear interpolation in β^2 for energies greater than 100 keV, linear interpolation in $\ln E$ for energies less than 100 keV.

- Linear interpolation in $\sin \theta/2 = \sqrt{(1 - \mu)/2}$.

2: Radiation transport in EGSnrc
The pre-calculated data are stored in separate files for all elements in the directory spinms and used in subroutine init_spin to compute R for the media involved in the actual simulation. init_spin is called from mscati which is called from HATCH.

The sampling algorithm is then similar to the one given at the end of the previous section but involves an additional rejection loop in steps 4 and 8 using R_{mott} or R as a rejection function13. In addition, the calculation of the screening parameter η and the number of mean-free-paths λ involve additional correction factors, because both, η/η_0 and the parameter ξ which describe the contribution of sub-threshold inelastic collisions to angular deflections, are not constant, see section 2.4.6.ii.

It is worth showing an example of the influence of the inclusion of spin effects in the treatment of elastic scattering as a conclusion of this section. Figure 14 shows a comparison of calculated depth-dose curves in Beryllium and Uranium to measurements by Lockwood et al[74]. Both, the calculations and the measurements are absolute. The calculations with “spin on” are in much better agreement with the experiment. The effect of including spin is to make the effective range of electrons longer for low-Z materials and shorter for high-Z

13Both, R_{mott} and R are scaled to their maximum in the routine init_spin.
materials. It is also present for the energy range relevant for radiation therapy. The reason for
not seeing disagreement between EGS4 calculations and measurements in this energy range
is due to the rarity of measurements with precise knowledge of the incident energy. In depth-
dose measurements with a known 20 MeV electron beam incident on water, comparisons to
EGS4 required using an incident beam energy of 20.3 MeV to get good agreement[75]. In
contrast, the calculations with EGSnrc with spin turned on are in good agreement with the
measurements when using an incident energy of 20.0 MeV, in agreement with the known
energy.

2.4.8 Electron-step algorithm

As mentioned in section 2.4.1, the transport between subsequent “catastrophic” collisions is
described by Eq. (4.1.21) with Eq. (4.1.18) providing the link between energy and path-
length. An exact solution of this equation is not known and so some approximate methods
are required to relate the energy loss, the path-length, and the spatial displacement.

The simplest possible approach one could take is to ignore deflections due to multiple
elastic scattering during the condensed history step and to transport the electron on a straight
line along the initial direction of motion. In order for this approach to be accurate the CH
steps must be sufficiently short so that the straight line approach does not represent to
a severe approximation. Larsen has shown [76] that any condensed history algorithm will
converge to the correct answer in the limit of sufficiently small step-sizes, provided multiple
elastic scattering is faithfully simulated. However, making the step lengths very short may
cause the simulation to become extremely inefficient. In addition, if the calculated results
show step-size dependencies, one needs to perform a careful step-size study in order to
determine when the result has converged.

Many electron-step algorithms that attempt to make corrections for deflections from the
straight-line approach have been proposed over the years, e.g. [15, 17, 77, 78]. A detailed
discussion of these algorithms is given in Ref. [4]. In general none of the algorithms available
is accurate enough to allow the condensed history simulation between subsequent discrete
events to be always done in a single step. Instead, the distances between discrete collisions
is divided into smaller condensed history steps using a procedure to determine maximum
acceptable lengths for the steps (step-size restrictions).

The electron-step algorithm employed in EGSnrc depends on the parameter transport algorithm which is in COMMON/ET_Control/. If set to one, a slightly modified version of PRESTA’s [17] path-length-correction (PLC) and lateral correlation algorithm (LCA) are
employed. The PRESTA algorithm is known to underestimate lateral deflections (deflections perpendicular to the initial direction of motion), to underestimate longitudinal straggling and
to produce a singularity in the distribution describing the lateral spread of electrons in a
single condensed history step [78, 4]. The implications on the simulation results depend on
the actual situation under investigation. At high energies, where elastic scattering is weak,
PRESTA is perhaps sufficiently accurate. Its use for low energy applications is not recom-
manded. One of us has shown, for instance, that there is up to 8% variation of the calculated
ion chamber response subject to a ^{60}Co beam when using PRESTA’s transport algorithm
[6].

2: Radiation transport in EGSnrc
If the parameter transport_algorithm is set to zero (it’s default value), the electron-step algorithm developed in Ref. [4] and later refined in [5] is employed. This algorithm is constructed in such a way as to reproduce up to second order spatial moments of the fluence $\Phi_0(\mathbf{x}, \Omega, E, t)$, which are known from the theory of Lewis [79] for transport in an infinite, homogeneous medium. This algorithm was shown to produce step-size independent results for ion chamber simulations and backscattering [5, 6], two of the most difficult tasks for condensed history Monte Carlo codes.

For completeness, we give a brief summary of the transport algorithms available in EGSnrc. Final positions are in a frame where the electron is initially at the origin and moving along the positive z-axis. Positions in the actual simulation co-ordinate system are obtained using the appropriate rotations and spatial translations.

- **transport_algorithm = 1** (PRESTA)

 \[
 \begin{align*}
 x &= r_\perp \sin \theta \cos \phi \\
 y &= r_\perp \sin \theta \sin \phi \\
 z &= \langle z \rangle \\
 r_\perp &= \text{Min} \left(\frac{s}{2}, \sqrt{\frac{s^2 - \langle z \rangle^2}{\sin^2 \theta}} \right)
 \end{align*}
 \]

 where θ and ϕ are the polar and azimuthal scattering angles and $\langle z \rangle$ the average transport distance in the initial direction of motion for a path-length of s. In the original PRESTA implementation $\langle z \rangle$ was calculated from the theory of Molière, we use in EGSnrc the exact expression of Lewis [79], which is simply

 \[
 \langle z \rangle = s \frac{1 - \exp(-G_1)}{G_1}
 \]

 if one neglects energy loss. A small correction arises if energy loss is taken into account, it is not included to be consistent with PRESTA where energy loss was also ignored.

- **transport_algorithm = 0** (EGSnrc default)

 The condensed history step is divided into two sub-steps and separate multiple elastic scattering angles θ_1, ϕ_1 and θ_2, ϕ_2 are sampled. The final scattering angle is then determined from $\theta_1, \phi_1, \theta_2, \phi_2$, e.g.

 \[
 \cos \theta = \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 \cos(\phi_1 - \phi_2) .
 \]
The final position is calculated as follows:

\[
\begin{align*}
x &= s \left[\eta \delta \sin \theta_1 \cos \phi_1 + \eta (1 - \delta) \sin \theta_2 (\cos \phi_1 \cos \phi_2 - \cos \theta_1 \sin \phi_1 \sin \phi_2) + a_2 \sin \theta \cos \phi \right] \\
y &= s \left[\eta \delta \sin \theta_1 \sin \phi_1 + \eta (1 - \delta) \sin \theta_2 (\sin \phi_1 \cos \phi_2 + \cos \theta_1 \sin \phi_1 \sin \phi_2) + a_2 \sin \theta \sin \phi \right] \\
z &= s \left[a_1 + \eta \delta \cos \theta_1 + \eta (1 - \delta) \cos \theta_2 + a_2 \cos \theta \right] \\
a_1 &= \frac{1 - \eta}{2} (1 + \alpha_1) \\
a_2 &= \frac{1 - \eta}{2} (1 - \alpha_1) \\
\delta &= \frac{1}{2} + \frac{\sqrt{6}}{6} - \left(\frac{1}{4\sqrt{6}} - \gamma \frac{4 - \sqrt{6}}{24\sqrt{6}} \right) G_1 + \alpha_2 \\
\gamma &= \frac{G_2}{G_1} \\
\end{align*}
\]

Here, \(\eta \) is a random number sampled from \(2\eta d\eta \) (and not the screening parameter) and \(\alpha_1 \) and \(\alpha_2 \) are energy loss corrections derived in Ref. [5],

\[
\begin{align*}
\alpha_1 &= -\frac{\kappa'_1(\tilde{E})}{\kappa_1(\tilde{E})} \frac{\Delta E}{2} + O(\Delta E^2) \\
\alpha_2 &= \left(\frac{\kappa'_2(\tilde{E})}{\kappa_2(\tilde{E})} - \frac{\kappa'_1(\tilde{E})}{\kappa_1(\tilde{E})} \right) \frac{\Delta E}{2\sqrt{6}} + O(\Delta E^2) \\
\end{align*}
\]

where \(\Delta E \) is the sub-threshold energy loss associated with the step, \(\tilde{E} \) the average step energy and \(\kappa'_1 \) and \(\kappa'_2 \) derivatives of the moments \(\kappa_1 \) and \(\kappa_2 \) (see Eq. (4.7.3)) with respect to \(E \). If elastic scattering is described by the screened Rutherford cross section, the energy loss corrections \(\alpha_1 \) and \(\alpha_2 \) are given by

\[
\begin{align*}
\alpha_1 &\approx \left(\frac{2 + 2\tilde{\tau} + \tilde{\tau}^2}{(1 + \tilde{\tau})} - \frac{1 + \tilde{\tau}}{\ln(1 + 1/\tilde{\eta})(1 + \tilde{\eta}) - 1} \right) \frac{\Delta E/\tilde{E}}{(2 + \tilde{\tau})} \\
\alpha_2 &\approx \frac{\Delta E/\tilde{E}}{\sqrt{6}(1 + \tilde{\tau})(2 + \tilde{\tau}) \left[\ln(1 + 1/\tilde{\eta})(1 + \tilde{\eta}) - 1 \right] \left[\ln(1 + 1/\tilde{\eta})(1 + 2\tilde{\eta}) - 2 \right]} \\
\end{align*}
\]

where \(\tilde{\tau} = \tilde{E}/m \) and \(\tilde{\eta} \) is the screening parameter for the midpoint energy \(\tilde{E} \). These equations are used in the subroutine \texttt{msdist_pII} which implements condensed history electron transport according to the algorithm given in Eq. (4.8.4). Strictly speaking, when spin effects are “turned on”, one should use the energy loss corrections derived from the moments resulting from the corresponding elastic scattering cross section. We have left this refinement for the future because (i) Given the fact that the corrections involve the calculation of derivatives and that the cross sections with spin are available only in numerical form, the implementation is more difficult (ii) Eq. (4.8.6) does take into account the main energy dependence of the corrections, deviations from Eq. (4.8.6) are either higher order in \(\Delta E \) or have small coefficients.

2: Radiation transport in EGSnrc
The algorithm given in Eq. (4.8.4) reproduces first and second order spatial moments to better than 0.1% for $G_1 \leq 0.5$ if energy loss is neglected (G_1 is defined by Eq. (4.7.2) and is a function of pathlength, so this condition imposes a maximum allowed step size). This accuracy is maintained when energy loss is taken into account via the corrections given in (4.8.5) if the maximum fractional energy loss per step is restricted to 25%. These two condensed history step-size restrictions are controlled via the parameters x_{imax} (corresponding to the maximum allowed G_1) and ESTEPE which are in COMMON/E_Control and set by default to 0.5 and 0.25.

Due to the use of the energy loss corrections derived from the screened Rutherford cross section also for elastic scattering with spin, in this case the deviation from the theoretical expectation is slightly larger and exceeds 0.1% for ESTEPE between 0.15 and 0.2. If such a high precision is required for your application, the simplest solution is to use step sizes that don’t exceed 20% energy loss per step when spin is on.

2.4.9 Boundary crossing algorithm

The electron-step algorithms discussed in section 2.4.8 are valid only for transport in an infinite, homogeneous medium. In practical situations one has to deal with interfaces between different materials. If an electron is close to an interface with another material, portions of its curved path may be in this different material and so the trajectory different than simulated. In the original EGS4 version, this problem associated with the condensed history simulation of electron transport, which has become known as the interface artifact [80], was entirely ignored. To address the interface artifact, a refined boundary crossing algorithm (BCA) was incorporated into PRESTA. According to this algorithm, the electron is not allowed to take a step longer than t_\perp, t_\perp being the perpendicular distance to the closest boundary, unless t_\perp becomes smaller than t_{min}, a user defined minimum step-length for boundary crossing. For $t_\perp < t_{\text{min}}$, lateral deflections are switched off and the particle is transported, as in the case of standard EGS4, on a straight line to the boundary.

In a more recent paper [81], Foote and Smyth have demonstrated that the approach of forcing a multiple scattering event at the boundary causes a singularity in the simulated particle fluence. The singularity results from the fact that there is a non-zero probability for scattering parallel to the boundary. Note that in real life, particles moving parallel to the boundary do not cross it and therefore do not contribute to the planar fluence. Although the singularity is present in any situation over a distance of the order of t_{min}, it will be observed, e.g. as a dose over-prediction, only if the size of a scoring region is comparable to t_{min} due to averaging. One of us has developed an analytical expression for the effect when (semi)-charged particle equilibrium is present and has demonstrated that in the case of a small air cavity surrounded by a dense material (ionization chamber), the dose over-prediction may be up to 3.5% [6].

To overcome this problem we have implemented into EGSnrc an exact boundary crossing algorithm, i.e. the simulation goes over into a single elastic scattering mode whenever an electron comes closer to a boundary than t_{min}. Whereas in the case of PRESTA one of the criteria to determine t_{min} was to assure the applicability of Molière’s MS theory, in EGSnrc the only criterion for t_{min} is efficiency (because of the multiple scattering theory employed which is applicable for all step-sizes). It turns out that single scattering simulation
becomes more efficient than condensed history simulation at about 3 elastic mean free paths. This is taken as the default value for the parameter $SKIN_DEPTH_FOR_BCA$ which determines t_{min}. Note that $SKIN_DEPTH_FOR_BCA$ is in elastic mean free paths and not in length units. $SKIN_DEPTH_FOR_BCA$ is in COMMON/ET_Control/.

The investigation of Ref. [6] shows that the strength of the effect of the fluence singularity due to forcing multiple elastic scattering events exactly at boundaries is proportional to the first GS moment G_1. At high energies G_1 is very small for reasonable step-sizes and so, a single scattering simulation in the vicinity of boundaries is potentially wasteful. Hence we decided to keep the original PRESTA boundary crossing algorithm in EGSnrc. The selection between exact BCA and PRESTA’s BCA is made via the parameter BCA_ALGORITHM which is in COMMON/ET_Control/. If set to 0 (the default), exact boundary crossing is employed, 1 means PRESTA’s BCA is used. If PRESTA’s BCA is selected and the parameter SKIN_DEPTH_FOR_BCA set to 0, EGSnrc will calculate t_{min} according to the procedure in the original PRESTA implementation. It is worth noticing that if BCA_ALGORITHM is set to 1 and the parameter SKIN_DEPTH_FOR_BCA to a very large number, the entire simulation will run without lateral deflections in the individual condensed history steps and so mimic the original EGS4 behaviour. If, on the other side, BCA_ALGORITHM is set to 0 and SKIN_DEPTH_FOR_BCA to a very large number, the entire simulation will be in a single scattering mode. These are also the two options available, if the geometry under investigation is too complex to allow for the calculation of t_{\perp}.

2.4.10 Other condensed history aspects

There are two additional aspects of the implementation of the condensed history technique that deserve some consideration:

1. Calculation of path-lengths corresponding to a given energy loss and vice versa. The two quantities are related via Eq. (4.1.18).

2. Sampling distances between discrete interactions. Since the cross sections are energy dependent and the energy changes via sub-threshold (continuous) energy loss, sampling distances between discrete interactions is slightly more complicated for electrons than for photons.

2.4.10.i Energy loss evaluation

The energy loss ΔE due to sub-threshold processes for a condensed history step of length s is

$$\Delta E = \int_0^s ds' L(s')$$

(4.10.1)

where the restricted stopping power is a function of s' in the sense of Eq. (4.1.18). Equation (4.10.1) must be evaluated “on the fly” for each condensed history step and so a fast and accurate procedure is needed. In the original EGS4 implementation the above integral was approximated with

$$\Delta E \approx L(E_0) s$$

(4.10.2)
where E_0 is the energy at the beginning of the step. The PRESTA algorithm made the refinement

$$\Delta E \approx L\left(E_0 - L(E_0)s/2\right)s$$

(4.10.3)

The motivation for this is Euler’s integration formula

$$\int_{x-\Delta x/2}^{x+\Delta x/2} \int f(x')dx' = f(x)\Delta x + O(\Delta x^3)$$

(4.10.4)

and so, one might expect at a first sight an $O(\Delta E^3)$ error due to the use of Eq. (4.10.3). A more careful examination of the integral reveals that Eq. (4.10.3) still has an $O(\Delta E^2)$ error as the original EGS4 approach (although the coefficient of the $O(\Delta E^2)$ term is smaller). A more accurate approach was presented in Ref. [5], but for the official release of the system we decided to use another approach which is simpler but not less accurate.

In EGS4 (and also EGSnrc), a linear interpolation in $\ln E$ is used at run time to calculate various quantities, the restricted stopping power among them, i.e.

$$L(E) = a_i + b_i \ln E \quad \text{for} \quad E_i \leq E < E_{i+1}$$

(4.10.5)

where E_i are the bin edge energies. This approach has proven to be very accurate (and if not accurate enough, the accuracy can always be increased by increasing the number of interpolation bins). We now define R_i,

$$R_i = \int_{E_i}^{E} \frac{dE'}{L(E')} ,$$

(4.10.6)

where E_1 is the first energy in the interpolation table (usually slightly smaller than TE). R_i is the path-length that an electron with energy E_i will travel until local absorption if losing energy only via sub-threshold processes (range). In EGSnrc the quantities R_i are stored in the array range_ep which is in COMMON/ELECIN/ for each medium. Using the R_i’s we can calculate the range $R(E)$ for arbitrary energies from

$$R(E) = R_i + \int_{E_i}^{E} \frac{dE'}{a_i + b_i \ln E'} \approx R_i + \frac{E - E_i}{L_i} \left(1 - \frac{b_i \epsilon}{L_i^2} + \frac{b_i(2b_i + L_i)}{L_i^2} \frac{\epsilon^2}{6} + \cdots\right)$$

(4.10.7)

where E_i is the lower edge energy of the bin to which E belongs, L_i is a short hand notation for $L(E_i) = a_i + b_i \ln E_i$ and $\epsilon = E/E_i - 1$ is usually very small\footnote{e.g. for a data set for the entire energy range of the applicability of EGSnrc, 1 keV to 10 GeV, $\epsilon < 0.107$ using 150 interpolation bins. Normally ϵ is much smaller.}, so that the expansion up to second order in ϵ is sufficiently accurate. The range of electrons is calculated according to Eq. (4.10.7) at the beginning of each condensed history step in EGSnrc. If now the decision is made to perform a step with length s, the range of the electron at the end of the step is $R - s$ and one can use Eq. (4.10.7) to calculate the corresponding final step energy after finding the bin to which the new energy belongs using the ranges R_i. If, on the other side,
the step-size is determined via a given energy loss \(\Delta E \), one calculates \(R(E - \Delta E) \) from Eq. (4.10.7) and uses \(R(E) - R(E - \Delta E) \) as the corresponding step-length \(s \).

The appeal of the approach described above lies in its simplicity and generality. If one day it is decided that our understanding of restricted stopping powers is incomplete and a change is required, this approach will be still applicable as long as a logarithmic interpolation is used. At this point one should mention that the accurate knowledge of the electron range is absolutely essential for the accurate calculation of energy loss. Under no circumstances the variable range (which holds the value of \(R \)) should be overwritten by the user!

An additional useful feature that results from the knowledge of the electron range in the current material is that electron range rejection can be applied. If the parameter \(\text{i_do_rr} \) is set to unity for the current region, the electron energy is less than \(e_{\max_rr} \) (this is total energy, including rest energy!) and the electron range \(R \) is less than \(t_\perp \) (see section 2.4.9), the simulation of the current electron is terminated and its entire energy deposited locally.

2.4.10.ii Distances between discrete interactions

If one uses the path-length as the variable to measure distances between discrete interactions, the path-length \(s \) to the next discrete event must be sampled from

\[
\int_{0}^{s} ds' \Sigma^{(\text{tot})}(s') = -\ln r \quad (4.10.8)
\]

where \(r \) is a uniformly distributed random number between zero and unity. To avoid the numerically intensive solution of the above equation, the so called fictitious cross section method is employed in EGS4: an additional, fictitious interaction is introduced, its total cross section \(\Sigma_f(s') \) is chosen such that

\[
\Sigma^{(\text{tot})}(s') + \Sigma_f(s') \equiv \Sigma_0 = \text{const} . \quad (4.10.9)
\]

The path-length to the next interaction, real or fictitious, is then simply

\[
s = -\frac{\ln r}{\Sigma_0} . \quad (4.10.10)
\]

Once at the interaction site, the interaction is rejected with the probability \(1 - \Sigma^{(\text{tot})}(s)/\Sigma_0 \) (or, with other words, a fictitious interaction takes place with the probability \(1 - \Sigma^{(\text{tot})}(s)/\Sigma_0 \)). In order this approach to work properly, \(\Sigma_0 \) must be greater than \(\Sigma^{(\text{tot})}(s) \) for all \(s \). Based on the observation that at high energies the discrete interaction cross section is a monotonic increasing function of energy, the cross section for the initial energy is used in EGS4. This approach fails for threshold energies for delta particle production less than about \(m/7 \), as pointed out by Rogers in 1984 [82]. Although known for a long time, this problem was never corrected. The modification proposed by Ma and Nahum in 1992 [83] is also biased, as shown in Ref. [5]. If one would attempt to employ the fictitious cross section method using the global cross section maximum as \(\Sigma_0 \), the simulation would become extremely inefficient for low values of \(T_c \) and \(k_c \). This can easily be understood from Fig. 15 which shows the total cross section in graphite for two different cutoff energies.
In EGSnrc the distance between discrete interactions is measured in units of the energy loss due to sub-threshold processes. The relevant total cross section is then $\tilde{\Sigma}_{\text{tot}}(E) = \Sigma_{\text{tot}}(E)/L(E)$ (see the general discussion of the transport equation in section 2.4.1). This cross section, shown in Fig. 16 for graphite and gold for two different values of T_c and k_c, is much flatter than Σ_{tot} (at least for low cutoff energies) and has a single maximum. This maximum is determined after the PEGS data becomes available and is used at run time to sample energy losses between discrete interactions. This saves the necessity of evaluating the cross section at the beginning of each discrete interaction loop (the TSTEP LOOP) in subroutine ELECTR. The procedure described above is then used to compute the corresponding path-length.
Figure 16: The total cross section per unit energy loss, $\Sigma_{E}^{(\text{tot})}(E)$, for discrete interactions in graphite and gold, calculated with $T_c = k_c = 1$ keV and $T_c = k_c = 10$ keV (scaled with a factor of 14 for better visibility) as a function of kinetic energy.
3 EGSnrc Reference Manual

3.1 Introduction

This section is based on Appendix 2 of SLAC-265[12] but substantially updated and changed to represent the EGSnrc system rather than EGS4. There have been minor modifications to reflect the EGSnrcMP environment but these are described more fully in PIRS-877[11].

3.1.1 Use of Mortran3

Starting with EGS2, the EGS Code System has been written in an extended Fortran language known as Mortran[84]. Section 7 (page 239) presents a brief overview of the elements of Mortran3 which are needed for users of EGS.

Mortran is a very powerful pre-processor which was ahead of its time back in the 70’s and 80’s. Today many of its features are available in other languages. Nonetheless we have continued to use Mortran3 because there are so many user codes available in Mortran3 that it makes no sense to abandon it. It is also a very structured language which allows for easy in-line documentation.

Although there might be some resistance by users of EGS to learn another language, we would like to point out two facts:

- The Mortran language (excluding macros) is trivial to learn by those who program in Fortran.
- EGS can be set-up and run by writing entirely in Fortran or some other language should the user so desire.

We would encourage EGS users not to do the latter, however, for this would truly defeat the real purpose for using Mortran—namely, the macro facility.

3.2 General Description of Implementation

The EGS code itself consists of two User-Callable subroutines, HATCH and SHOWER, which in turn call the other subroutines in the EGS code, some of which call three User- written subroutines, HOWFAR, HOWNEAR and AUSGAB. This is best illustrated with the aid of Fig. 17

To use EGS the user must write a “User Code.” This consists of a MAIN program and the subroutines HOWFAR, HOWNEAR and AUSGAB, the latter three determining the geometry and output (scoring), respectively. Additional auxiliary subprograms might be included in the User Code to facilitate matters. The user can communicate with EGS by means of various COMMON variables. Usually MAIN will perform any initialisation needed for the geometry routines, HOWFAR and HOWNEAR, and sets the values of certain EGS COMMON variables which specify such things as names of the media to be used, the desired cutoff energies, and the distance unit to be used (e.g., inches, centimeters, radiation lengths, etc.). MAIN then calls
Figure 17: The structure of the EGSnrc code system when used with a user-code.
the \texttt{HATCH} subroutine which “hatches EGS” by doing necessary once-only initialisation and by reading material data for the media from a data set that had been previously created by PEGS. This initialisation completed, \texttt{MAIN} may then call \texttt{SHOWER} when desired. Each call to \texttt{SHOWER} results in the generation of one history (often referred to as a “case”). The arguments to \texttt{SHOWER} specify the parameters of the incident particle initiating the cascade.

In addition, macro definitions can be included in \texttt{MAIN} in order to control or over-ride various functions in EGS as well as in the User-Written codes.

In EGSnrc there are many new options compared to EGS4. The system defaults to a set of options which will do the most complete and accurate simulation that EGSnrc is capable of. In some cases this will imply overkill and a reduction in efficiency with no gain in accuracy (e.g. including atomic relaxation or bound Compton scattering for high energy photon calculations). The user has the ability to switch things on or off by setting various flags. So, eg, one could decide to run a calculation which is nearly equivalent to using the EGS4/PRESTA electron transport algorithm (see section 3.4.2.i). Similarly one can choose to model Klein Nishina Compton scattering instead of bound compton scattering by setting a flag.

One other class of new features in EGSnrc is the implementation within the code itself of several variance reduction techniques (range rejection and bremsstrahlung splitting being the main two) since by doing so, a much more efficient implementation is allowed. The user can, of course, completely ignore these features if so desired.

In summary, the user communicates with EGS by means of:

\textbf{Subroutines}

- \texttt{HATCH} — to establish media data
- \texttt{SHOWER} — to initiate the cascade
- \texttt{HOWFAR}\& \texttt{HOWNEAR} — to specify the geometry
- \texttt{AUSGAB} — to score and output the results and to control variance reduction

\textbf{COMMON blocks} by changing values of variables

\textbf{Macro definitions} — re-definition of pre-defined features.

To reiterate, we shall refer to the \texttt{MAIN/HOWFAR/AUSGAB} combination (plus auxiliary subprograms and macros) as the User Code. The following sections discuss these things in greater detail.
3.3 The COMMON Blocks

Listed here are the COMMON blocks relevant to the user (and relevant variables contained in them) with a brief description of their functions. Their usage will be discussed in more detail in subsequent sections. The easiest way to declare any of the COMMON blocks is with the COMIN macro. For example, COMIN/STACK,BOUNDS/; will automatically expand to the correct COMMON/STACK/; and COMMON/BOUNDS/; forms.

Note that EGSnrc is, by default, coded completely using IMPLICIT NONE. This means that all parameters in COMMON are all explicitly typed. See section 3.4.1.ii for more info.

Table 3: Table describing the EGSnrc COMMONs which are accessible to the User.

<table>
<thead>
<tr>
<th>Common Block</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOUNDS</td>
<td>ECUT</td>
<td>Array of regions’ charged particle cutoff energies (total) in MeV.</td>
</tr>
<tr>
<td></td>
<td>PCUT</td>
<td>Array of regions’ photon cutoff energies in MeV.</td>
</tr>
<tr>
<td></td>
<td>VACDST</td>
<td>Distance to transport in vacuum (default=1.E8).</td>
</tr>
<tr>
<td>EGS-VARIANCE-REDUCTION</td>
<td>e_max_rr</td>
<td>real array ($MXREG) of maximum total energies at which to do range rejection if i_do_rr is set</td>
</tr>
<tr>
<td></td>
<td>i_do_rr</td>
<td>integer array ($MXREG) of flags for range rejection in each region. 0⇒ not done (default); 1⇒ is done.</td>
</tr>
<tr>
<td></td>
<td>i_play_RR</td>
<td>flag specifying if Russian Roulette played on a global basis</td>
</tr>
<tr>
<td></td>
<td>i_survived_RR</td>
<td>an integer flag set every time Russian Roulette is played. If all the particles survive, it is set to 0 (which is the default if not played at all). It is set to n if n particles were eliminated via Russian Roulette on this interaction. It is 0 if a bound compton event is rejected.</td>
</tr>
<tr>
<td></td>
<td>prob_RR</td>
<td>probability of survival if playing Russian Roulette</td>
</tr>
<tr>
<td></td>
<td>n_RR_warning</td>
<td>an internal counter to mark how often Russian Roulette is asked for with prob_RR \leq 0.0. A warning is printed for the first $MAX-RR-WARNING times (default 50).</td>
</tr>
<tr>
<td></td>
<td>nbr_split</td>
<td>For $nbr_{split} > 1$, nbr_{split} brems photons are sampled every time there is a brem interaction. The weight is reduced by 1/nbr_{split}. Default value is 1.0. If set to zero, no brems is generated and the electron loses no energy.</td>
</tr>
</tbody>
</table>

(cont ...)

EGSnrc COMMONs which are accessible to the User -continued

<table>
<thead>
<tr>
<th>Common Block</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPCONT</td>
<td>EDEP</td>
<td>Energy deposited in MeV (Double Precision).</td>
</tr>
<tr>
<td></td>
<td>TSTEP</td>
<td>Distance to next interaction (cm)</td>
</tr>
<tr>
<td></td>
<td>TUSTEP</td>
<td>Total (curved) step length requested before check with geometry.</td>
</tr>
<tr>
<td></td>
<td>USTEP</td>
<td>Straight step length calculated from TUSTEP.</td>
</tr>
<tr>
<td></td>
<td>TVSTEP</td>
<td>Actual total (curved) step length to be transported.</td>
</tr>
<tr>
<td></td>
<td>VSTEP</td>
<td>Actual straight step length after truncation by geometry.</td>
</tr>
<tr>
<td></td>
<td>IDISC</td>
<td>User discard request flag (to be set in HOWFAR). IDISC > 0 means user requests immediate discard, IDISC < 0 means user requests discard after completion of transport, and IDISC=0 (default) means no user discard requested. IDISC=99 or −99 means generate annihilation photons when positron is discarded.</td>
</tr>
<tr>
<td></td>
<td>IROLD</td>
<td>Index of previous region.</td>
</tr>
<tr>
<td></td>
<td>IRNEW</td>
<td>Index of new region.</td>
</tr>
<tr>
<td></td>
<td>RHOF</td>
<td>Value of density correction (default=1) (i.e. ratio of real density to that of dataset).</td>
</tr>
<tr>
<td></td>
<td>EOLD</td>
<td>Charged particle (total) energy at beginning of step in MeV.</td>
</tr>
<tr>
<td></td>
<td>ENEW</td>
<td>Charged particle (total) energy at end of step in MeV.</td>
</tr>
<tr>
<td></td>
<td>IAUSFL</td>
<td>Array(29) of flags for turning on various calls to AUSGAB. See table 6</td>
</tr>
<tr>
<td></td>
<td>EKE</td>
<td>Electron kinetic energy in MeV.</td>
</tr>
<tr>
<td></td>
<td>ELKE</td>
<td>Natural logarithm of EKE (this is not available for a step in vacuum).</td>
</tr>
<tr>
<td></td>
<td>GLE</td>
<td>Natural logarithm of photon energy.</td>
</tr>
<tr>
<td></td>
<td>E_RANGE</td>
<td>For electron IARG=0 steps, this is the range of the electron in the current units (see section 3.10.1).</td>
</tr>
</tbody>
</table>

Note: the variable BETA2 is no longer available.
EGSnrc COMMONs which are accessible to the User -continued

<table>
<thead>
<tr>
<th>Common Block</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET-Control</td>
<td></td>
<td>Electron Transport Control.</td>
</tr>
<tr>
<td></td>
<td>SMAXIR</td>
<td>array($MXREG) defining upper limit on step size in each region (in whatever units defined by DUNIT).(default=1.E10).</td>
</tr>
<tr>
<td></td>
<td>ESTEPR</td>
<td>array($MXREG) defining maximum fractional energy loss per electron step on a per region basis.(default 1.0).</td>
</tr>
<tr>
<td></td>
<td>ESTEPE</td>
<td>global energy loss constraint.(default=0.25).</td>
</tr>
<tr>
<td></td>
<td>XIMAX</td>
<td>max. first GS moment per step (roughly half the average MS angle squared.(default 0.5).</td>
</tr>
<tr>
<td></td>
<td>SKINDEPTH_FOR_BCA</td>
<td>distance from a boundary (in elastic MFP) at which to switch to one of the boundary crossing algorithms(BCAs).(default 3). If set 0 by the user initially and BCA_ALGORITHM = 1, then the code assigns a value consistent with BLCMIN in PRESTA-I, otherwise it is 3.0.</td>
</tr>
<tr>
<td></td>
<td>TRANSPORT_ALGORITHM</td>
<td>integer flag telling which transport algorithm to use. 0⇒ PRESTA-II; 1⇒ PRESTA-I.(default 0).</td>
</tr>
<tr>
<td></td>
<td>BCA_ALGORITHM</td>
<td>integer flag telling which BCA to use. 0⇒ use exact(single scattering) algorithm within SKINDEPTH_FOR_BCA of a boundary 1⇒ use multiple scattering but with no lateral deflections within SKINDEPTH_FOR_BCA of a boundary. Default is 0.</td>
</tr>
<tr>
<td></td>
<td>SPIN_EFFECTS</td>
<td>logical variable, .true. ⇒ use single & multiple scattering theories which include relativistic spin effects; .false. ⇒ use single and multiple scattering theories based on Rutherford scattering. (default .true.)</td>
</tr>
</tbody>
</table>
EGSnrc COMMONs which are accessible to the User (cont)

<table>
<thead>
<tr>
<th>Common Block</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDIA</td>
<td>MEDIA</td>
<td>array(24,$MXMED) of media names.</td>
</tr>
<tr>
<td></td>
<td>NMED</td>
<td>Number of media being used (default=1).</td>
</tr>
<tr>
<td></td>
<td>IRAYLM</td>
<td>Array($MXMED) of flags for turning on (=1) coherent (Rayleigh) scattering in various media. Set in HATCH based on values of IRAYLR.</td>
</tr>
<tr>
<td></td>
<td>RLC</td>
<td>Array($MXMED) containing radiation lengths of the media in cm.</td>
</tr>
<tr>
<td></td>
<td>RLDU</td>
<td>Array($MXMED) containing radiation lengths of the media in distance units established by DUNIT.</td>
</tr>
<tr>
<td></td>
<td>RHO</td>
<td>Array($MXMED) containing density of the media in g/cm**3.</td>
</tr>
<tr>
<td>MISC</td>
<td>MED</td>
<td>Array($MXREG) containing medium index for each region.</td>
</tr>
<tr>
<td></td>
<td>DUNIT</td>
<td>The distance unit to be used. DUNIT=1 (default) establishes all distances in cm; whereas, DUNIT=2.54 establishes all distances in inches.</td>
</tr>
<tr>
<td></td>
<td>KMPI</td>
<td>Fortran unit number (default=12) from which to read material data.</td>
</tr>
<tr>
<td></td>
<td>KMPO</td>
<td>Fortran unit number (default=8) on which to “echo” material data (e.g., printed output, “dummy” output, etc.).</td>
</tr>
<tr>
<td></td>
<td>RHOR</td>
<td>Array($MXREG) containing the density for each region (g/cm**3). If this is different than the default density for the medium for that region, the cross sections and stopping powers (with the exception of the density effect) are scaled appropriately.</td>
</tr>
<tr>
<td></td>
<td>IRAYLR</td>
<td>Array($MXREG) of flags for turning on (=1) coherent (Rayleigh) scattering in various regions (default=0 ⇒ off).</td>
</tr>
</tbody>
</table>

* NOSCAT is no longer available since there is scattering on all steps.

RANDOM

| IXX,JXX | When using the RANLUX random number generator, the user does not pass anything via this COMIN. When using RANMAR, IXX and JXX are passed. Initially random number seeds, these become pointers once the generator is initialized. 0<IXX<=31328 and 0<JXX<=30081. |

(cont ...)

Last edited 2003/12/09 23:58:43
EGSnrc COMMONs which are accessible to the User (cont).

<table>
<thead>
<tr>
<th>Common Block</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STACK</td>
<td>E</td>
<td>Total energy in MeV (Double Precision).</td>
</tr>
<tr>
<td></td>
<td>X,Y,Z</td>
<td>Position of particle in units established by DUNIT.</td>
</tr>
<tr>
<td></td>
<td>U,V,W</td>
<td>Direction cosines of particle (not necessarily normalized if table lookups used for sines—see section 3.4.1).</td>
</tr>
<tr>
<td></td>
<td>DNEAR</td>
<td>A lower bound of distance from (X,Y,Z) to nearest surface of current region.</td>
</tr>
<tr>
<td></td>
<td>WT</td>
<td>Statistical weight of current particle (default=1.0). To be used in conjunction with variance reduction techniques as determined by user.</td>
</tr>
<tr>
<td></td>
<td>IQ</td>
<td>Integer charge of particle (+1,0,-1).</td>
</tr>
<tr>
<td></td>
<td>IR</td>
<td>Index of particle’s current region.</td>
</tr>
<tr>
<td></td>
<td>NP</td>
<td>The stack pointer (i.e., the particle currently being pointed to). Also, the number of particles on the stack.</td>
</tr>
<tr>
<td></td>
<td>NPold</td>
<td>Value of NP prior to an interaction (to test how many particles created see section 3.7.2).</td>
</tr>
<tr>
<td></td>
<td>LATCH</td>
<td>An integer variable for use to track histories.</td>
</tr>
<tr>
<td></td>
<td>LATCHI</td>
<td>Initial value of LATCH(1) when shower called.</td>
</tr>
<tr>
<td></td>
<td>THRESH</td>
<td>Twice the electron rest mass energy in MeV.</td>
</tr>
<tr>
<td></td>
<td>RMT2</td>
<td>Twice the electron rest mass energy in MeV.</td>
</tr>
<tr>
<td></td>
<td>RMSQ</td>
<td>Electron rest mass energy squared in MeV-squared.</td>
</tr>
<tr>
<td></td>
<td>AP</td>
<td>Array($MXMED) containing PEGS lower photon cutoff energy for each medium in MeV.</td>
</tr>
<tr>
<td></td>
<td>UP</td>
<td>Array($MXMED) containing PEGS upper photon cutoff energy for each medium in MeV.</td>
</tr>
<tr>
<td></td>
<td>AE</td>
<td>Array($MXMED) containing PEGS lower charged particle cutoff energy for each medium in MeV.</td>
</tr>
<tr>
<td></td>
<td>UE</td>
<td>Array($MXMED) containing PEGS lower charged particle cutoff energy for each medium in MeV.</td>
</tr>
<tr>
<td></td>
<td>TE</td>
<td>Same as AE except kinetic energy rather than total energy.</td>
</tr>
<tr>
<td></td>
<td>THMOLL</td>
<td>Array($MXMED) containing the Moller threshold energy (THMOLL=AE+TE) for each medium in MeV.</td>
</tr>
</tbody>
</table>

(cont ...)

EGSnrCOMMONs which are accessible to the User (cont).

<table>
<thead>
<tr>
<th>Common Block</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPHIOT</td>
<td>THETA</td>
<td>Collision scattering angle (polar).</td>
</tr>
<tr>
<td></td>
<td>SINTHE</td>
<td>Sine of THETA.</td>
</tr>
<tr>
<td></td>
<td>COSTHE</td>
<td>Cosine of THETA.</td>
</tr>
<tr>
<td></td>
<td>SINPHI</td>
<td>Sine of PHI (the azimuthal scattering angle of the collision).</td>
</tr>
<tr>
<td></td>
<td>COSPHI</td>
<td>Cosine of PHI.</td>
</tr>
<tr>
<td></td>
<td>PI</td>
<td>Pi.</td>
</tr>
<tr>
<td></td>
<td>TWOPI</td>
<td>two Pi.</td>
</tr>
<tr>
<td>USEFUL</td>
<td>MEDIUM</td>
<td>Index of current medium. If vacuum, then MEDIUM=0.</td>
</tr>
<tr>
<td></td>
<td>MEDOLD</td>
<td>Index of previous medium.</td>
</tr>
<tr>
<td></td>
<td>RM</td>
<td>Electron rest mass energy in MeV.(see also THRESH)</td>
</tr>
<tr>
<td></td>
<td>PRM</td>
<td>“Precision” electron rest mass energy in MeV (Double Precision).</td>
</tr>
<tr>
<td></td>
<td>PRMT2</td>
<td>Twice PRM (Double Precision).</td>
</tr>
<tr>
<td></td>
<td>PZERO</td>
<td>precise 0.0 (Double Precision).</td>
</tr>
</tbody>
</table>

| USER | Null by default but available in ELECTR, PHOTON and HATCH to allow users to pass data into the transport routines (eg geometry data, variance reduction data etc). |

As well as the COMINs described above, there are several COMINs which are normally just internal to EGSnr, which have one or two variables which the user may require access to in order to control various options within EGSnr. In an ideal world these would all be gathered into a single COMIN but that would make compatibility with EGS4 user codes even more difficult to achieve. We have adopted this compromise solution which changes as little as possible of what has grown up historically with EGS4. So, for example the parameters IEDGFL, IPHTER, IBRDST and IPRDST have not been moved and the new parameters introduced with EGSnr have similarly been placed in those COMINs associated with the physics being controlled. Table 3.3 summarizes these COMINs which are needed to control further the transport parameters. Note that the user code can ignore these COMINs completely if you are satisfied with the default settings for photon and electron transport in EGSnr.
Table 4: EGSnrc **COMMON**s which are optionally accessible to the user. Not all elements in each **COMIN** are described since many of them are not to be accessed by the user.

<table>
<thead>
<tr>
<th>Common Block</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDGE</td>
<td>IEDGFL</td>
<td>integer array ($MXREG) specifying whether relaxation of the atom is modelled after photo-effect or bound compton events (at present). When on, fluorescent photons, Auger electrons and Coster-Kronig electrons above threshold are modelled explicitly. When not on, the photoelectron acquires the entire energy of the incident photon (contrary to what happened in EGS4). (1⇒ yes (default), 0⇒ no).</td>
</tr>
<tr>
<td></td>
<td>IPHTER</td>
<td>integer array ($MXREG) specifying whether to sample the angular distribution of photo-electrons in each region (1⇒ yes (default), 0⇒ no).</td>
</tr>
<tr>
<td>COMPTON-DATA</td>
<td>IBCMP</td>
<td>integer array ($MXREG) specifying whether to include binding and Doppler broadening effects in Compton scattering events (1⇒ yes (default), 0⇒ no).</td>
</tr>
<tr>
<td>BREMPR</td>
<td>IBRDST</td>
<td>flag determining how angle of a brem photon is selected. 0⇒ sample leading term of the angular dist’n; 1⇒ sample the ang. distn. of Koch and Motz. Default=1. For <0, the angle is the same as that of the photon so user can use a call to AUSGAB to set the angle.</td>
</tr>
<tr>
<td></td>
<td>IPRDST</td>
<td>flag determining how the electron/positron angles are selected after pair production. 0⇒ use the fixed angle approximation of EGS4. 1⇒ sample the leading term in the angular distribution (fast and good enough). 2⇒ sample the complete angular distribution. Default is 1.</td>
</tr>
<tr>
<td></td>
<td>ibr_nist</td>
<td>integer flag determining which differential photon cross section to sample when brem occurs. 0⇒ use Bethe-Heitler as done in EGS4. This is the default. 1⇒ use NIST data base from ICRU Report 37.</td>
</tr>
</tbody>
</table>
3.4 The Sequence of Operations

The sequence of operations needed for the correct operation of EGS is shown below.

Step 0. call egs_init for file initialization (see PIRS-877 for details[11]).

Step 1. User Over Ride Of EGS Macros and Defaults (3.4.1)

Step 2. Pre-HATCH Call Initialisation (3.4.2)

Step 3. HATCH Call (3.4.3)

Step 4. Initialisation For HOWFAR & HOWNEAR (3.4.4)

Step 5. Initialisation For AUSGAB (3.4.5)

Step 5b. Initialisation For Variance Reduction (3.4.6)

Step 6. Determination Of Incident Particle Parameters (3.4.7)

Step 7. SHOWER Call (3.4.8)

Step 8. Output Of Results (3.4.9)

Step 9. call egs_finish as the last executable statement. See ref [11] for details. Properly closes files and places them back on the user-code’s directory.

The following are restrictions on the order of these operations:

1. Step 1 must precede use of any EGS macros by the user.

2. Step 0 should be the first executable statement and thus is usually after Step 1 and possibly in Step 2.

3. Step 2 must precede Step 3.

4. Steps 3 through 6 must precede Step 7.

5. Step 7 may be repeated as often as desired, depending on whether information on single showers or many showers is desired (e.g., for shower fluctuation or conversion efficiency calculations).

6. At least one Step 7 must precede the first Step 8.

Details for the above steps are given in the following sub-sections.

It is strongly advised that the user echo ALL input parameters into the output listing file to ensure that the listing has a complete record of the run. From extensive experience we have found that this is essential and very valuable.

3.4.1 User Over Ride Of EGS Macros and Defaults (Step 1)

EGS macros which the user might want to over-ride include the following:
3.4.1.i $CALL-HOWNEAR(#)
For compatibility with EGS4/PRESTA user-codes, the use of SUBROUTINE HOWNEAR has been left as a macro call in EGSnrc. There is no default definition of the macro but the following is suggested:

REPLACE {$CALL-HOWNEAR(#);} WITH {CALL HOWNEAR({P1},X(NP),Y(NP),Z(NP),IRL);}

The user may choose to define an equivalent macro. The parameter that must be returned by the macro is the shortest distance to any boundary from the current position. See section 3.6 (page 121) which specifies the macro or subroutine completely. There is also some discussion in section 5.6 (page 179).

3.4.1.ii $IMPLICIT-NONE, $REAL, $INTEGER
The EGSnrc system is now coded with $IMPLICIT-NONE; (which defaults to IMPLICIT NONE;) in all subroutines. This means that any time the user is passing a variable into the EGSnrc system by means of adding to a COMIN definition, one must explicitly specify the type of that variable. To turn this feature off one adds the following statement to the user code:

REPLACE {$IMPLICIT NONE;} WITH {;}

It is strongly recommended that user codes adopt the use of $IMPLICIT NONE; since it catches many coding errors and prevents accidental collision of variables.

In addition to using $IMPLICIT NONE;, the EGSnrc system has used the macros $REAL and $INTEGER everywhere to define real and integer variables as well as using generic intrinsic functions such as MAX and MIN. By default $REAL and $INTEGER are defined as REAL*4 and INTEGER*4. However, to make the entire code run in double precision, one can add the macros:

REPLACE {$REAL} WITH {;REAL*8}
REPLACE {$INTEGER} WITH {;INTEGER*8}

However, this requires that all type declarations in the user code also use the macros $REAL and $INTEGER everywhere.

3.4.1.iii Array Dimensions

$MXMED Maximum number of media (default=10).
$MXREG Maximum number of regions (default=2000).
$MXSTACK Maximum number of particles on the STACK at once (default = 40).

For example, to extend the number of media to 25, include the following statement in the User Code.

REPLACE {$MXMED} with {25}

Note that there are often array dimensions defined by the user for scoring arrays and these should be defined at this step as well.
3.4.1.iv Random Number Initialisation
By default the RANLUX random number generator requires no initialisation. However, to use a luxury level different from the default of 1, or a different initial seed, then you must initialize it using:

\$INITIALIZE RNG USING luxury_level AND iseed;

The luxury levels are from 0 to 4, but the value 0 is known to cause problems with EGSnrc calculations. The value of iseed is from 1 to 1073741824 \(2^{30}\).

If you have selected the RANMAR random number generator (via the configuration file, then it MUST be initialized before it is first used. This can be accomplished by including the statement:

\$RNG-INITIALIZATION;

which initializes RANMAR using whatever the current values of IXX and JXX are and uses default values if they have not been set (they are passed in COMIN/RANDOM/). Alternatively, one can use:

\$INITIALIZE RNG USING IXX AND JXX;

which accomplishes the same thing. The values are restricted to: 0 < IXX ≤ 31328 and 0 < JXX ≤ 30081 and 0 values are set to defaults.

The random number generator may be initialized at any step prior to the call to \texttt{SHOWER} in step 7, or prior to the first use in the user code.

For a complete discussion of these and other issues about the random number generators, see section 3.9 below (page 126).

3.4.1.v $\texttt{SET-RHOF}$
Section 3.4.2(page 112) explains the use of RHOF. On each step, EGSnrc calls a macro $\texttt{SET-RHOF}$ which evaluates the ratio of the density at that point to the density given in the PEGS4 data file for the material in that region. Setting RHOR allows you to scale the density throughout a region to some new density. If you have a problem in which the density is varying within the region, this can be handled by replacing the default macro:

\begin{verbatim}
REPLACE {$\texttt{SET-RHOF;}$} WITH \{RHOF=RHOR(IRL)/RHO(MEDIUM);\}
\end{verbatim}

by whatever code you want to return the local density ratio. If, on the other hand you do not use density scaling at all in your code, you should replace the default with:

\begin{verbatim}
REPLACE {$\texttt{SET-RHOF;}$} WITH \{RHOF = 1.0;\}
\end{verbatim}

since this saves a division on every step.

3.4.1.vi Sines and Cosines
To increase calculational speed, sines and cosines were not always determined by function (e.g., $\texttt{SINTHE= SIN(THETA)}$) in the default EGS4. Instead, the sine was looked-up in a sineTransform and the cosine was determined from the sine. However, this was found to lead to very small errors for angles very close to 0 degrees[60]. This can be overcome but with modern
computers the speed of the sine and cosine evaluations is as fast as the table lookup method so we have reverted back to direct function evaluations. For slightly older machines, the table lookup feature saved as much as 40% of the CPU time. If you happen to be using one of these machines, it is worthwhile to use the table lookup method unless small angles are critical to you. To re-implement it, define the following two macros in STEP 1.

```
REPLACE {$EVALUATE#USING SIN(#);} WITH {{P1}=SIN1(L{P2})*{P2}+SIN0(L{P2});}}
REPLACE {$SET INTERVAL#,SINC;} WITH {L{P1} = SINC1*{P1} +SINC0;}}
```

The reader is referred to the Mortran3 User’s Guide as an aid in understanding the macros (see section 7).

It should be pointed out that due to the precision involved in the table look-up method, the direction cosines can become slightly unnormalized. Depending on the problem at hand, this can lead to incorrect results—such as when two direction cosines are simultaneously involved in an angular sort of particles. The problem can generally be remedied by renormalizing the direction cosines prior to using them.

3.4.1.vii Charged Particle Transport

The pattern $CHARGED-TRANSPORT$ has been included in subroutine ELECTR in order to allow transport of the charged particles by other means than used in this version. For example,

```
REPLACE {$CHARGED-TRANSPORT;}; WITH {CALL MYTRAN;}
```

could be included in Step 1 of the User Code, and an appropriate subroutine MYTRAN would need to be provided by the user. For a detailed discussion of one such implementation, see ref[85, 86]

3.4.2 Pre-HATCH Call Initialisation (Step 2)

This step consists of setting EGS COMMON variables that are used by HATCH in its initialisation operations. All of these variables are initialized to some reasonable value in the BLOCK DATA subprogram. Therefore, if different values are desired they should be set with executable code (as opposed to another BLOCK DATA). Concurrently, the various COMMON blocks (i.e., BOUNDS, MEDIA, MISC) will have to be included in the declaration section of the MAIN program of the User Code. These variables are:

NMED This must be initialized to the number of media to be used in the shower generation (default=1).

MEDIA This array contains the names of the media required and is dimensioned

```
MEDIA(24, $MXMED),
```

where $MXMED$ is an EGS macro that is currently defined to be 10 (default), and whose value is the maximum number of media for which array space has been allocated (see section 3.4.1 above). The media names are stored in MEDIA in alphameric field specification A1 to ensure portability. Each medium name is 24 characters long. For the convenience of users compiling with EGS’ macros, there is a macro to generate A1 strings. For example,

One way of implementing this in the User Code is demonstrated in the next example, which is for three media: lead, steel, and air at NTP. A temporary array is declared and initialized in MAIN by:

```
CHARACTER*4 TEMP(24,3)/$S'PB', 22*' ', $S'STEEL', 19*' ', $S'AIR AT NTP',14*' '/;
```

and at Step 2 one puts

```
NMED=3; "number of media used"
DO J=1,NMED [DO I=1,24 [MEDIA(I,J)=TEMP(I,J);]]
```

MED This array, which is dimensioned \texttt{MED($MXREG$)}, contains the medium indices for each region (default values are 1 for all \texttt{$MXREG$}). A medium index of zero means a region is filled with a vacuum. For instance, if we consider the three media example above along with vacuum to define four regions, in Step 2 of the User Code we might have:

```
MED(1)=3; "first region is air at NTP"
MED(2)=1; "second region is lead"
MED(3)=0; "third region is vacuum"
MED(4)=2; "fourth region is steel"
```

ECUT and PCUT These arrays contain the cutoff energies (in MeV) for charged particles and photons, respectively, for each region. They are dimensioned \texttt{ECUT($MXREG$)} and \texttt{PCUT($MXREG$)} and are given temporary (default) values of 0.0 in \texttt{BLOCK DATA}. At the time that data for each medium are generated in the preprocessing code (PEGS), two parameters (\texttt{AE} and \texttt{AP}) are set to the lowest energies at which it will be desired to transport electrons and photons. When the EGS subroutine \texttt{HATCH} is called, these \texttt{AE} and \texttt{AP} values are read in and \texttt{HATCH} upgrades the values of \texttt{ECUT} and \texttt{PCUT} such that the maximum of the current (\texttt{ECUT,AE}) (and (\texttt{PCUT,AP})) is chosen. Therefore, by assigning values of \texttt{ECUT} and \texttt{PCUT} prior to the \texttt{HATCH} call, the user can raise (but not lower) the cutoff energies in this manner. For instance, consider the four region example from above. The statement

```
DO I=1,3 [ECUT(I)=10.0; PCUT(I)=100.0;]
```

when put in Step 2 of the User Code results in charged particle histories being terminated at 10.0 MeV (total energy) and photon histories being terminated at 100.0 MeV in the first three regions only. In the fourth region the respective cutoffs are set by \texttt{AE} and \texttt{AP} as established by PEGS. Of course \texttt{COMMON/BOUNDS/} will have to be declared in the routine that calls \texttt{HATCH} in order to pass \texttt{ECUT} and \texttt{PCUT} to \texttt{HATCH}. Combined with \texttt{COMMON/MEDIA/} and \texttt{COMMON/MISC/}, the macro declaration might look like

```
COMMON/BOUNDS,MEDIA,MISC/;
```
DUNIT This parameter determines the unit of distance to be used in the shower simulation (the default is cm if \(DUNIT=1.0 \)). On input to HATCH, this parameter will be interpreted as follows:

- **DUNIT > 0** means that \(DUNIT \) is the length of the distance unit expressed in centimeters. For example, setting \(DUNIT=2.54 \) would mean that the distance unit would be one inch.

- **DUNIT < 0** means that the absolute value of \(DUNIT \) will be interpreted as a medium index. The distance unit used will then be the radiation length for this medium, and on exit from HATCH, \(DUNIT \) will be equal to the radiation length of that medium in centimeters. The obvious use of this feature is for the case of only one medium with \(DUNIT=-1 \). Then the shower is expressed entirely in radiation lengths of the first medium.

The distance unit used by PEGS is the radiation length. After HATCH interprets \(DUNIT \), it scales all distance-type data from PEGS in the proper way, so that all subsequent operations in EGS will be correctly performed with all distances in units of \(DUNIT \) (default value: 1.0 cm).

IRAYLR The elements of this integer array (dimensioned \(IRAYLR($MXREG) \)) are to be set to 1 prior to calling HATCH if coherent (Rayleigh) scattering is to be done in a particular region. Execution is terminated if Rayleigh data are not included in the PEGS data. The default values are 0. See section 2.2.4(page 46).

RHOR For each medium to be input, there is a default density, \(RHO(MED) \). The user may assign an arbitrary density in each geometry region by initializing the array \(RHOR($MXREG) \). EGSnrc then appropriately scales all cross sections in each region. This is done by calculating the value of \(RHOF = RHOR(IRL)/RHO(MED) \) on every step in the calculation, using the macro \$SET-RHOF(section 3.4.1.v,page 109). The array \(RHOR \) is initially zero. If the user does not initialize \(RHOR \), then in HATCH it is set to \(RHO(MED) \) using the material assigned to each region. In this case \(RHOF \) is always unity. Note that this scaling is not perfect because the density effect in the electron stopping powers is not scaled, so if you are doing very precise work, you may need to define a variety of media with different densities. Remember also to use the proper density when calculating the mass of each region for dose calculations.

IBCMP The elements of this integer array (dimensioned \(IBCMP($MXREG) \)) are to be set to 0 prior to calling HATCH if Klein-Nishina is to be modelled in a particular region, as opposed to using the default bound Compton formalism. Binding effects can be important for some simulations with photons below 1 MeV but above that is rarely important and only takes extra time. The default value is 1 (i.e. uses bound Compton scattering). See section 2.2.2 (page 30).

IEDGFL The elements of this integer array (dimensioned \(IEDGFL($MXREG) \)) are to be set to 0 prior to calling HATCH if one does not want atomic relaxation to be modelled in a given region. The relaxation considers the creation of K, L, M and N shell fluorescent photons, Auger electrons and Coster-Kronig electrons. Relaxation is currently modelled after photo-electric and bound Compton events.
although it may get extended to other processes in time. The default is to have relax-
ations simulated. When relaxation is not simulated and there is a photo-electric event,
the full photon energy is transferred to the photo-electron. This differs from EGS4
where the binding energy was subtracted and deposited on the spot. Either option for
the energy of the photon-electron is an approximation, and it is our experience that
transferring all the energy to the photo-electron is more accurate than dumping the
full binding energy on the spot. If this energy transport is important at all, relaxation
should be turned on and then it is modelled correctly. See section 2.3 (page 46).

SPIN EFFECTS A logical variable passed in **COMMON/ET-Control** which must be set false
prior to calling **HATCH** if one wants to exclude relativistic spin effects in multiple and
single scattering of electrons. The default is **.true.** for highest accuracy. For results
closer to EGS4 **SPIN EFFECTS** should be set to **.false.**, then only Rutherford scat-
tering will be used as the basis of multiple and single scattering. See section 4.7.18
(page 86).

ibr_nist is an integer flag passed in **COMIN/BREMPR/** which must be set prior to calling **HATCH**.
The value determines how the brems photon’s energy is to be sampled.
0⇒ the Bethe-Heitler cross sections used in EGS4 are sampled. This is the default;
1⇒ sample from the NIST bremsstrahlung cross section data base[42, 43].
See section 4.2.5 (page 58).

IBRDST is an integer flag passed in **COMIN/BREMPR** that specifies what type of angular
sampling is done when a bremsstrahlung photon is created.
0⇒ sample from the leading term in the Koch and Motz angular distribution;
1⇒ sample from the Koch and Motz angular distribution[18]. This is the default.
Note that EGS4 used a fixed angle approximation and this clearly causes problems for
radiotherapy accelerator calculations[87]. See section 4.2.8 (page 61).

IPRDST is an integer flag passed in **COMIN/BREMPR** that specifies what type of angular
sampling is done when a pair production event occurs.
0⇒ use a fixed angle wrt the photon’s direction of \(\frac{m}{E} \gamma \) which was the default in
EGS4;
1⇒ use the leading term in the angular distribution[24]. This is the default.
2⇒ use the angular distribution of Motz, Olsen and Koch[19] as implemented by
Bielajew[24]. See section 2.1.18 (page 29).

IPHTER The elements of this array (dimensioned **IPHTER($MXREG)** and passed in
COMMON/EDGE) are to be set to 0 if one does not want the photo-electron’s angular
distribution to be modelled[37]. The default is to model this angular distribution.
This rarely, if ever, has an effect on a simulation because the low-energy electrons
experience so much multiple scattering anyway. This array need not be reset until
before the call to **SHOWER**. See section 2.2.3.iii (page 45).

BCA_ALGORITHM is an integer flag passed in **COMMON/ET-Control** which must be set
prior to the call to **HATCH** to specify which boundary crossing algorithm (BCA) to use.
0⇒ use the exact (single scattering) algorithm within a distance of **SKINDEPTH_FOR_BCA**
of any boundary. This is the default.
1⇒ approach a boundary using multiple scattering but within a distance of
SKINDEPTH

for any boundary, turn off the lateral deflections. See section 2.4.9 (page 91).

SKINDEPTH

for BCA is a real variable passed in COMMON/ET-Control which must only be set prior to the call to HATCH to specify the distance from a boundary (in elastic mean free paths) at which to switch to the boundary crossing algorithm. The value is initialized to 3.0. If set to 0.0 by the user when the exact BCA is being used, it is reset to 3.0 since the value 0.0 means charged particles never get over a boundary. If the PRESTA-I BCA is being used and **SKINDEPTH**

for BCA is set to zero (actually anything less than 10^{-4}), the code uses a value corresponding to the value of BLCMIN used by PRESTA-I. If **SKINDEPTH**

for BCA is set to a large value and **TRANSPORT_ALGORITHM**

is 0 so that the PRESTA-II algorithm is being used, then a complete single scattering calculation is done. In contrast, if **SKINDEPTH**

for BCA is set to a large value and **TRANSPORT_ALGORITHM**

is 1, this turns off lateral deflections everywhere and the algorithm becomes very close to EGS4 (except that now the Lewis pathlength correction is used). See section 2.4.9 (page 91).

TRANSPORT_ALGORITHM

is an integer flag passed in COMMON/ET-Control which must be set prior to the call to HATCH to specify which electron transport algorithm to use.

0 ⇒ use the PRESTA-II algorithm. This is the default.

1 ⇒ PRESTA-I.

See section 2.4.8 (page 88).

ESTEPE

is a real variable passed in COMMON/ET-Control which must be set prior to the call to HATCH to specify the global maximum fractional energy loss in an electron step due to continuous energy loss. The default value, which is also the maximum allowed value, is 0.25 and should not be changed unless the PRESTA-I **TRANSPORT_ALGORITHM**

is being used.

ESTEPR

The elements of this REAL array (dimensioned **ESTEPR**($MXREG$) and passed in COMMON/ET-Control are the same as **ESTEPE** except apply just to the local region. The global value of **ESTEPE** overrides the values of **ESTEPR**. The default is 1.0 which means it has no effect.

SMAXIR

The elements of this REAL array (dimensioned **SMAXIR**($MXREG$) and passed in COMMON/ET-Control determine the maximum electron step in this region in whatever units are defined via DUNIT (default is cm). The maximum value is very large. This parameter is only needed using the PRESTA-I transport algorithm.

XIMAX

This REAL variable is passed in COMMON/ET-Control is the maximum first GS moment per step (roughly half the average multiple scattering angle squared, default 0.5). See section 2.4.8 (page 88). This should not be changed.
3.4.2.i Emulating EGS4’s implementation of the Condensed History technique

Appropriate selection of the above parameters allows the default behaviour of EGS4’s implementation of the Condensed History technique to be emulated. To achieve this set TRANSPORT_ALGORITHM to 1, SKINDEPTH_FOR_BCA to 1E10, BCA_ALGORITHM to 1, IPRDST to 0, IBRDST to 0 and SPIN_EFFECTS to .false.. There are other options and improvements which are different from EGS4. These should also be set to match EGS4 (e.g. modelling bound Compton scattering should be off, i.e., the IBCMP array should be set 0, atomic relaxation should be off, i.e., the IEDGD array should be set 0, and the differential bremsstrahlung cross sections used should be Bethe-Heitler, i.e., set ibr_nist = 0). Leave other values at their default and use ESTEPE if desired. This emulates EGS4 except for the more accurate pathlength corrections used in EGSnrc, the problem with fictitious cross sections is handled properly (only important for low values of AE), energy loss is calculated more accurately and an exact multiple scattering theory is used.

3.4.2.ii Emulating EGS4/PRESTA’s implementation of the Condensed History technique

To emulate EGS4/PRESTA’s implementation of the Condensed History technique, set TRANSPORT_ALGORITHM to 1, SKINDEPTH_FOR_BCA to 0.0, BCA_ALGORITHM to 1, IPRDST to 0 and IBRDST to 0. Leave other values as above and use ESTEPE if desired. This will emulate EGS4/PRESTA reasonably well with the same restrictions as noted above regarding emulation of EGS4.

3.4.3 HATCH Call (Step 3)

This step is very simple—HATCH has no arguments, so all one has to do is:

```
CALL HATCH;
```

The following is a typical output message when DUNIT has not been changed (and Rayleigh data is included in the file):

```
RAYLEIGH DATA AVAILABLE FOR MEDIUM 1 BUT OPTION NOT REQUESTED.
EGSnrc SUCCESSFULLY 'HATCHED' FOR ONE MEDIUM.
```

However, if the user has set DUNIT=2.54 prior to calling HATCH, the message will look like the following (two media, no Rayleigh data):

```
DUNIT REQUESTED&USED ARE: 2.54000E+00 2.54000E+00(CM.)
EGS SUCCESSFULLY 'HATCHED' FOR 2 MEDIA.
```

Failure to “hatch”, on the other hand, will result in the message:

```
END OF FILE ON UNIT 12
PROGRAM STOPPED IN HATCH BECAUSE THE
FOLLOWING NAMES WERE NOT RECOGNIZED:
(list of names)
```

followed by a STOP in HATCH. [Note: one cannot ask for the same medium twice].
3.4.4 Initialisation For HOWFAR and HOWNEAR (Step 4)

As stated previously, HOWFAR and HOWNEAR are the routines that specify the geometry of the regions. Although initialisation for items that are used in HOWFAR and HOWNEAR can be done at any step prior to calling SHOWER (Step 7), Step 4 allows a space in MAIN to consider if such initialisation need be performed. For example, if regions are defined by semi-infinite planes, data defining each plane (e.g., coordinates and unit normal vectors) can be established here. The data may be referred to in HOWFAR and HOWNEAR or by user-written subprograms called by HOWFAR or HOWNEAR. It may be that some of the dimensions of the regions are determined at run-time, or the geometry may be so complex that it is desirable to use executable code to generate tables for use by HOWFAR or HOWNEAR. In such cases, initialisation will probably consist of filling up some user-written COMMON blocks.

3.4.5 Initialisation For AUSGAB (Step 5)

This step is similar to Step 4 above in that it provides a specified location in the MAIN code where quantities used in AUSGAB can be initialized. For example, suppose that we wished to create an array, ESUM, to keep track of the total energy deposited in each of the regions. We could declare

```plaintext
COMMON/TOTALS/ESUM($MXREG);
```

in both the MAIN code and in AUSGAB, and we could add

```plaintext
DO I=1,$MXREG [ESUM(I)=0.0;]
```

to the MAIN code (at Step 5). Then the statement

```plaintext
ESUM(IR(NP))=ESUM(IR(NP)) + EDEP;
```

in AUSGAB could keep a running total of the energy deposited in each region under consideration.

Note that EDEP is a double precision variable, even when the rest of the code is run in single precision (see section 3.4.1.ii). This is established as such via a macro. Therefore, one might wish to establish ESUM as double precision as well (in both MAIN and AUSGAB). We have experienced situations whereby energy balancing could not be attained due to round-off error difficulties. This was particularly evident for large shower-history problems involving the addition of small energy values to large numbers in various regions. As a result of this experience, certain key energy variables in the EGS code have been defined as double precision. Users may take advantage of this at their discretion.

3.4.6 Initialisation For Variance Reduction (Step 5b)

Variance reduction is often associated with various calls to AUSGAB so this step is really part of step 5, but has its own section to emphasize the new variance reduction options within EGSnrc. These options are all controlled by parameters in COMIN/EGS-VARIANCE-REDUCTION/
(see table 3) and are described in detail in section 3.10 (page 128). The user may wish to introduce their own variance reduction techniques as well.

3.4.7 Determination Of Incident Particle Parameters (Step 6)

This step is really self-explanatory—particularly when looked at in conjunction with Step 7 below. A specific example of such coding might be useful and is given as follows:

- IQI=-1; "incident particle is an electron"
- EI=1000.0; "total energy (MeV)"
- XI=0.0; YI=0.0; ZI=0.0; "particle coordinates"
- UI=0.0; VI=0.0; WI=1.0; "direction cosines"
- IRI=2; "region number 2 is the incident region"
- WTI=1.0; "weight factor in importance sampling"
- IXX=12; JXX=3001; "random number generator seeds"
- NCASES=10; "number of histories to run"
- LATCHI=0; "variable for tracking history or marking"
 "a history"

3.4.8 SHOWER Call (Step 7)

The calling sequence for `SHOWER` is:

```fortran
CALL SHOWER(IQI,EI,XI,YI,ZI,UI,VI,WI,IRI,WTI);
```

The types of the arguments are given by their starting letter in accordance with standard Fortran convention. These arguments specify the charge, total energy, position, direction, region index, and statistical weight of the incident particle, and are used to fill the corresponding stack variables (see `COMMON/STACK/` in Section 3.3). The one exception is the parameter `LATCHI` which is passed in `COMMON STACK` directly and for historical reasons is not symmetric with the other parameters. Section 3.4.7 above might be of some aid in understanding the parameter list. The subroutine may be called repeatedly by means of statements like

```fortran
DO I=1,NCASES [CALL SHOWER(IQI,EI,XI,....,etc.);]  .
```

The statistical weight, WTI, is generally taken as unity unless variance reduction techniques are employed by the user. It should noted, however, that if IQI is assigned the value of 2, subroutine `SHOWER` recognizes this as a pi-zero meson decay event, and two photons are added to the stack with energies and direction cosines appropriately obtained by sampling.

3.4.9 Output-Of-Results (Step 8)

This step has been added for completeness and is self-explanatory.
3.5 Specifications for HOWFAR

On entry to the geometry subprogram, HOWFAR, EGS has determined that it would like to transport the top particle on the stack by a straight line distance USTEP. All of the parameters of the particle are available to the user via COMMON/STACK/ as described earlier. The user controls the transport by setting the following variables:

USTEP, IDISC, IRNEW, and DNEAR(NP).

Except for the last variable (which is in COMMON/STACK/) these are available to the user via COMMON/EPCONT/. The ways in which these may be changed, and the way EGS will interpret these changes, will now be discussed in detail.

1. If the user decides that the current particle should be discarded, then IDISC must be set non-zero (the usual convention is to set IDISC=1).

 - A positive value for IDISC will cause the particle to be discarded immediately. The special value IDISC = 99 is used to mark a positron for immediate discard but WITH positron annihilation occurring as if at rest. For IDISC = 1 a positron is discarded and no annihilation photons are created.
 - A negative value for IDISC will cause EGS to discard the particle when it completes the transport. Again, IDISC = -99 marks that positron annihilation should take place.

EGS initializes IDISC to zero, and if left zero no user requested discard will take place. For example, the easiest way to define an infinite, homogeneous medium is with the HOWFAR routine:

 SUBROUTINE HOWFAR;
 RETURN;
 END;

In this case, particle transport will continue to take place until energy cutoffs are reached. However, a common procedure is to set IDISC=1 whenever the particle reaches a discard region.

2. If immediate discard has not been requested, then the user should check to see whether transport by distance USTEP will cause a region boundary to be crossed. The presence of the region index for the current particle, IR(NP), should make this task much easier than if only the position of the particle were known. If no boundary will be crossed, then USTEP and IRNEW may be left as they are. If a boundary will be crossed, then USTEP should be set to the distance to the boundary from the current position along the current direction, and IRNEW should be set to the region index of the region on the other side of the boundary. For sophisticated geometries, this is the most complex part of the User Code.

3. The setting of DNEAR(NP) by the user is optional and is not required for EGSnrc since it is always calculated on each electron step using the routine HOWNEAR.
Boundary checking in HOWFAR takes time and should be avoided whenever possible. If EGSnrc had no way of knowing how far it was from a boundary, then it would have to ask the user how far to go every time it wanted to transport a particle. This would not be too serious for photons since they usually go relatively far on each transport. However, the transport of a charged particle from one interaction to the next requires the path-length to be split up into smaller lengths in order to simulate properly the multiple scattering process. If, relative to the small steps being taken, the particle is a fairly good distance from the nearest boundary, then checking for boundary crossings on each transport is a waste of time. In order to avoid this inefficiency, each particle has stored on the stack a variable called DNEAR, which is used by EGS to store a lower bound to the distance from the particle’s current position to the nearest region boundary. This variable is used by EGS in the following ways:

- **DNEAR** for the incident particle is initialized to zero by EGSnrc.
- Whenever a particle is actually moved (by a straight line distance VSTEP) the path length transported is deducted from the DNEAR for the particle.
- Whenever a particle interacts, the DNEAR values for the product particles are set from the DNEAR value of the parent particle.
- When EGSnrc has decided it would like to transport the current particle by a distance USTEP (which will be the distance to the next interaction), subroutine HOWFAR will be called to get the user’s permission to go that far only if USTEP is larger than DNEAR.

For electron steps the user automatically takes advantage of these efficiency features. It is unlikely that this feature would help during photon transport, but if it would, the user can use HOWNEAR from within HOWFAR for photons only and set DNEAR(NP). If the medium for a region is vacuum, the user need not bother computing DNEAR, as EGS will always transport to the next boundary in only one step in this case.

3.5.1 An example of HOWFAR

Consider, as an example of how to write a HOWFAR subroutine, the three region geometry in fig 18. A particle is shown in Region 2 with coordinates (X,Y,Z) and direction cosines (U,V,W). We will assume that the slab of thickness ZTHICK is semi-infinite (x and y-directions), and that particles are immediately discarded whenever they go into Region 1 or Region 3. The following HOWFAR code is then applicable:

```fortran
SUBROUTINE HOWFAR;
COMIN/EPCONT,STACK/; "common blocks needed in calculations"
COMMON/GEOM/ZTHICK; "slab thickness defined in main"
IF(IR(NP) /= 2) [IDISC=1; RETURN;]
IF(W(NP) = 0.0) [RETURN; "particle going parallel to planes"]
"check forward plane first since shower heading that way"
" most of the time"
IF(W(NP) > 0.0) [DELTAZ=(ZTHICK-Z(NP))/W(NP); IRNEXT=3;]
"otherwise, particle must be heading in backwards direction"
```

Last edited 2003/12/09 23:58:43
Figure 18: A 3 region geometry example for HOWFAR. The Y axis is into the paper.

ELSE [DELTAZ=-Z(NP)/W(NP); IRNEXT=1;]
 "now check with USTEP and reset things if necessary"
 IF(DELTAZ <= USTEP) [USTEP=DELTAZ; IRNEW=IRNEXT;]
 RETURN; END;

A number of geometry subprograms and their macro equivalents are distributed with
the EGS Code System in order to make it easier to write HOWFAR. For example, SUBROUTINE
PLAN2P, or its equivalent macro $PLAN2P$, could have been used in place of several lines above
and the program would have been easier to read.

For further introductory information on coding HOWFAR routines you can see Ralph Nel-
son’s lecture viewgraphs(ps version, 2.2 Mbyte at
http://www.sao.nrc.ca/inms/irs/EGSnrc/doc/wrn_howfar.ps or the shorter pdf version at

For an advanced discussion of coding HOWFAR routines, see Alex Bielajew’s PIRS-341 re-
port “HOWFAR and HOWNEAR: Geometry Modeling for Monte Carlo Particle Transport”[88]
available as postscript or pdf via

3.6 Specifications for HOWNEAR

As mentioned in section 3.4.1.i (page 108), for compatibility with previous EGS4/PRESTA user codes, EGSnrc formally requires a macro definition which defaults to:

\[
\text{REPLACE \{CALL-HOWNEAR(#);\} WITH \{CALL HOWNEAR({P1},X(NP),Y(NP),Z(NP),IRL);\}}
\]

where the variable \# is \text{tperp}, the closest distance to any boundary. If you are starting from scratch it is easiest to code \text{HOWNEAR} as a subroutine.

\text{SUBROUTINE HOWNEAR} is concerned with the geometry but its job is somewhat simpler to define than for \text{SUBROUTINE HOWFAR} since it need only return one value, namely \text{tperp}, the distance to the closest boundary in any direction. Unlike \text{HOWFAR}, \text{HOWNEAR} passes the transport parameters parameters to the subroutine as:

\text{SUBROUTINE HOWNEAR}(\text{tperp}, x,y,z, \text{irl});

where \(x,y,z\) are the current positions of the particle and \text{irl} is its current region. The rest of the information about the geometry is passed in whatever \text{COMMONs} contain the necessary information. In NRCC user codes and the tutorial codes this is \text{COMMON/GEOM/}; but it can be called anything the user wants.

One simplification is that the routine does not have to handle regions outside the geometry (as \text{SUBROUTINE HOWFAR} must in order to have them discarded).

In complex geometries, the mathematics of \text{HOWNEAR} can become difficult and sometimes almost impossible! If it is easier for the user to compute some lower bound to the nearest distance, this could be used in \text{HOWNEAR}. In the worst case, one can return \text{tperp} as 0.0 in which case the code goes into single scattering mode if using the exact boundary crossing algorithm. In fact, this is an easy general way to turn on single scattering throughout the entire geometry.

The following is an example of a \text{HOWNEAR} routine for the geometry given above in section 3.5 concerning \text{HOWFAR}. See also section 5.6 (page 179).

\text{SUBROUTINE HOWNEAR}(\text{tperp},x,y,z,\text{irl});
\text{COMMON/GEOM/ZTHICK}; "slab thickness defined in main"
\text{tperp} = \text{min}(Z,ZTHICK-Z);
\text{RETURN}; \text{END};

3.7 Specifications for AUSGAB

The subroutine \text{AUSGAB} is called by EGS with the statement:

\text{CALL AUSGAB(IARG);}

The argument \text{IARG} indicates the situation under which \text{AUSGAB} is being called. \text{IARG} can take on 29 values starting from zero (i.e., \text{IARG}=0 through \text{IARG}=28), although only the first five are called by default in EGSnrc. The remaining 24 \text{IARG} values must be “switched-on” by means of the array \text{IAUSFL}. The value for \text{IARG} and the corresponding situations are given in Table 5.
On occasion one wants to terminate a particle history from within AUSGAB. To do this cleanly and efficiently set \(E(NP) = 0 \). One can also set the weight to zero if you do not want any EDEP energy to be scored.

The IARG values in table 5 are the ones generally required in the majority of situations in which EGS is used to simulate electromagnetic cascade shower development. In particular, IARG=0 is useful whenever track lengths are being calculated or when charged particle ionization loss is needed. Also, as a check on energy conservation, EDEP can be summed in AUSGAB for all IARG values less than 5. The extended IARG range allows the user to extract additional information without making changes to the EGS coding. To do this we have created the integer flag array, IAUSFL(J), for \(J = 1 \) through 29. It takes on values of 1 or 0 depending on whether AUSGAB is called or not, respectively. For \(J = 1 \) through 5, which corresponds to IARG=0 through 4, IAUSFL(J)=1 (default). In other words, AUSGAB is always called for the situations listed in Table 5. For the remaining values of \(J \), corresponding to IARG=5 through 28, IAUSFL(J)=0 (default). The value for IARG and the corresponding situations for this upper set of IARG values are shown in Table 6.

<table>
<thead>
<tr>
<th>IARG</th>
<th>Situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Particle is going to be transported by distance TVSTEP.</td>
</tr>
<tr>
<td>1</td>
<td>Particle is going to be discarded because its energy is below the cutoff ECUT (for charged particles) or PCUT (for photons)—but its energy is larger than the corresponding PEGS cutoff AE or AP, respectively.</td>
</tr>
<tr>
<td>2</td>
<td>Particle is going to be discarded because its energy is below both ECUT and AE (or PCUT and AP).</td>
</tr>
<tr>
<td>3</td>
<td>Particle is going to be discarded because the user requested it (in HOWFAR usually or by range rejection).</td>
</tr>
<tr>
<td>4</td>
<td>The difference between the energy of the incident particle and all of the final products is being deposited locally. This energy is due to sub-threshold relaxation events.</td>
</tr>
</tbody>
</table>

As an example of how to write an AUSGAB subprogram, consider the previous three region geometry (Fig. 18). Suppose that we wish to score (i.e., output on the line printer) only photons that go from Region 2 into Region 3. The AUSGAB subprogram that will accomplish this is given below. In this example we print out the stack variables plus IARG.

```fortran
SUBROUTINE AUSGAB(IARG);
COMIN/STACK/;
"only output information for photons that are discarded"
"(by the user) in region 3"
IF(IARG = 3 & IQ(NP) = 0 & IR(NP) = 3) [
```
Table 6: Values of IARG which are off by default.

<table>
<thead>
<tr>
<th>IARG</th>
<th>IAUSFL</th>
<th>Situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>Particle has been transported by distance TVSTEP.</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>A bremsstrahlung interaction is to occur and a call to BREMS is about to be made in ELECTR.</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>Returned to ELECTR after a call to BREMS was made.</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>A Moller interaction is to occur and a call to MOLLER is about to be made in ELECTR.</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>Returned to ELECTR after a call to MOLLER was made.</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>A Bhabha interaction is to occur and a call to BHABHA is about to be made in ELECTR.</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>Returned to ELECTR after a call to BHABHA was made.</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>An in-flight annihilation of the positron is to occur and a call to ANNIH is about to be made in ELECTR.</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>Returned to ELECTR after a call to ANNIH was made.</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>A positron has annihilated at rest.</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>A pair production interaction is to occur and a call to PAIR is about to be made in PHOTON.</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>Returned to PHOTON after a call to PAIR was made.</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>A Compton interaction is to occur and a call to COMPT is about to be made in PHOTON.</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>Returned to PHOTON after a call to COMPT was made.</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>A photoelectric interaction is to occur and a call to PHOTO is about to be made in PHOTON.</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>Returned to PHOTON after a call to PHOTO was made (assuming NP is non-zero).</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>Subroutine UPHI was just entered. Not entered in all cases now since the sampling is done more efficiently directly in some subroutines.</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>Subroutine UPHI was just exited.</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>A coherent (Rayleigh) interaction is about to occur.</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>A coherent (Rayleigh) interaction has just occurred.</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>A fluorescent photon has just been created in RELAX.</td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>A Coster-Kronig electron has just been created in RELAX.</td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>An Auger electron has just been created in RELAX.</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>A positron is about to annihilate at rest.</td>
</tr>
</tbody>
</table>
OUTPUT E(NP),X(NP),Y(NP),Z(NP),U(NP),V(NP),W(NP),
 IQ(NP),IR(NP),IARG; (7G15.7,3I5);
RETURN; END;

The tutorial programs described in section 4 (page 133) give examples of various types of AUSGAB routines.

3.7.1 Checking for STACK overflow

Unlike EGS4, EGSnrc prevents the user from placing too many particles on the STACK. This is implemented via a macro called $CHECK-STACK(#,#); which will terminate the execution if the stack pointer exceeds $MXSTACK. This check takes some time (not much) but to optimize the speed of a calculation, one might want to redefine it as a null macro once one is moving to production runs.

REPLACE {$CHECK-STACK(#,#);} WITH {;}

Even if the above macro is nulled out, EGSnrc continues to verify that there is adequate space on the stack whenever radiative splitting is being used.

3.7.2 Status of the STACK at various AUSGAB calls

In EGS4, the general rule was that after an interaction, the lowest energy particle was always on the top of the STACK. This general rule has been relaxed in EGSnrc, partially because of the new physics, and partially because memory is not as expensive as it once was.

With the addition of relaxation events in EGSnrc, the possibilities about what is on the stack after various events has become more complex than in EGS4. For example, after a Compton scattering event in EGS4 (IARG=18), one could count on the STACK having one more particle on it compared to just before the call (IARG=17). In EGSnrc, when bound compton is being simulated, this is no longer the case. Firstly, because of the rejection techniques used to determine if the event actually took place (see section 2.2.2, page 30) it is possible that only the original photon is on the stack. At the opposite extreme, the scattered photon and electron may be on the STACK along with 2 or 3 relaxation particles (fluorescent x-rays, Auger electrons, Coster-Kronig electrons). Another complication occurs if Russian Roulette is being used since in this case there can be events in which there is nothing left on the STACK after the event (e.g. after a pair event where the particles are discarded). To help sort out these situations, EGSnrc has the variable NPOld in COMIN STACK which points to the position on the stack of the initiating particle (the photon prior to Compton scattering, Rayleigh scattering, pair production, photo-electric event or the electron prior to Moller scattering or a bremsstrahlung event, etc).

Another change with EGSnrc is that the ordering of the resultant particles is not rigorously set as lowest to highest energy. This saves computing time and with the reduced cost of memory, the issue of the size of the STACK is not so critical, at least not for low energy simulations (<100 MeV). However, for high-energy simulations this may cause problems. To overcome these the user code could define the macros $PARTICLE-SELECTION-MOLLER;
(where MOLLER can be any interaction) to sort the stack by energy after whatever interactions
needed it. These macros are by default null macros, but they are placed immediately after the call to each subroutine which samples a type of event.

The ordering on the STACK is summarized in the following.

Photoelectric NPold points at the photoelectron unless the initial photon energy is < 1 keV in which case there is an error message and an electron with the photon’s energy is created. Another exception occurs if the photon’s energy is less than the N-shell binding (which can only occur for $Z \geq 96$), in which case EDEP is set to the photon’s energy and a photon of energy 0.0 is left at NPold. For normal events, the particles from NPold+1 to NP are due to relaxation events. If internal Russian Roulette is being played (see section 3.10.3), it is possible for NP to be NPOLD - 1 after the event is all there is no fluorescent photon and all the resulting electrons are killed by the Russian Roulette.

Compton scattering For Klein-Nishina modelling, the scattered photon and electron are in NPold and NPold+1 = NP respectively (i.e. the energy is not ordered). When bound compton scattering is being modelled, there are several possibilities. At one extreme, since a rejection technique is used, the scattering may not occur. In this case, NPold = NP. If the scattering occurs, then the scattered photon and compton electron are in NPold and NPold+1, as in the Klein-Nishina case. If there are any relaxation particles (i.e. NP > NPold+1), they are found in NPold+2 to NP. There is a slight complication if the internal Russian Roulette is being used (see section 3.10.3) since, if all the electrons disappear because of Russian Roulette, then NPold=NP. To distinguish these two cases, the flag _survived_RR can be used. It has a value 0 for the case of an unbound interaction being rejected and has a value > 0 if the interaction occurred and all secondaries were eliminated by Russian Roulette.

Pair Production For pair production the electron and positron are in NPold and NPold+1 = NP with the lower energy particle on the top of the STACK (at NP). If internal Russian Roulette kills the electron - positron pair, then, NP = NPold-1 unless this would leave NP = 0, in which a zero energy photon is placed on the STACK with NP = 1.

Rayleigh scattering In this case, the photon is still at NPold.

Brem production In this case, the resulting electron is always at NPold and the photon is on top of the STACK at NPold+1, i.e. the lowest energy particle is not necessarily on the top of the STACK. When bremsstrahlung splitting is being used. The photons are between NPold+1 and NP. Note that they are not ordered by energy.

Moller scatter Here the resulting, lower energy electron is in NPold+1 = NP.

Bhabha scatter The resulting positron and electron are at NPold and NPold+1, ordered by their energies.

Annihilation The two resulting photons are at NPold and NPold+1 unless bremsstrahlung splitting is being used in which case the photons go from NPold to NP. The particle energies are not ordered.
3.8 Terminating particle histories

The standard method to terminate a history is by setting IDISC to a non-zero value in HOWFAR (see section 3.5, page 118). Another method is to set the weight of a particle to 0.0, usually in AUSGAB under some conditions (e.g. when doing Russian Roulette). This technique is used in EGS4 by checking the weight of a particle as it enters HOWFAR and setting IDISC non-zero if the weight is zero. This is somewhat wasteful since it means that various parameters are calculated for this particle, despite the fact that it is going to be discarded. In particular, we found that if we were also using the standard photon forcing macro we got into an infinite loop. This could have been corrected by re-coding the macro to handle weight 0.0 particles differently, but it was decided that we could save more time by adding a test at the start of the new electron or new photon loops whereby a particle is discarded immediately via the USER-PHOTON-DISCARD or USER-ELECTRON-DISCARD if the weight is 0.0. This generates a call to AUSGAB with IARG = 3. Positrons discarded this way do not create annihilation photons. Note that ELKE is not available with this call since it is assumed the particle is being thrown away. One should still have HOWFAR set IDISC = 1 when the weight is 0.0, especially if the weight is set to zero for a particle which is not new.

3.9 Random number generators

EGSnrc is supplied with two random number generators, RANLUX and RANMAR. RANMAR is the generator used with EGS4 in the unix distributions[89, 90] and although it is known to fail certain theoretical tests, we have no experience of it causing problems. The RANLUX generator[91, 92], which is treated as the default generator with EGSnrc, is a similar sort of generator which comes with a variety of “luxury levels”, from 0 to 4 and a period of greater than 10^{165}. According to James, RANMAR has a quality somewhere between luxury level 1 and 2 of RANLUX (http://wwwinfo.cern.ch/asdoc/shortwrupsdir/v115/top.html) and we have found that it gives incorrect answers in some practical EGSnrc calculations with luxury level 0. However, with luxury level 1 or higher we have seen no problems. We have utilized RANLUX as the default rng because it allows explicit testing with higher quality sequences if there are ever any doubts.

Both random number generators offer several important features. Firstly, they are completely portable, producing the same sequences on different machines, although RANMAR occasionally gets slightly out of sequence and sometimes optimizers on a given machine will cause the sequences to differ. We have not seen this behaviour with RANLUX. An even more important feature is that either generator can be initialized and guaranteed to produce a random number sequence which is independent from other sequences. This is very useful for doing runs in parallel on multiple machines.

The default generator is defined in $\$HEN_HOUSE/specs/all_common.spec by the statement RANDOM = $(EGS_SOURCEDIR)ranlux. This can be changed to ranmar or, for individual user codes, it can be changed by adding the statement RANDOM = $(EGS_SOURCEDIR)ranmar to the user_code.make file, somewhere before the SOURCES = statement (if it exists). See Report PIRS-877 for further information about make files in the EGSnrcMP environment[11].
These files provide the following macros which the user is free to use in their user code:

```plaintext
;COMIN/RANDOM/;
$RANDOMSET#;
$DEFAULT-LL (1 by default)
$RNG-INITIALISATION; (which is only needed optionally)
$INITIALIZE RNG USING # AND #; (a more useful version of the above)
$STORE RNG STATE ON UNIT #;
$PUT RNG STATE ON UNIT #;
$RETRIEVE RNG STATE FROM UNIT #;
$SHOW-RNG-STATE(#);
$PRINT-RNG-STATE(#,#);
$RING-INPUTS(#,#,#,#); (uses GET_INPUTS routine)
```

To generate a random number, say `RNUMBER`, include:

```plaintext
$RANDOMSET RNUMBER;
```

Wherever the user needs to use `$RANDOMSET#;`, they must ensure `COMIN/RANDOM/` is present. If the user is happy with luxury level 1 and the same sequence for each calculation, the RANLUX generator is self-initializing. However, to use other luxury levels or other sequences, the user code should include a statement of the type:

```plaintext
$INITIALIZE RNG USING luxury_level AND iseed;
```

where `luxury_level` is an integer between 0 and 4 and `iseed` is any positive integer (and if left 0, a default of 314159265 is used).

For a standard production run of one of the NRC user codes (CAVRZnrc for 60Co photons incident on a thimble chamber with splitting of 130) we get the timing results shown in table 7, although these values are revised from the pre-2003 printings and depend on the details of any simulation. Given the problems encountered using luxury level 0, luxury level 1 has been adopted as the default with EGSnrc. However, given a new coding of RANMAR to generate groups of random numbers using a function call, we find that RANMAR is faster (by 5% say overall). The penalty for using higher RANLUX luxury levels becomes increasingly more important at higher luxury levels and a user may want to verify that for their simulations, use of the higher level makes no difference. We would appreciate being informed of any cases found where luxury level 1 was not adequate.

When using the RANMAR generator, the initialisation looks like:

```plaintext
$INITIALIZE RNG USING IXX AND JXX;
```

where `IXX` and `JXX` are two integers seeds with:

```plaintext
0 < IXX <= 31328 and 0 < JXX <= 30081
```

The other macros are for use when saving the state of a random number generator to disk and possibly restarting a run or other book keeping tasks.

There are two files available for use in codes doing correlated sampling. These files are:

`ranlux.correlations` or `ranmar.correlations`
Table 7: Calculation times for runs with CAVRZnrc for the same calculations along with estimates of the time taken by the random number generator at different luxury levels. The results for luxury level 0 are different when high precision is obtained.

<table>
<thead>
<tr>
<th>Luxury level</th>
<th>total CPU time</th>
<th>time taken by RANLUX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>0</td>
<td>194</td>
<td>24</td>
</tr>
<tr>
<td>1</td>
<td>210</td>
<td>39</td>
</tr>
<tr>
<td>2</td>
<td>240</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td>315</td>
<td>142</td>
</tr>
<tr>
<td>4</td>
<td>415</td>
<td>242</td>
</tr>
</tbody>
</table>

These files define the macros:

```
$STORE-RNG(#);
$RESET-RNG(#);
```

which store and reset an arbitrary number of random number states (≤$MXRNGDIM which is 5 by default).

Note: because of how the RANLUX generator is implemented, it is essential that any redefined COMIN/RANDOM must include an integer variable called rng_seed. This variable is initialized to 999999 in egs_set_default which replaces BLOCK DATA in the EGSnrcMP environment[11].

3.10 Variance Reduction Options

Three forms of variance reduction techniques have been implemented directly into the EGSnrc system in order to allow for more efficient calculations. With EGS4 user codes they had to be implemented via calls to AUSGAB or other means, and this led to inefficiencies. In all three cases, if the user does nothing to turn on these options explicitly, then they are NOT used.

3.10.1 Range rejection

Within EGSnrc the range of the electron is available at every step. This is not the true range, but the range determined by:

\[
E_{\text{RANGE}} = \int_{E_{\text{min}}}^{E} \frac{dE'}{L(E', AE)}
\]

where \(L(E', AE)\) is the restricted stopping power for a given value of AE and \(E_{\text{min}}\) is the lowest energy for which PEGS4 produces a stopping power (this is somewhat less than AE,
but not much). The value of E_RANGE is an upper limit on the distance an electron can travel in the simulation because discrete events may shorten the pathlength.

Range rejection is implemented by a macro $RANGE-DISCARD checks the electron range against the distance to the nearest boundary on every step. The history is terminated whenever the range is shorter than the distance to the boundary and if requested by the user. Since the range and distance are calculated for other purposes, this check is very fast and can save a large amount of time, especially in large regions. Since this is a user controlled discard, it goes via the USER-ELECTRON-DISCARD, generating and IARG = 3 call to AUSGAB.

This technique does involve an approximation since the electron could emit a brem photon which could escape the region, even if the electron itself could not. To control the extent of this approximation, the range rejection is done only if the electron’s energy is below an energy threshold which can be set for every region, viz $e_{max _rr}$. By judicial choice of this value, the approximation can be made very accurate while still obtaining very significant gains in efficiency (see ref [75] for a detailed discussion, where the parameter ESAVE in that paper is equivalent to $e_{max _rr}$ here).

Range rejection is implemented on a regional basis by setting the flags $i_do_rr(irl)$ to 1 for all regions irl for which range rejection is required and by assigning values to the array $e_{max _rr}(irl)$. Note that if $e_{max _rr}(irl)$ is not assigned a value, its default value of 0.0 effectively turns off range rejection, even if $i_do_rr(irl)$ value is 1. Both arrays are in COMIN/EGS-VARIANCE-REDUCTION. They need be set before the first call to SHOWER. Note that $e_{max _rr}(irl)$ refers to the electrons total energy (i.e. includes the rest mass, as does ECUT).

The user is also free to implement other, possibly more efficient forms of range rejection. This is done by defining the macro $USER-RANGE-DISCARD which is called immediately after the above macro since in general, the macro $RANGE-DISCARD executes very quickly and can avoid use of the user’s, presumably more time consuming range rejection. An example of $USER-RANGE-DISCARD is given in CAVRZnrc where range rejection is done on any particle which cannot reach the region where the dose is required. This can terminate many histories earlier than $RANGE-DISCARD because it tests against getting to the region of interest as opposed to just getting out of the local region. However, it requires some approximations and takes longer to compute on each step.

3.10.2 Bremsstrahlung Splitting

Bremsstrahlung splitting is a technique which can provide a factor of 4 or more improvement in efficiency when modelling brem beams generated by medical accelerators[75]. Each time an electron emits a photon, the simulation emits an arbitrary number of brem photons with their weight suitably reduced. The electron’s energy is decremented by the energy given off by one of these photons. This preserves accurate energy loss straggling of the electron at the expense of no longer having exact energy conservation for each history, although energy is conserved “on average”. The advantage of doing this splitting within the routine BREMS is that various constants for the electron’s energy are only calculated once and the sampling is therefore faster. The electron is always found at NPold on the STACK and the photons are not sorted by energy.
To accomplish bremsstrahlung splitting, the variable \texttt{nbr_split} which is in \texttt{COMIN/EGS-VARIANCE-REDUCTION} must be set to the number of brem photons wanted at each discrete interaction. See section 2.4.2.iv (page 65).

There are no internal limits on the number of splits that may be used except that the stack size, \texttt{$MXSTACK$}, may not be exceeded. The user code can override the value of \texttt{$MXSTACK$} if a larger value is needed.

Note that once set, EGSnrc will split brems at all generations. This is appropriate when Russian Roulette is being played since it means that second generation bremsstrahlung photons will have the same weight as first generation photons. However, it can become very time consuming and counter productive when Russian Roulette is not being played because second and higher order bremsstrahlung photons have much smaller weights. To overcome this problem, the user might want to use calls to \texttt{AUSGAB} to reduce the value of \texttt{nbr_split} after each first generation bremsstrahlung interaction and then re-initialize it at the start of the next history. This is the technique used in the BEAM code[75, 93].

\subsection{3.10.3 Russian Roulette}

Russian Roulette is a standard variance reduction technique which in \texttt{EGS4} had to be done via call to \texttt{AUSGAB}. This works but is somewhat slower than need be. For example, say that the particles created in a pair event are to be discarded. In \texttt{EGS4} the sampling routines must still determine all their parameters and then remove them from the stack whereas in EGSnrc Russian Roulette is played prior to the sampling, and then not done if not needed. In less dramatic cases, the EGSnrc approach avoids extra steps were the \texttt{EGS4} system had to go through to eliminate the particle.

Russian Roulette, as implemented in EGSnrc, is a user option which is turned on by setting the integer flag \texttt{i_play_RR} to 1 and by setting the probability \texttt{prob_RR} to an appropriate value. Both these parameters are in \texttt{COMIN/EGS-VARIANCE-REDUCTION}.

If Russian Roulette is being used in conjunction with bremsstrahlung splitting, the appropriate value of \texttt{prob_RR} is \texttt{1./nbr_split}.

The integer variable \texttt{i_survived_RR} is also in \texttt{COMIN/EGS-VARIANCE-REDUCTION}. It is 0 if Russian Roulette is not played or if all particles survived when Russian Roulette was played on the previous interaction. Otherwise, its value tells how many particles were discarded by Russian Roulette on the previous interaction.

\subsection{3.11 Complete Users Codes Examples}

For several examples of complete EGSnrc user codes, see the TUTOR codes discussed in section 4. The EGSnrc distribution also comes with several NRC user codes which have examples of many features[94] but they have grown up over the years and have been patched so often that they are hard to follow.
3.12 Some Utility codes

3.12.1 SUBROUTINE WATCH

SUBROUTINE WATCH is in the file nrcaux.mortran. With a few simple statements in a user code, it can print a listing to the screen of what is happening in each history. This is very useful for debugging purposes. We strongly recommend that it be used with all user codes. It also creates output suitable for the EGS_Windows graphic display system[95]. For more information, see tutor4.mortran for an example of a simple code with WATCH included (see section 4.4, page 150).

3.12.2 ranlux_test.mortran and ranmar_test.mortran

These little codes can be used to verify that the ranlux and ranmar random number generators are working correctly on your system. Since these generators produce machine independent random numbers, the values should be identical on all machines. They are found on $HEN_HOUSE/user_codes/ranlux_test/ and $HEN_HOUSE/user_codes/ranmar_test/. Each can be compiled and executed as a user code. The output is self explanatory but basically they both calculate 1 million random numbers and compare their sums to the expected values. See the comments at the top of the source code for further information.

Note that even with identical random number sequences, the results of a full EGSnrc calculation may not be identical on different machines or at different optimization levels. This is because statements like

\[
\text{IF (A < C/D)) GOTO n;}
\]

may branch differently, depending on how many digits are stored in C/D on different machines or at different levels of optimization.

3.12.3 EXAMIN

The user code EXAMIN is distributed with the system. It provides easy access to the underlying data produced by PEGS4. EXAMIN tabulates many cross sections and if you have installed the xmgr graphics package it also plots the data (see the file $HEN_HOUSE/xvgrplot/HOW_to_get_xmgr for information about xmgr). The code outputs quantities such as the gamma mean free path, the relative contributions from the various components of the photon cross sections, the mean free path to discrete interactions for electrons, etc. It is a useful template for seeing how to access the data base. Note that the data presented are those from PEGS4. Although EGSnrc can model bound Compton scattering, this is done using a rejection technique and this code does not allow access to the bound Compton cross sections, only the Klein Nishina cross sections. If you are using the xmgrace package instead of the xmgr package, xmgr must be replaced by xmgrace in the source code for examin.mortran in two obvious places.
3.12.4 test_distribution

This script is found on $HEN_HOUSE/scripts after installation and the command test_distribution
is aliased to it in egsnrc_cshrc_additions and egsnrc_bashrc_additions. It is executed
with no arguments, and to capture the output as:

```
  test_distribution >& test_distribution.output &
```

This script compiles all the user and tutorial codes and runs them with short test input files.
You must read the output file carefully since it will continue even when some or all of the
codes fail to compile or execute! Once you get this script to execute cleanly your system is
definitely in good shape. The results for running this script on various systems are found on
$HEN_HOUSE/test_distribution_outputs.
4 Some Short EGSnrc Tutorial Programs

EGSnrc is a powerful system which has been used in order to produce some very complex Monte Carlo simulations. In spite of this complexity the user’s interface with the system is, in principle, very simple. In the following series of tutorial programs we use various aspects of these user interfaces in what we refer to as EGSnrc User Codes. In these User Codes we will introduce some of the basic scoring techniques and, at the same time, will demonstrate the power of the Mortran3 language. Formal documentation in the form of EGSnrc and PEGS4 User Manuals can be found in sections 3 and 6, respectively. An EGSnrc User Guide to Mortran3 can be found in section 7 and an overview of the system considerations is given in section 8. With the introduction of the EGSnrcMP environment, the user has a more flexible interface at the system level, but that is described fully in Report PIRS-877[11].

These tutorials are written on the assumption that the reader is generally familiar with the contents of the EGSnrc Reference Manual (section 3 of this manual, page 97), although a complete understanding is not required. In fact, the purpose of these tutorials is to make these manuals more understandable. Although the programs presented here are very simple in construction, it should become clear that with various extentions to them, generally of a bookkeeping nature, a wide range of important problems can be studied. In the following sections, sometimes only partial listings of User Codes are presented. The complete source for each (and the corresponding Fortran 77 code) is found on the EGSnrc Distribution.

Note that we changed the default parameters in EGSnrc after this section of the manual was written so there will be some minor differences when you run the calculations (e.g. bound Compton scattering and atomic relaxations are modelled by default). To see the expected output, see $HEN_HOUSE/test_distribution_outputs/.

To run the tutorials, a special PEGS4 data set called tutor_data.pegs4dat is on the distribution at $HEN_HOUSE/pegs4/data. To execute the tutorials issue the command:

```
ex tutor1 "" tutor_data or tutor1 -p tutor_data
```

where the "" signifies that no input file is required (except for tutor6, tutor7). Note that with the EGSnrcMP environment there are two other alternatives described in PIRS-877[11] (viz., the right hand form above or use the egs_gui). To compile the tutor codes, copy any one to your own user-code area if it is not already there, eg:

```
cd $EGS_HOME/tutor1
   cp $HEN_HOUSE/tutor1/tutor1.mortran .
   mf tutor1
```

As alternatives to the mf command, when using the EGSnrcMP environment, one may use the egs_gui or simply issue the command make from $EGS_HOME/tutor1 (see PIRS-877[11]). The meaning of the commands mf and ex are discussed in section 8 (page 259).

4.1 tutor1.mortran: 20 MeV e⁻ through 1 mm of Ta

The geometry of all the tutorials is the same, namely, a semi-infinite slab of material is placed in a vacuum and a pencil beam of photons or electrons is incident normal to the surface. The slab is in the X-Y plane and the particles are incident at the origin travelling along the Z-axis. In the first problem, a beam of 20 MeV electrons is incident on a 1 mm thick plate of tantalum. In order to use EGSnrc to answer the question “What comes out the far side of the plate?”, we have created the user code tutor1.mortran shown below.

Last edited 2003-11-12 09:23:49-05
Figure 19: *tutor1.mortran* without any comments.

```
%M
!INDENT M 4;
!INDENT F 2;
$IMPLICIT-NONE; $INTEGER I,IQIN,IRIN; $REAL XIN,YIN,ZIN,EIN,WTIN,UIN,VIN,WIN;
REPLACE {$$MXMED} WITH {1}
REPLACE {$$MXREG} WITH {3}
REPLACE {$$MXSTACK} WITH {15}
REPLACE {;COMIN/GEOM/;} WITH {;COMMON/GEOM/ZBOUND;$REAL ZBOUND;}
REPLACE {$$CALL-HOWNEAR(#);} WITH {;CALL HOWNEAR({P1},X(NP),Y(NP),Z(NP),IRL);}
;COMIN/BOUNDS,GEOM,MEDIA,MISC,THRESH/;
CHARACTER*4 MEDARR(24);
DATA MEDARR /$$S'TA',22*' '/;
CALL egs_init;
DO I=1,24 [MEDIA(I,1)=MEDARR(I);]
/MED(1),MED(3)/=0;MED(2)=1;
ECUT(2)=1.5;
PCUT(2)=0.1;
;OUTPUT;(' Start tutor1'//' CALL HATCH to get cross-section data'/);
CALL HATCH;
;OUTPUT AE(1)-0.511, AP(1);
(/' knock-on electrons can be created and any electron followed down to'
/T40,F8.3,' MeV kinetic energy'/
' brem photons can be created and any photon followed down to ',
/T40,F8.3,' MeV ');
ZBOUND=0.1;
;OUTPUT;(/T19,'Kinetic Energy(MeV) \',T40,'charge',T48,
'angle w.r.t. Z axis-degrees');
IQIN=-1; EIN=20.511; /XIN,YIN,ZIN/=0.0;
/UIN,VIN/=0.0;WIN=1.0; IRIN=2; WTIN=1.0;
DO I=1,10[OUTPUT I;(' Start history I4);
CALL SHOWER(IQIN,EIN,XIN,YIN,ZIN,UIN,VIN,WIN,IRIN,WTIN); ]
CALL egs_finish;
STOP;END;

SUBROUTINE AUSGAB(IARG);
$IMPLICIT-NONE;
$INTEGER IARG; $REAL EKINE, ANGLE; COMIN/STACK/;
IF(IARG = 3)[ ANGLE=ACOS(W(NP))*180./3.14159;
IF(IQ(NP) = 0)[EKINE=E(NP);] ELSE [EKINE=E(NP)-0.511;]
OUTPUT EKINE,IQ(NP),ANGLE;(T21,F10.3,T33,I10,T49,F10.1); ]
RETURN;END;
```

4: Tutorial programs
SUBROUTINE HOWFAR;
$IMPLICIT-NONE;
$REAL TVAL;
COMIN/STACK,EPCONT,GEOM/;
IF(IR(NP) = 3) [IDISC = 1;RETURN;]
ELSEIF(IR(NP) = 2)[
 IF(W(NP) > 0.0)[
 TVAL = (ZBOUND - Z(NP))/W(NP);
 IF(TVAL > USTEP)[RETURN;] ELSE[USTEP = TVAL; IRNEW=3; RETURN;]
]
 ELSEIF(W(NP) < 0.0)[TVAL = -Z(NP)/W(NP);
 IF(TVAL > USTEP)[RETURN;] ELSE[USTEP = TVAL; IRNEW = 1; RETURN;]
]
 ELSEIF(W(NP) = 0.0)[RETURN;]
]
ELSEIF(IR(NP) = 1)[
 IF(W(NP) > 0.0)[USTEP = 0.0;IRNEW = 2;RETURN;] ELSE[IDISC=1;RETURN;]
]
END;
SUBROUTINE HOWNEAR(tperp, x, y, z, irl);
$IMPLICIT-NONE;
$REAL tperp, x, y, z;
$INTEGER irl;
;COMIN/GEOM/;
IF(irl = 3) [OUTPUT;('Called HOWNEAR in region 3'); RETURN;]
ELSEIF(irl = 2)[tperp = min(z, (ZBOUND - z));]
ELSEIF(irl = 1)[OUTPUT;('Called HOWNEAR in region 1'); RETURN;]
END;

Needless to say, the above User Code listing is somewhat difficult to read, and therefore confusing, in spite of the fact that it is complete. The following is a heavily commented version of the same code, where the structure and readability of the Mortran3 language clearly demonstrates itself.
Figure 20: Commented version of tutor1.mortran

```fortran
%L
%E
" $Id tutor1.mortran,v 1.2 2003/11/03 18:51:53 course Exp $ "
"INDENT M 4; "indent each mortran nesting level by 4"
"INDENT F 2; "indent each fortran nesting level by 2"

"*********************************************************************"
" An EGSnrc user code. It lists the particles escaping from the back 
" of a 1 mm Ta plate when a pencil beam of 20 MeV electrons 
" is incident on it normally. 
" For PIRS-701: A simple example which 'scores' by listing particles
" D.W.O.R. JAN 1985 updated to EGSnrc Jan 2000
" The following units are used: unit 6 for (terminal) output 
" unit 12 is PEGS cross-section file
" "
"*********************************************************************"
;Copyright NRC
$IMPLICIT-NONE; "default is IMPLICIT NONE"
$INTEGER I,IQIN,IRIN; "$INTEGER defaults to INTEGER*4"
$REAL XIN,YIN,ZIN,EIN,WTIN,UIN,VIN,WIN; "$REAL defaults to REAL*4"
"---------------------------------------------------------------------"
"STEP 1: USER-OVERRIDE-OF-EGSnrc-MACROS
" "---------------------------------------------------------------------"
REPLACE {$MXMED} WITH {1} "only 1 medium in the problem(default 10)"
REPLACE {$MXREG} WITH {3} "only 3 geometric regions (default 2000)"
REPLACE {$MXSTACK} WITH {15}"less than 15 particles on stack at once"
"define a common to pass information to the geometry routine HOWFAR"
REPLACE {;COMIN/GEOM/;} WITH {;COMMON/GEOM/ZBOUND;$REAL ZBOUND;} 
REPLACE {;CALL-HOWNEAR(#);} WITH { 
;CALL HOWNEAR({P1},X(NP),Y(NP),Z(NP),IRL); 
}
```

4: Tutorial programs
;COMIN/BOUNDS,GEOM,MEDIA,MISC,THRESH/;"Note ; before COMIN"
" The above expands into a series of COMMON statements"
" BOUNDS contains ECUT and PCUT"
" GEOM passes info to our HOWFAR routine"
" MEDIA contains the array MEDIA"
" MISC contains MED"
" THRESH contains AE and AP"
"---"
"STEP 2 PRE-HATCH-CALL-INITIALIZATION "
"---"
CHARACTER*4 MEDARR(24);
DATA MEDARR /$S'TA',22*' '/; "place medium name in an array"
" $S is a MORTRAN macro to expand strings"
" Step 0: Initialize the EGSnrc system. "
call egs_init;
DO I=1,24 [MEDIA(I,1)=MEDARR(I)]; "this is to avoid a DATA STATEMENT for"
" a variable in COMMON"
"NMED and DUNIT default to 1, i.e. one medium and we work in cm"
/MED(1),MED(3)/=0;MED(2)=1; "vacuum in regions 1 and 3, Ta in region 2"
ECUT(2)=1.5; " terminate electron histories at 1.5 MeV in the plate"
PCUT(2)=0.1; " terminate photon histories at 0.1 MeV in the plate"
" only needed for region 2 since no transport elsewhere"
" ECUT is total energy = 0.989 MeV kinetic energy"
"---"
"STEP 3 HATCH-CALL "
"---"
;OUTPUT;(' Start tutor1'/" CALL HATCH to get cross-section data'/);
CALL HATCH; " pick up cross section data for TA"
" data file must be assigned to unit 12"
;OUTPUT AE(1)=0.511, AP(1); "/' knock-on electrons can be created and any electron followed down to'
'/T40,F8.3,' MeV kinetic energy'/
' brem photons can be created and any photon followed down to ',
'/T40,F8.3,' MeV ');
"Compton events can create electrons and photons below these cutoffs" cont...
Figure 20: tutor1.mortran - continued

"STEP 4 INITIALIZATION-FOR-HOWFAR and HOWNEAR"
"---"
ZBOUND=0.1; plate is 1 mm thick
"---"

"STEP 5 INITIALIZATION-FOR-AUSGAB"
"---"
"Print header for output - which is all AUSGAB does in this case"
OUTPUT(/T19,'Kinetic Energy(MeV)',T40,'charge',T48,'angle w.r.t. Z axis-degrees');
"---"

"STEP 6 DETERMINATION-OF-INICIDENT-PARTICLE-PARAMETERS"
"---"
"Define initial variables for 20 MeV beam of electrons incident"
"perpendicular to the slab"
IQIN=-1; incident charge - electrons
EIN=20.511; 20 MeV kinetic energy
/XIN,YIN,ZIN/=0.0; incident at origin
/UIN,VIN/=0.0;WIN=1.0; moving along Z axis
IRIN=2; starts in region 2, could be 1
WTIN=1.0; weight = 1 since no variance reduction used
"---"

"STEP 7 SHOWER-CALL"
"---"
"initiate the shower 10 times"
DO I=1,10[
 OUTPUT I;(' Start history',I4);
 CALL SHOWER(IQIN,EIN,XIN,YIN,ZIN,UIN,VIN,WIN,IRIN,WTIN);
]
"---"

"STEP 8 OUTPUT-OF-RESULTS"
"---"

"STEP 9 finish run"
"---"
call egs_finish;
STOP;END; cont...
SUBROUTINE AUSGAB(IARG);

In general, AUSGAB is a routine which is called under a series of well defined conditions specified by the value of IARG (see the EGSnrc manual for the list). This is a particularly simple AUSGAB. Whenever this routine is called with IARG=3, a particle has been discarded by the user in HOWFAR. We get AUSGAB to print the required information at that point.

$IMPLICIT$-NONE;
$INTEGER$ IARG;
$REAL$ EKINE, ANGLE;
COMIN/STACK/;

IF(IARG = 3)[
 ANGLE=ACOS(W(NP))*180./3.14159;"angle w.r.t. Z axis in degrees"
]

IF(IQ(NP) = 0)[EKINE=E(NP);]
ELSE [EKINE=E(NP)-0.511;]"get kinetic energy"
OUTPUT EKINE,IQ(NP),ANGLE;(T21,F10.3,T33,I10,T49,F10.1);]
RETURN;END;"END OF AUSGAB"

SUBROUTINE HOWFAR;

The following is a general specification of HOWFAR. Given a particle at (X,Y,Z) in region IR and going in direction (U,V,W), this routine answers the question, can the particle go a distance USTEP without crossing a boundary? If yes, it merely returns. If no, it sets USTEP=distance to boundary in the current direction and sets IRNEW to the region number on the far side of the boundary (this can be messy in general!).

The user can terminate a history by setting IDISC>0. Here we terminate all histories which enter region 3 or are going backwards in region 1.
$\text{COMMON STACK contains } X, Y, Z, U, V, W, \text{IR and NP(stack pointer)}$

$\text{COMMON EPCONT contains IRNEW, USTEP and IDISC}$

$\text{COMMON GEOM contains ZBOUND}$

IF(IR(NP) = 3) {
 IDISC = 1; RETURN; "terminate this history: it is past the plate"
}

ELSEIF(IR(NP) = 2) ["We are in the Ta plate - check the geometry"

 IF(W(NP) > 0.0) {
 "going forward - consider first since most frequent"
 TVAL = (ZBOUND - Z(NP))/W(NP); "TVAL is dist to boundary"
 " in this direction"
 IF(TVAL > USTEP)[RETURN; "can take currently requested step"]
 ELSE[USTEP = TVAL; IRNEW = 3; RETURN;]
 } "END OF W(NP)>0 CASE"

 ELSEIF(W(NP) < 0.0) ["going back towards origin"
 TVAL = -Z(NP)/W(NP); "distance to plane at origin"
 IF(TVAL > USTEP)[RETURN; "can take currently requested step"]
 ELSE[USTEP = TVAL; IRNEW = 1; RETURN;]
 } "END W(NP)<0 CASE"

 ELSEIF(W(NP) = 0.0) ["cannot hit boundary" RETURN;]
]
"end of region 2 case"

ELSEIF(IR(NP) = 1) ["in region with source"

 IF(W(NP) > 0.0) ["this must be a source particle on z=0 boundary"
 USTEP = 0.0; IRNEW = 2; RETURN;
]
 ELSE["it must be a reflected particle-discard it"
 IDISC = 1; RETURN;
]
] "end region 1 case"

END; "END OF SUBROUTINE HOWFAR"

cont...
SUBROUTINE HOWNEAR(tperp, x, y, z, irl);

" The following is a general specification of HOWNEAR
" Given a particle at (x,y,z) in region irl, HOWNEAR answers the
" question, What is the distance tperp to the closest boundary?
" In general this can be a complex subroutine.

"***"$IMPLICIT-NONE;
$REAL tperp, x, y, z;
$INTEGER irl;

;COMIN/GEOM/; " COMMON GEOM contains ZBOUND"

IF(irl = 3) [OUTPUT;('Called HOWNEAR in region 3'); RETURN;]
ELSEIF(irl = 2) ["We are in the Ta plate - check the geometry"
 tperp = min(z, (ZBOUND - z));]
ELSEIF(irl = 1) [OUTPUT;('Called HOWNEAR in region 1'); RETURN;]
END;"end of subroutine HOWNEAR"

"================================ end of tutor1.mortran====================="
This User Code produces the following output on unit 6 (the terminal by default).

Figure 21: Output of tutor1.mortran using the EGSnrcMP environment[11] on Linux.

```
33_irs45_group1>tutor1 -p tutor_data
========================================================================
========================================================================
configuration.........................g77
user code..............................tutor1
pegs file..............................tutor_data on HEN_HOUSE
using host............................irs45
output file(s)........................test
========================================================================

Start tutor1

CALL HATCH to get cross-section data
RAYLEIGH DATA AVAILABLE FOR MEDIUM 1 BUT OPTION NOT REQUESTED.
   Reading screened Rutherford MS data ........ done

Reading spin data base from /usr/people/course/HEN_HOUSE/data/spinms.data
EGSnrc spin data, version 2.0
Data generated on a machine with 1234 endianess
The endianess of this CPU is 1234
Ranges: 1.00 100.00 0.30054 1.00000
  medium 1 ..................... done
  Medium 1 sige = 1.7946409 1.78708172

Initializing tmxs for estepe = 0.25 and ximax = 0.5
Output from subroutine EDGSET:
_________________________
  Atomic relaxations requested!
Reading photo-absorption data ..... Done
Reading relaxation data .... Done
Reading photo cross section data .... Done
Bound Compton scattering requested, reading data ...... Done
Initializing Bound Compton scattering ......
Medium 1 has 21 shells:
  1 861 1 0.02740 0.141E+01 67.413
  | |
  20 880 7 0.05479 0.944E+02 0.008
  21 881 7 0.01370 0.221E+03 0.008
...... Done.
```

4: Tutorial programs
EGSnrc SUCCESSFULLY ‘HATCHED’ FOR ONE MEDIUM.
knock-on electrons can be created and any electron followed down to
0.189 MeV kinetic energy
bremsstrahlung photons can be created and any photon followed down to
0.010 MeV

<table>
<thead>
<tr>
<th>Kinetic Energy(MeV)</th>
<th>charge angle w.r.t. Z axis-degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start history 1</td>
<td></td>
</tr>
<tr>
<td>0.962</td>
<td>0</td>
</tr>
<tr>
<td>17.185</td>
<td>-1</td>
</tr>
<tr>
<td>6.1</td>
<td>24.0</td>
</tr>
<tr>
<td>Start history 2</td>
<td></td>
</tr>
<tr>
<td>0.268</td>
<td>0</td>
</tr>
<tr>
<td>0.159</td>
<td>0</td>
</tr>
<tr>
<td>0.935</td>
<td>0</td>
</tr>
<tr>
<td>5.167</td>
<td>0</td>
</tr>
<tr>
<td>11.702</td>
<td>-1</td>
</tr>
<tr>
<td>21.9</td>
<td>26.0</td>
</tr>
<tr>
<td>26.7</td>
<td></td>
</tr>
<tr>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>21.7</td>
<td></td>
</tr>
<tr>
<td>Start history 3</td>
<td></td>
</tr>
<tr>
<td>1.110</td>
<td>0</td>
</tr>
<tr>
<td>17.168</td>
<td>-1</td>
</tr>
<tr>
<td>7.9</td>
<td>18.3</td>
</tr>
<tr>
<td>Start history 4</td>
<td></td>
</tr>
<tr>
<td>4.332</td>
<td>0</td>
</tr>
<tr>
<td>13.522</td>
<td>-1</td>
</tr>
<tr>
<td>9.9</td>
<td>42.6</td>
</tr>
<tr>
<td>Start history 5</td>
<td></td>
</tr>
<tr>
<td>0.335</td>
<td>0</td>
</tr>
<tr>
<td>17.751</td>
<td>-1</td>
</tr>
<tr>
<td>18.6</td>
<td>17.7</td>
</tr>
<tr>
<td>Start history 6</td>
<td></td>
</tr>
<tr>
<td>3.536</td>
<td>0</td>
</tr>
<tr>
<td>2.302</td>
<td>0</td>
</tr>
<tr>
<td>12.417</td>
<td>-1</td>
</tr>
<tr>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>Start history 7</td>
<td></td>
</tr>
<tr>
<td>0.229</td>
<td>0</td>
</tr>
<tr>
<td>0.179</td>
<td>0</td>
</tr>
<tr>
<td>17.369</td>
<td>-1</td>
</tr>
<tr>
<td>6.9</td>
<td>14.3</td>
</tr>
<tr>
<td>14.3</td>
<td></td>
</tr>
<tr>
<td>Start history 8</td>
<td></td>
</tr>
<tr>
<td>0.577</td>
<td>0</td>
</tr>
<tr>
<td>17.505</td>
<td>-1</td>
</tr>
<tr>
<td>28.3</td>
<td>37.2</td>
</tr>
<tr>
<td>37.2</td>
<td></td>
</tr>
<tr>
<td>Start history 9</td>
<td></td>
</tr>
<tr>
<td>0.266</td>
<td>0</td>
</tr>
<tr>
<td>17.087</td>
<td>-1</td>
</tr>
<tr>
<td>11.7</td>
<td>20.0</td>
</tr>
<tr>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>Start history 10</td>
<td></td>
</tr>
<tr>
<td>14.479</td>
<td>-1</td>
</tr>
<tr>
<td>46.8</td>
<td></td>
</tr>
</tbody>
</table>

Finished simulation
Elapsed time: 0.3 s (0.000 h)
CPU time: 0.1 s (0.000 h)
Ratio: 2.493
End of run Mon Nov 10 11:06:22 2003

==
Finished simulation
Elapsed time: 0.3 s (0.000 h)
CPU time: 0.1 s (0.000 h)
Ratio: 2.493
End of run Mon Nov 10 11:06:22 2003
==
By keeping track of many of these histories, we could answer a lot of questions about what comes out the far side of the plate, but it should be recognised that these are all bookkeeping extensions to the problem—the physics itself is already accomplished with EGSnrc and the relatively small amount of User Code listed above. The scoring routine for this problem is the simplest possible; namely, it outputs on the terminal some of the parameters of the various particles leaving the plate.

In addition, this User Code includes examples of the following items that are discussed further in the EGSnrc User Manual (section 3).

- Defining simple macro replacements for templates (e.g. the character string $MXMED is replaced by 1 everywhere in the EGSnrc system).
- The use of COMIN statements (which is an EGSnrc macro to allow easy insertion of COMMONS).
- The use of $REAL, $IMPLIED-NONE, $INTEGER.
- The technique required in order to define the array MEDIA
- The use of OUTPUT statements (which are an easy way to output things to Fortran Unit 6).
- The definition of calling parameters for the SHOWER routine.
- A very simple AUSGAB routine.
- The replacement of $CALL-HOWNEAR(#) with the recommended subroutine call.
- Simple HOWFAR and HOWNEAR subroutines.
- Relational and logical operators such as \texttt{\(\geq \text{ (.GE.)}, \& \text{ (.AND.)}, \sim \text{ (.NE.)} \) and \texttt{\(\mid \text{ (.OR.)} \)}}. The only warning is not to mix modes since this will generate errors (e.g., don’t use \texttt{IF(A=B.AND.C=D)}).

4.2 \texttt{tutor2.mortran: energy transmitted, reflected, deposited}

In this example we use the same geometry as above, but we want to score the fraction of the incident energy that is reflected from, transmitted through, and deposited in the plate using the default parameter settings. The coding is essentially the same as in \texttt{tutor1.mortran} except that COMMON/SCORE/ and a new array ESCORE are defined at Step 1. The latter is initialised to zero (Step 2) and subsequently printed out on the line printer (Step 8). The AUSGAB routine is considerably different as shown below.

AUSGAB is still very simple since all we need to do is to keep track of the energy deposited in the three regions. The variable EDEP (available through COMMON/EPCONT/) contains the energy deposited during a particular step for a variety of different IARG-situations, as described in the comments in fig 22 and further elaborated upon in section 3.7(page 121). In this example, but not always, we can sum EDEP for any value of IARG up to 4. Figure 23 shows the output from \texttt{tutor2.mortran}.
Figure 22: AUSGAB subroutine from tutor2.mortran

```
%E "tutor2.mortran"
"********************************************************************"
""
SUBROUTINE AUSGAB(IARG);
"
" In this AUSGAB routine for tutor2, we score the energy deposited 
" in the various regions. This amounts to the total energy 
" reflected, deposited and transmitted by the slab.
"
" For IARG=0, an electron or photon step is about to occur and we 
" score the energy deposited, if any. Note that only electrons 
" deposit energy during a step, and due to our geometry, electrons 
" only take steps in region 2 - however there is no need to check. 
" For IARG=1,2 and 4, particles have been discarded for falling 
" below various energy cutoffs and all their energy is deposited 
" locally (in fact EDEP = particles kinetic energy).
" For IARG=3, we are discarding the particle since it is in 
" region 1 or 3, so score its energy.
"
"********************************************************************"
IMPLICIT NONE;
INTEGER IARG,IRL;

COMIN/EPCONT,SCORE,STACK/; "we use EDEP from EPCONT,IR(NP) from STACK"
" ESCORE is passed in user defined COMIN SCORE"
IF(IARG <= 4) [ 
  IRL = IR(NP);" pick up current region number"
  ESCORE(IRL)=ESCORE(IRL)+EDEP;
]
RETURN;END;"end of AUSGAB"
```
Figure 23: Output from tutor2.mortran excluding some input data related outputs that are the same as in tutor1.

```
79_irs45_group1>ex tutor2 "" tutor_data
==========================================================================
==========================================================================
configuration............................................g77
user code................................................tutor2
pegs file................................................tutor_data on HEN_HOUSE
using host...............................................irs45
output file(s)...........................................test
==========================================================================
Start tutor2
CALL HATCH to get cross-section data
  |
 |
20 880 7 0.05479 0.944E+02 0.008
21 881 7 0.01370 0.221E+03 0.008
...... Done.
EGSnrc SUCCESSFULLY 'HATCHED' FOR ONE MEDIUM.
knock-on electrons can be created and any electron followed down to 0.189 MeV kinetic energy
bremsstrahlung photons can be created and any photon followed down to 0.010 MeV

For 10000 incident particles
Fraction of energy reflected from plate= 1.230%
Fraction of energy deposited in plate= 12.956%
Fraction of energy transmitted through plate= 85.814%

Total fraction of energy accounted for= 100.000%

==========================================================================
Finished simulation
Elapsed time: 1.0 s ( 0.000 h)
CPU time: 0.9 s ( 0.000 h)
Ratio: 1.011
End of run Tue Nov 11 11:46:59 2003
==========================================================================
```
4.3 tutor3.mortran: NaI response function

The geometry in this example is similar to the previous two but the problem is very different. Here we investigate the energy response function for a 2.54 cm thick slab of NaI when a 5 MeV beam of photons is incident on it. In this case the final scoring and binning is done at the end of each history (i.e., after all the descendants from each initial photon have been tracked completely). Figure 24 shows the changes required (at Steps 7 and 8) and the new AUSGAB routine. Figure 25 shows the output from this code. For a detailed discussion of the use of EGS to calculate response functions see Rogers (1984)[96]. The user code DOSRZnrc calculates response functions in any cylindrical geometry[94].

Figure 24: Portions of tutor3.mortran

```
"---------------------------------------------------------------------"
"STEP 7  SHOWER-CALL"
[ ... ]
NCASE=5000; "INITIATE THE SHOWER NCASE TIMES"

DO I=1,NCASE [  
    EHIST = 0.0; "zero energy deposited in this history"
    CALL SHOWER(IQIN,EIN,XIN,YIN,ZIN,UIN,VIN,WIN,IRIN,WTIN);
    "increment bin corresponding to energy deposited in this history"
    IBIN= MIN(IFIX(EHIST/BWIDTH + 0.999), $EBIN);
    IF(IBIN ~= 0) [EBIN(IBIN)=EBIN(IBIN) + 1;]
]

"---------------------------------------------------------------------"
"STEP 8  OUTPUT-OF-RESULTS"
[ ... ]
"Pick up maximum bin for normalization"
BINMAX=0.0; DO J = 1,$EBIN [BINMAX = MAX(BINMAX,EBIN(J));]
OUTPUT EIN,ZBOUND;
'0Response function'/ For a',F8.2,' MeV pencil beam of',' photons on a',F7.2,' cm thick slab of NaI'/
T6,'Energy Counts/incident photon');

DO I=1,48 [LINE(I) = ' ']; "blank entire output array"
DO I=1,$EBIN [  
    ICOL=IFIX(EBIN(I)/BINMAX*48.0+0.999);
    IF(ICOL = 0) ICOL=1;
    LINE(ICOL)='*'; "load output array at desired location"
    OUTPUT BWIDTH*I,EBIN(I)/FLOAT(NCASE),LINE;
    (F10.2,F10.4,48A1); LINE(ICOL)=' ';"reblank"
]
STOP;END;"end of tutor3 main routine"
```
Figure 24: Portions of tutor3.mortran - continued

%E "tutor3.mortran"
"***"
" SUBROUTINE AUSGAB(IARG);
" "
" In this AUSGAB routine for TUTOR3, we score the energy deposited
" in the detector region, region 2
" "
" For IARG=0, an electron or photon step is about to occur and we
" score the energy deposited, if any. Note that only electrons
" deposit energy during a step, and due to our geometry, electrons
" only take steps in region 2 - however there is no need to check
" this here
" For IARG=1,2 and 4, particles have been discarded for falling below
" various energy cutoffs and all their energy is deposited locally
" (in fact EDEP = particles kinetic energy). This only happens in
" region 2. For IARG=3, we are discarding the particle since it is
" in region 1 or 3, so we do not score its energy
" "
" EHIST keeps track of the total energy deposited during each
" history. In the main routine it is zeroed at the start of each
" history and binned at the end of each history.
" "
"***"

COMIN/EPCONT,SCORE/; "we use EDEP from EPCONT and EHIST from SCORE
" IF(IARG <= 2 | IARG = 4) [EHIST=EHIST + EDEP;]
RETURN;END;"end of ausgab"
knock-on electrons can be created and any electron followed down to 0.189 MeV kinetic energy
brem photons can be created and any photon followed down to 0.010 MeV

Response function
For a 5.00 MeV pencil beam of photons on a 2.54 cm thick slab of NaI

<table>
<thead>
<tr>
<th>Energy</th>
<th>Counts/incident photon</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0.0054 *</td>
</tr>
<tr>
<td>0.40</td>
<td>0.0052 *</td>
</tr>
<tr>
<td>0.60</td>
<td>0.0038 *</td>
</tr>
<tr>
<td>0.80</td>
<td>0.0072 *</td>
</tr>
<tr>
<td>1.00</td>
<td>0.0056 *</td>
</tr>
<tr>
<td>1.20</td>
<td>0.0040 *</td>
</tr>
<tr>
<td>1.40</td>
<td>0.0056 *</td>
</tr>
<tr>
<td>1.60</td>
<td>0.0054 *</td>
</tr>
<tr>
<td>1.80</td>
<td>0.0058 *</td>
</tr>
<tr>
<td>2.00</td>
<td>0.0056 *</td>
</tr>
<tr>
<td>2.20</td>
<td>0.0052 *</td>
</tr>
<tr>
<td>2.40</td>
<td>0.0052 *</td>
</tr>
<tr>
<td>2.60</td>
<td>0.0060 *</td>
</tr>
<tr>
<td>2.80</td>
<td>0.0086 *</td>
</tr>
<tr>
<td>3.00</td>
<td>0.0058 *</td>
</tr>
<tr>
<td>3.20</td>
<td>0.0090 *</td>
</tr>
<tr>
<td>3.40</td>
<td>0.0108 *</td>
</tr>
<tr>
<td>3.60</td>
<td>0.0098 *</td>
</tr>
<tr>
<td>3.80</td>
<td>0.0110 *</td>
</tr>
<tr>
<td>4.00</td>
<td>0.0256 *</td>
</tr>
<tr>
<td>4.20</td>
<td>0.0196 *</td>
</tr>
<tr>
<td>4.40</td>
<td>0.0142 *</td>
</tr>
<tr>
<td>4.60</td>
<td>0.0364 *</td>
</tr>
<tr>
<td>4.80</td>
<td>0.0232 *</td>
</tr>
<tr>
<td>5.00</td>
<td>0.0358 *</td>
</tr>
</tbody>
</table>
4.4 tutor4.mortran: use of SUBROUTINE WATCH

The tutorial4.mortran user code is functionally identical to tutorial2.mortran, i.e. it scores the total amount of energy reflected, deposited and transmitted when a 20 MeV beam of electrons is incident on a 1 mm slab of Ta. However, it has the added ability to use the auxiliary SUBROUTINE WATCH which is part of the file $HEN_HOUSE/nrcaux.mortran. As set up, tutorial4.mortran outputs to the terminal, detailed information about each particle interaction which occurs during the simulation.

Implementing the use of WATCH consists of two mandatory calls and one optional call, which has been included in tutorial4.mortran. These extra calls are shown in fig 26. Figure 27 shows the header of SUBROUTINE WATCH which is part of nrcaux.mortran. This listing describes how to use SUBROUTINE WATCH.

Figure 28 shows portions of the output from tutorial4. Note that the full output requires 132 columns and this figure has been edited slightly so the font size is still more or less visible! It is well worth studying this output carefully and being sure that you understand what is happening in the shower.

In tutorial4 the value of IWATCH has been set to 1 and hence the output lists every time an interaction occurs or a particle is discarded for some reason. If one changes the value of IWATCH to 2 the output includes information on every single electron step and hence explodes dramatically in quantity. Finally, if one has installed the code EGS Windows for doing a 3-D graphics display of EGS simulations, then IWATCH = 4 will write a files (to unit 13) which is the input for this code. For information about obtaining and/or using the EGS Windows system, see the on-line site at http://www.irs.inms.nrc.ca/inms/irs/EGS_Windows/distribution.html. This site also presents a series of examples of the use of EGS Windows. It should be noted that starting with Version 4 of the EGS Windows system, it works on any X-windows based Unix/Linux system[95]. Figure 29 presents an example of the environment file needed with tutorial4 if it is to write a data file for display by the EGS Windows system. In this case the file is named tutorial4.egsgph.

All users are strongly advised to build SUBROUTINE WATCH into any user code that they write since it has proven absolutely invaluable for debugging programs. When things don’t work, being able to track a few histories inevitably helps to sort out the problem.

Although not apparent in this example, WATCH also displays when bremsstrahlung photons are split, when relaxation particles are created (fluorescent photons, Auger electrons, Coster-Kronig electrons) or when particles are discarded by internal Russian Roulette.

One major warning: when using WATCH you must only use it for a few histories at a time due to the large quantity of output!
Figure 26: Portions of `tutor4.mortran` showing the calls to `SUBROUTINE WATCH`.

```
"STEP 5 INITIALIZATION-FOR-AUSGAB"
---------------------------------------------------------------------
DO I=1,3 [ESCORE(I)=0.0;] "zero scoring array before starting"
IWATCH=1; "This determines the type and amount of output"
  "=1 => print info about each interaction"
  "=2 => print info about same + each electron step"
  "=4 => create a file to be displayed by EGS_Windows"
  " Note that these files can be huge"
  "IWATCH 1 and 2 outputs to unit 6, 4 to unit 13"
CALL WATCH(-99,IWATCH); "Initializes calls to AUSGAB for WATCH"
---------------------------------------------------------------------
"STEP 7 SHOWER-CALL"
---------------------------------------------------------------------
NCASE=10; "INITIATE THE SHOWER NCASE TIMES"
DO I=1,NCASE [
  IF((IWATCH /= 0) & (IWATCH /= 4))[
    OUTPUT 1,EI,IQIN,IRIN,XIN,YIN,ZIN,UIN,VIN,WIN,LATCHI,WTIN;
    (/' INITIAL SHOWER VALUES',T36,';',
    I5,F9.3,2I4,3F8.3,3F7.3,I10,1PE10.3);
  ]
  CALL SHOWER(IQIN,EIN,XIN,YIN,ZIN,UIN,VIN,WIN,IRIN,WTIN);
  CALL WATCH(-1,IWATCH); "print a message that this history is over"
]
```

```
SUBROUTINE AUSGAB(IARG);
IMPLICIT NONE;
INTEGER IARG,IRL;
COMIN/EPCONT,SCORE,STACK/; "we use EDEP from EPCONT,IR(NP) from STACK"
  "ESCORE is passed in user defined COMIN SCORE"
IF (IWATCH > 0 ) CALL WATCH(IARG,IWATCH); "handles printouts of data"
IF (IARG <= 4) [
  IRL = IR(NP); "pick up current region number"
  ESCORE(IRL)=ESCORE(IRL)+EDEP;
]
RETURN;END;"end of ausgab"
```
Figure 27: Header of SUBROUTINE WATCH.

```fortran
%E "start of nrcaux.mortran (SID 1.29 last edited 00/04/24)"
"=============================================================================
 WATCH
 SUBROUTINE WATCH(IARG,IWATCH);
   A general purpose auxiliary routine for use with the EGSnrc system
   It prints out information about the particle transport
   For IWATCH = 1 it prints information about each discrete interaction
   For IWATCH = 2 or 3 it prints information about each step as well
   For IWATCH = 4 it prints graphing data for use with EGS_Windows
   Routine is used via two mandatory and 1 optional call from the user’s
   code
   1)The routine must be initialized by a call with IARG=-99 before the first
      call to SHOWER. It should be after all inputs are in place.
   2)The routine must be called near the beginning of the AUSGAB subroutine
      IF (IWATCH > 0 ) CALL WATCH(IARG,IWATCH);
   3)The routine may be called at the end of each history with IARG = - 1 so
      a message will get printed stated history is complete
   Since WATCH cannot output values related to the initial values in a
   shower call, it is useful to also put something like the following
   immediately prior to the CALL SHOWER stmt
   IF((IWATCH ~= 0) & (IWATCH ~= 4))[  
     OUTPUT 1,EIN,IQI,IRI,XI,YI,ZI,UI,VI,WI,LATCHI,WTI;
     (/' INITIAL SHOWER VALUES’,T36,’‘,  
     I5,F9.3,2I4,3F8.3,3F7.3,I10,1PE10.3);  
   ]
   Note EIN is the kinetic energy of the incident particle.
   The routine uses up to 132 columns for output.
"//----------------------------------------------------------------------------
```

4: Tutorial programs
Figure 28: Portions of output from tutor4.mortran (slightly edited for space).

Start tutor4
CALL HATCH to get cross-section data
RAYLEIGH DATA AVAILABLE FOR MEDIUM 1 BUT OPTION NOT REQUESTED.
Reading screened Rutherford MS data done
Initialing spin data for medium 1 done
Medium 1 sige = 1.79464114 1.78708148
Initializing tmxs for estepe = 0.25 and ximax = 0.5
Output from subroutine EDGSET:

Atomic relaxations requested!
Reading photo-absorption data Done
Reading relaxation data Done
Reading photo cross section data Done
Bound Compton scattering requested, reading data Done

Medium 1 has 21 shells:
| 21 881 7 0.01370 0.221E+03 0.008 |
| ... Done. |
EGSnrc SUCCESSFULLY 'HATCHED' FOR ONE MEDIUM.
knock-on electrons can be created and any electron followed down to 0.189 MeV kinetic energy
brem photons can be created and any photon followed down to 0.010 MeV

<table>
<thead>
<tr>
<th>NP</th>
<th>ENERGY</th>
<th>Q REGION</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>LATCH</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

INITIAL SHOWER VALUES
:1 20.000 -1 2 0.000 0.000 0.000 0.000 0.000 1.000 0 1.00E+00
bremstrahlung about to occur:1 19.016 -1 2 -0.007 -0.001 0.058 -0.158 -0.188 0.969 0 1.00E+00
Resulting electron :1 18.747 -1 2 -0.007 -0.001 0.058 -0.158 -0.188 0.969 0 1.00E+00
Resulting photon :2 0.268 0 2 -0.007 -0.001 0.058 -0.012 -0.347 0.938 0 1.00E+00
Discard -user request :2 0.268 0 3 -0.007 -0.017 0.100 -0.012 -0.347 0.938 0 1.00E+00
Now on top of stack :1 18.747 -1 2 -0.007 -0.001 0.058 -0.158 -0.188 0.969 0 1.00E+00
bremstrahlung about to occur:1 18.577 -1 2 -0.009 -0.004 0.067 -0.268 -0.271 0.925 0 1.00E+00
Resulting electron :1 18.418 -1 2 -0.009 -0.004 0.067 -0.268 -0.271 0.925 0 1.00E+00
Resulting photon :2 0.159 0 2 -0.009 -0.004 0.067 -0.293 -0.298 0.909 0 1.00E+00
Discard -user request :2 0.159 0 3 -0.020 -0.015 0.100 -0.293 -0.298 0.909 0 1.00E+00
Now on top of stack :1 18.418 -1 2 -0.009 -0.004 0.067 -0.268 -0.271 0.925 0 1.00E+00
bremstrahlung about to occur:1 17.321 -1 2 -0.011 -0.007 0.076 -0.177 -0.310 0.934 0 1.00E+00
Resulting electron :1 17.158 -1 2 -0.011 -0.007 0.076 -0.177 -0.310 0.934 0 1.00E+00
Resulting photon :2 0.935 0 2 -0.011 -0.007 0.076 -0.175 -0.335 0.926 0 1.00E+00
Discard -user request :2 0.935 0 3 -0.016 -0.016 0.100 -0.175 -0.335 0.926 0 1.00E+00
Now on top of stack :1 17.158 -1 2 -0.011 -0.007 0.076 -0.177 -0.310 0.934 0 1.00E+00
bremstrahlung about to occur:1 17.231 -1 2 -0.012 -0.009 0.081 -0.278 -0.252 0.927 0 1.00E+00
Resulting electron :1 17.065 -1 2 -0.012 -0.009 0.081 -0.278 -0.252 0.927 0 1.00E+00
Resulting photon :2 5.167 0 2 -0.012 -0.009 0.081 -0.261 -0.216 0.941 0 1.00E+00
Discard -user request :2 5.167 0 3 -0.017 -0.013 0.100 -0.261 -0.216 0.941 0 1.00E+00
Now on top of stack :1 17.065 -1 2 -0.012 -0.009 0.081 -0.278 -0.252 0.927 0 1.00E+00
Discard -user request :1 11.720 -1 3 -0.018 -0.015 0.100 -0.311 -0.280 0.908 0 1.00E+00
END OF HISTORY

4.4 tutor4.mortran: use of SUBROUTINE WATCH
Figure 28: Portions of output from tutor4.mortran -continued

INITIAL SHOWER VALUES
\[\begin{align*}
\text{NP} & \quad \text{ENERGY} & \quad \text{Q} & \quad \text{REGION} & \quad X & \quad Y & \quad Z & \quad U & \quad V & \quad W & \quad \text{LATCH} & \quad \text{WEIGHT} \\
1 & 20.000 & -1 & 2 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.000 & 0 & 1.00E+00 \\
\end{align*} \]

bremsstrahlung about to occur:
\[\begin{align*}
\text{Resulting electron} & : \ 19.308 & -1 & 2 & 0.003 & 0.001 & 0.041 & -0.039 & 0.106 & 0.994 & 0 & 1.00E+00 \\
\text{Resulting photon} & : \ 0.010 & 0 & 2 & 0.003 & 0.001 & 0.041 & -0.032 & 0.112 & 0.993 & 0 & 1.00E+00 \\
\text{Discard AE,AP<E<ECUT} & : \ 2 \ 0.010 & 0 & 2 & 0.003 & 0.001 & 0.041 & -0.032 & 0.112 & 0.993 & 0 & 1.00E+00 \\
\text{Now on top of stack} & : \ 19.298 & -1 & 2 & 0.003 & 0.001 & 0.041 & -0.039 & 0.106 & 0.994 & 0 & 1.00E+00 \\
\end{align*} \]

bremsstrahlung about to occur:
\[\begin{align*}
\text{Resulting electron} & : \ 17.599 & -1 & 2 & 0.008 & 0.002 & 0.075 & 0.090 & 0.061 & 0.994 & 0 & 1.00E+00 \\
\text{Resulting photon} & : \ 2 \ 0.010 & 0 & 2 & 0.008 & 0.002 & 0.075 & 0.137 & -0.015 & 0.990 & 0 & 1.00E+00 \\
\text{Discard -user request} & : \ 1.110 & 0 & 3 & 0.011 & 0.001 & 0.100 & 0.137 & -0.015 & 0.990 & 0 & 1.00E+00 \\
\text{Now on top of stack} & : \ 17.599 & -1 & 2 & 0.008 & 0.002 & 0.075 & 0.090 & 0.061 & 0.994 & 0 & 1.00E+00 \\
\end{align*} \]

Moller about to occur:
\[\begin{align*}
\text{Resulting electrons} & : \ 9.707 & -1 & 2 & -0.034 & -0.009 & 0.098 & -0.687 & -0.390 & 0.613 & 0 & 1.00E+00 \\
\text{Discard AE,AP<E<ECUT} & : \ 2 \ 0.680 & -1 & 2 & -0.034 & -0.009 & 0.098 & 0.045 & -0.274 & 0.961 & 0 & 1.00E+00 \\
\text{Now on top of stack} & : \ 9.027 & -1 & 2 & -0.034 & -0.009 & 0.098 & -0.741 & -0.387 & 0.548 & 0 & 1.00E+00 \\
\text{Discard -user request} & : \ 1.110 & 0 & 3 & -0.037 & -0.011 & 0.100 & -0.866 & -0.269 & 0.421 & 0 & 1.00E+00 \\
\end{align*} \]

END OF HISTORY 3 **************************************

INITIAL SHOWER VALUES
\[\begin{align*}
\text{NP} & \quad \text{ENERGY} & \quad \text{Q} & \quad \text{REGION} & \quad X & \quad Y & \quad Z & \quad U & \quad V & \quad W & \quad \text{LATCH} & \quad \text{WEIGHT} \\
1 & 20.000 & -1 & 2 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.000 & 0 & 1.00E+00 \\
\end{align*} \]

bremsstrahlung about to occur:
\[\begin{align*}
\text{Resulting electron} & : \ 19.316 & -1 & 2 & -0.001 & 0.001 & 0.040 & -0.101 & 0.057 & 0.993 & 0 & 1.00E+00 \\
\text{Resulting photon} & : \ 8.467 & 0 & 2 & -0.001 & 0.001 & 0.040 & -0.104 & 0.069 & 0.992 & 0 & 1.00E+00 \\
\text{Discard -user request} & : \ 8.467 & 0 & 3 & -0.007 & 0.005 & 0.100 & -0.104 & 0.069 & 0.992 & 0 & 1.00E+00 \\
\text{Now on top of stack} & : \ 10.849 & -1 & 2 & -0.001 & 0.001 & 0.040 & -0.101 & 0.057 & 0.993 & 0 & 1.00E+00 \\
\end{align*} \]

Moller about to occur:
\[\begin{align*}
\text{Resulting electrons} & : \ 9.027 & -1 & 2 & -0.034 & -0.009 & 0.098 & -0.741 & -0.387 & 0.548 & 0 & 1.00E+00 \\
\text{Discard AE,AP<E<ECUT} & : \ 2 \ 0.680 & -1 & 2 & -0.034 & -0.009 & 0.098 & 0.045 & -0.274 & 0.961 & 0 & 1.00E+00 \\
\text{Now on top of stack} & : \ 9.027 & -1 & 2 & -0.034 & -0.009 & 0.098 & -0.741 & -0.387 & 0.548 & 0 & 1.00E+00 \\
\text{Discard -user request} & : \ 1.110 & 0 & 3 & -0.037 & -0.011 & 0.100 & -0.866 & -0.269 & 0.421 & 0 & 1.00E+00 \\
\end{align*} \]

END OF HISTORY 4 ************************************

INITIAL SHOWER VALUES
\[\begin{align*}
\text{NP} & \quad \text{ENERGY} & \quad \text{Q} & \quad \text{REGION} & \quad X & \quad Y & \quad Z & \quad U & \quad V & \quad W & \quad \text{LATCH} & \quad \text{WEIGHT} \\
1 & 20.000 & -1 & 2 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 1.000 & 0 & 1.00E+00 \\
\end{align*} \]

Fraction of energy reflected from plate= 0.000%
Fraction of energy deposited in plate= 10.939%
Fraction of energy transmitted through plate= 89.061%
Total fraction of energy accounted for= 100.000%

4: Tutorial programs
Figure 29: tutor4.io file needed to create an EGS_Windows data file .egsgph.

```
# $Id: tutor4.io,v 1.2 2003/11/11 19:10:52 dave Exp $
#
# This file determines which files are to be connected to which Fortran
# I/O unit. Lines starting with # are ignored.
# The first column is the Fortran I/O unit number, the second a
# file extension => e.g. unit 1 will be
# connected to output_file.egslst, etc.
#
# This .io file is for the NRC user code tutor4.
# The only additional file is unit 13 for possible output for
# the EGS_WINDOWS graphics package.
#
# In the following, unit 13 is connected to test.egsgph by default.
# However, by using tutor4 -o file -p tutor_data to run the code
# one gets file.egsgph
#
13 .egsgph
```
4.5 tutor5.mortran: using LATCH and Rayleigh scattering

This tutorial program is an example that includes Rayleigh scattering and which makes use of the variable LATCH (contained in COMMON/STACK/). LATCH can be set for any particle on the “stack” of particles being transported, and it is passed on to all its progeny. This provides a simple procedure for keeping track of the history of a particle. In this case we make use of LATCH to keep track of how often photons from an incident 50 keV beam are Compton or Rayleigh scattered while passing through a 0.5 cm slab of water.

The program also demonstrates the use of the IAUSFL array of flags (in COMMON /EPCONT/). By setting the appropriate flags, the user can cause the EGSnrc system to call the AUSGAB subroutine in any combination of 28 well specified situations (see section 3.7, page 121). By default, EGSnrc calls AUSGAB only for 5 out of the possible 28 situations. Here, by setting IAUSFL(18) and IAUSFL(24) from 0 (default) to 1 in the main program, we cause EGSnrc to call AUSGAB with IARG=17 and IARG=23 (i.e., just before a Compton or a Rayleigh scattering event, respectively). We make use of these calls to set some flags associated with each photon rather than for scoring any variables. The AUSGAB routine also makes use of a few simple local macros in order to make the logic of the coding more transparent. Perhaps the greatest strength of Mortran3 is this ability to create readable and hence more accurate coding. A complete listing of tutor5.mortran, except for the HOWFAR/HOWNEAR routines which are similar to the other examples, is given below.

Note that the logic in tutor5.mortran for EGSnrc is the same as it was for EGS4. This is only possible because in water there are no fluorescent photons above the 10 keV PCUT value in the problem. If the material were changed to a higher Z material, e.g. lead, one would need to change the logic since the present logic allows fluorescent photons created via relaxation after a Compton interaction to be scored as a Compton scattered photon.
"An EGSnrc user code which scores the number and average energy of
"primary, Rayleigh scattered and Compton scattered photons passing
"through a 5 mm thick slab of water when a 50 keV pencil beam of
"photons is incident normally
"
"For PIRS-701: Example of including Rayleigh scattering, using macros"
"to facilitate logic and use of the LATCH feature
"
"***
$IMPLICIT-NONE;
$INTEGER I,IQIN,IRIN,NCASE;
$REAL XIN,YIN,ZIN,EIN,WTIN,UIN,VIN,WIN,ANORM;

"STEP 1: USER-OVERRIDE-OF-EGSnrc-MACROS"
"***
REPLACE \{\$MXMED\} WITH \{1\} "only 1 medium in the problem(default 10)"
REPLACE \{\$MXREG\} WITH \{3\} "only 3 geometric regions (default 2000)"
REPLACE \{\$MXSTACK\} WITH \{15\}"less than 15 particles on stack at once"

"Define a common to pass information to the geometry routine HOWFAR"
REPLACE \{;COMIN/GEOM/;\} WITH \{;COMMON/GEOM/ZBOUND;$REAL ZBOUND;\}
"Define a common for scoring in AUSGAB"
REPLACE \{;COMIN/SCORE/;\} WITH \{
 ;COMMON/SCORE/COUNT(3),ENTOT(3); $REAL COUNT,ENTOT;\}
" in COUNT(1),(2),(3) AUSGAB will count the number of transmitted
" primaries, rayleigh scattered or only compton scattered photons
" ENTOT adds up the total energy of each of these components
"
REPLACE \{\$CALL-HOWNEAR(#)\}; WITH
\{
 \;\;CALL HOWNEAR\{\{P1\},X(NP),Y(NP),Z(NP),IRL\}\};
\;
;COMIN/BOUNDS,EPCONT,GEOM,_MEDIA,MISC,SCORE,STACK,THRESH/;
 " the above expands into a series of COMMON statements"

"---
"STEP 2 PRE-HATCH-CALL-INITIALIZATION
"---
CHARACTER*4 MEDARR(24);
DATA MEDARR /$S'H2O',21*' '/; "place medium name in an array"

Step0: Initialize the EGSnrc system
call egs_init;

DO I=1,24[MEDIA(I,1)=MEDARR(I)];"this is to avoid a data statement for"
 " a variable in COMMON"
"NMED and DUNIT default to 1, i.e. one medium and we work in cm"

/MED(1),MED(3)/=0;MED(2)=1; "regions 1 and 3 are vacuum, region 2, H2O"

ECUT(2)=1.5;" terminate electron histories at 1.5 MeV in the slab"
PCUT(2)=0.010;" terminate photon histories at 0.01 MeV in the slab"
IRAYLR(2)=1;" turn on Rayleigh scattering in the slab "
"NOTE, above three parameters need to be set for all regions in which"
"there is particle transport - just region 2 in this case "

"---
"STEP 3 HATCH-CALL
"---
;OUTPUT;('1 Start tutor5'//' Call HATCH to get cross-section data'/);
CALL HATCH;" pick up cross section data for H2O"
 " data file must be assigned to unit 12"
;OUTPUT AE(1)-0.511, AP(1);
// Knock-on electrons can be created and any electron followed down to'
 '/T40,F8.3,' MeV kinetic energy'/
' Brem photons can be created and any photon followed down to '
 '/T40,F8.3,' MeV ');
"NOTE, AE values can over-ride ECUT values"

"---
"STEP 4 INITIALIZATION-FOR-HOWFAR and HOWNEAR
"---
ZBOUND=0.5;" plate is 5 mm thick"
"STEP 5 INITIALIZATION-FOR-AUSGAB"
"---"
DO I=1,3 [COUNT(I)=0.0;ENTOT(I)=0.0;]"zero scoring array at start"
" We want to set flags in AUSGAB every time a Rayleigh scattering "
" or Compton scattering occurs. Set the flags in IAUSFL(COMIN "
" EPCONT) to signal the EGS system to make the appropriate calls "
/IAUSFL(18),IAUSFL(24)/=1;
"---"

"STEP 6 DETERMINATION-OF-INICIDENT-PARTICLE-PARAMETERS"
"---"
"define initial variables for 20 MeV beam of electrons incident"
"perpendicular to the slab"
IQIN=0;" incident photons"
EIN=0.050;" 50 keV"
/XIN,YIN,ZIN/=0.0;" incident at origin"
/UIN,VIN/=0.0;WIN=1.0;" moving along z axis"
IRIN=2;" starts in region 2, could be 1"
WTIN=1.0;" weight = 1 since no variance reduction used"
LATCHI=0;" LATCH set to zero at start of each history"
"---"

"STEP 7 SHOWER-CALL"
"---"
NCASE=10000; "initiate the shower NCASE times"
DO I=1,NCASE [CALL SHOWER(IQIN,EIN,XIN,YIN,ZIN,UIN,VIN,WIN,IRIN,WTIN);]
"---"

"STEP 8 OUTPUT-OF-RESULTS"
"---"
ANORM = 100./FLOAT(NCASE); "normalize to % of photon number"
DO I=1,3[
 IF(COUNT(I)=0)[ENTOT(I)=ENTOT(I)/COUNT(I);]"get average energies"
]
OUTPUT EIN*1000.,ZBOUND, PCUT(2), (ANORM*COUNT(I),ENTOT(I),I=1,3);
// For',F6.1,' keV photons incident on',F4.1,' cm OF H2O'
' with PCUT=',F5.3,' MeV'
// Transmitted primaries=',T40,F8.2,'% ave energy=',F10.3,' MeV'
' Fraction rayleigh scattering=',T40,F8.2,'% ave energy=',F10.3,' MeV'
' Fraction Compton scattering only=',T40,F8.2,'% ave energy=',F10.3,
' MeV';//
"---"

"STEP 9 finish run"
"---"
call egs_finish;
STOP;END;"end of tutor5 main routine"
Figure 31: Portions of tutor5.mortran - continued.

"**"
" SUBROUTINE AUSGAB(IARG);
" " In this AUSGAB routine for tutor5 we both set flags whenever there is
" a scattering event and then count histories when they have come
" through the slab, according to what kind of scattering they have
" undergone.
" The logic is as follows
" set FLAG1 if a compton event occurs
" set FLAG2 if a Rayleigh event occurs
" The FLAGS are the units and thousands digits in the parameter LATCH
" " When a history is terminated, increment various counters according
" to whether no flags are set - i.e. its a primary, FLAG2 is set,
" i.e. it has Rayleigh scattered or FLAG1 is set and FLAG2 is not set
" i.e. only compton scattering has occurred.
" " First a few macros are defined to make the logic simpler to read and
" " therefore verify
" " " **"
$IMPLICIT-NONE;
$INTEGER IARG,JJ;
REPLACE {$SET-FLAG1;} WITH {LATCH(NP)=LATCH(NP)+1;}
REPLACE {$SET-FLAG2;} WITH {LATCH(NP)=LATCH(NP)+1000;}
REPLACE {$FLAG1} WITH {MOD(LATCH(NP),100)}"i.e. units digit of LATCH"
REPLACE {$FLAG2} WITH {MOD(LATCH(NP),10000)-$FLAG1} "thousands digit"
;COMIN/SCORE,STACK/; "we use IR(NP) from STACK"

" first set flags when scattering events occur - IAUSFL was set "
" in step 5 of main to ensure AUSGAB was called at these points "

IF(IARG=17) ["a compton scatter is about to occur" $SET-FLAG1;]
ELSEIF(IARG=23)["a rayleigh scatter is about to occur" $SET-FLAG2;]
" if a history has terminated because leaving the slab, score it"
ELSEIF(IARG = 3) ["particle has left slab"
 IF(IR(NP)=3 | IR(NP) = 1) ["it is transmitted or reflected"
 JJ=0;
 IF(LATCH(NP) = 0) ["no scattering - a primary" JJ=1;]
 ELSEIF($FLAG2 ~= 0) ["at least one rayleigh scatter" JJ=2;]
 ELSEIF($FLAG1 ~= 0)[">=1 compton scatter, no Rayleigh" JJ=3;]
 ELSE ["debug";OUTPUT JJ,LATCH(NP); (' JJ,LATCH(NP)=',2I10);]
 IF(JJ ~= 0) [
 COUNT(JJ)=COUNT(JJ) + 1.;
 ENTOT(JJ) = ENTOT(JJ) + E(NP);
]
]"end region 3 or 1 block"
]"end IARG 3 block"
RETURN;END;"end of AUSGAB"

Figure 31: Portions of tutor5.mortran - continued.

Figure 32: Portions of output from tutor5.mortran

Start tutor5
 | |
 | |
 | | EGSnrc SUCCESSFULLY 'HATCHED' FOR ONE MEDIUM.
Knock-on electrons can be created and any electron followed down to
 0.189 MeV kinetic energy
Brem photons can be created and any photon followed down to
 0.010 MeV
For 50.0 keV photons incident on 0.5 cm OF H2O
with PCUT=0.010 MeV
Transmitted primaries= 89.35% ave energy= 0.050 MeV
Fraction rayleigh scattering= 0.84% ave energy= 0.048 MeV
Fraction compton scattering only= 8.40% ave energy= 0.046 MeV

Last edited 2003-11-12 09:23:49-05 4.5 tutor5.mortran: using LATCH and Rayleigh scattering
4.6 tutor6.mortran: modifying the transport options

As seen from the previous tutorial programs, EGSnrc can be run in the default mode without making any selections regarding transport algorithms or about which features to include. In these cases it uses default algorithms which apply in the vast majority of cases. However, there are some options which are wasteful to model in many simulations, but critical for others. For example, taking into account binding effects in Compton scattering can be important for low-energy calculations but has no effect for most cases above 1 MeV. The same is true for Rayleigh (coherent) scattering of photons. In addition, there have been many changes made to the electron transport algorithm in EGS4/PRESTA and EGSnrc. To our knowledge the default simulations with EGSnrc provide accurate electron transport but to allow us and others to understand the differences between EGSnrc and EGS4/PRESTA, we have left hooks in the EGSnrc code which allow various old transport options to still be used (see section 3.4.2.i, page 115). So, for example, EGSnrc can be run with the PRESTA-I electron transport algorithm turned on instead of the new PRESTA-II transport algorithm. Also one can chose to vary the boundary crossing algorithm used in EGSnrc and mimic that used in EGS4/PRESTA. This can be useful for investigations about the impact of the changes on a given user code. More importantly, it allows some of the time consuming features of the simulation in the default EGSnrc to be “turned off” if it turns out that they do not affect the users problem.

The tutor6.mortran code does a simple calculation, very similar to those in the previous tutorial codes, but asks the user for a series of options to use. In fact, this little code gives an example of how to change every EGSnrc transport option that we can think of. The purpose is to show how easy it is. Basically you must assign a value to some flag or variable and ensure that the appropriate COMIN is defined in the subroutine or main routine where the inputs are read.

The variables which are set are summarised in Table 8 and figure 33 shows one part of code which inputs two of these variables (please see the full version of the code on the distribution at $HEN_HOUSE/tutor6/tutor6.mortran$).

tutor6.mortran also exhibits two other interesting features. It initialises two variables, viz IREJECT and ESAVE, which allow EGSnrc’s internal range rejection to be utilised by setting the arrays $i_{_do_{_rr}}$ and $e_{_max_{_rr}}$. By setting IREJECT to 1, EGSnrc terminates the history of any electron below the energy ESAVE if that particle is unable to reach the closest geometric boundary. See section 3.10.1 (page 128) for more information. tutor6.mortran also does a statistical analysis of its results using a new procedure suggested by Francesc Salvat[97] which doesn’t use the common “batch technique” but scores the statistics on an event by event basis in an efficient manner. This procedure is shown in figure 34.

Note that if tutor6.mortran is run with bremsstrahlung splitting turned on it will be seen that the total energy is not exactly 1.0. This is because of the lack of exact energy conservation as discussed in section 3.10.2 (page 129). As expected, as the number of histories increases, the energy conservation gets closer to unity.
Table 8: The transport control variables set in `tutor6.mortran` and the COMINs they are contained in. These represent all user controllable transport variables. See the source code of `tutor6.mortran` and sections 3.3 and 3.4.2 for more detailed descriptions of the meaning of each.

<table>
<thead>
<tr>
<th>Variable</th>
<th>COMIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECUT,PCUT</td>
<td>BOUNDS</td>
</tr>
<tr>
<td>IBRDST</td>
<td>BREMPR</td>
</tr>
<tr>
<td>IPRDST</td>
<td>BREMPR</td>
</tr>
<tr>
<td>ibr_nist</td>
<td>BREMPR</td>
</tr>
<tr>
<td>IBCMP</td>
<td>COMPTON-DATA</td>
</tr>
<tr>
<td>IEDGFL</td>
<td>EDGE</td>
</tr>
<tr>
<td>IPHTER</td>
<td>EDGE</td>
</tr>
<tr>
<td>ESTEPE</td>
<td>ET-CONTROL</td>
</tr>
<tr>
<td>XIMAX</td>
<td>ET-CONTROL</td>
</tr>
<tr>
<td>SKINDEPTH_FOR_BCA</td>
<td>ET-CONTROL</td>
</tr>
<tr>
<td>TRANSPORT_ALGORITHM</td>
<td>ET-CONTROL</td>
</tr>
<tr>
<td>BCA_ALGORITHM</td>
<td>ET-CONTROL</td>
</tr>
<tr>
<td>EXACT_BCA</td>
<td>ET-CONTROL</td>
</tr>
<tr>
<td>SPIN_EFFECTS</td>
<td>ET-CONTROL</td>
</tr>
<tr>
<td>IRAYLR</td>
<td>MISC</td>
</tr>
<tr>
<td>luxury_level,iseed</td>
<td>none</td>
</tr>
</tbody>
</table>

Table 9: The intrinsic variance reduction parameters set in `tutor6.mortran`. They are included in EGSnrc via `COMIN/EGS-VARIANCE-REDUCTION`.

<table>
<thead>
<tr>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>nbr_split</td>
</tr>
<tr>
<td>i_play_RR</td>
</tr>
<tr>
<td>prob_RR</td>
</tr>
<tr>
<td>i_do_rr</td>
</tr>
<tr>
<td>e_max_rr</td>
</tr>
</tbody>
</table>
Figure 33: Examples from \texttt{tutor6.mortran} of the reading in of three of the many variables read in, specifically IEDGFL, IPHTER and IBCMP.

\begin{verbatim}
from subroutine inputs with COMIN COMPTON-DATA and EDGE included

"Relaxations switch, must be done before HATCH so that the necessary"
"additional data can be read in in HATCH if the user requested relaxations"
LOOP [
 OUTPUT; (" Atomic relaxations on (1) or off (0)? ",$);
 INPUT iedgfl(1); (I5);
] UNTIL (iedgfl(1) = 1 | iedgfl(1) = 0);
"Now set iedgfl for all regions to the value input by the user"
DO i=2,$MXREG [iedgfl(i) = iedgfl(1);]

"Photo-electron angular distribution switch. It does not need to be "
"before HATCH, we do it here because this is the most logical place"
LOOP [
 OUTPUT; (" Photo-electron angular distribution on (1) or off (0)? ",$);
 INPUT iphter(1); (I5);
] UNTIL (iphter(1) = 1 | iphter(1) = 0);
"Now set iphter for all regions to the value input by the user"
DO i=2,$MXREG [iphter(i) = iphter(1);]

"Bound Compton scattering switch"
"Must be done before HATCH in order to get the data for bound Compton"
LOOP [
 OUTPUT; (" Binding effects for Compton scattering on (1) or off (0)? ",$);
 INPUT ibcmp(1); (I5);
] UNTIL (ibcmp(1) = 1 | ibcmp(1) = 0);
"Now set ibcmp for all regions to the value input by the user"
DO i=2,$MXREG [ibcmp(i) = ibcmp(1);]
\end{verbatim}
Figure 34: Portions of `tutor6.mortran` related to statistical analysis without batching.

```
"STEP 8  OUTPUT-OF-RESULTS"
"-------------------------------------------------------------------"
total = 0;
anorm = 1/(ein+float(iqin)*rm); "for e+ add 2*rm to k.e.
DO i=1,nzb+1 
  "first put non-scored energy portions into sc_array and sc_array2"
  aux = sc_tmp(i); aux2 = aux*aux;
  sc_array(i) = sc_array(i) + aux;
  sc_array2(i) = sc_array2(i) + aux2;
  aux = sc_array(i)/ncase; aux2 = sc_array2(i)/ncase;
  aux2 = (aux2 - aux*aux)/(ncase-1);
  IF( aux2 > 0 ) aux2 = sqrt(aux2);
  aux = aux*anorm; aux2 = aux2*anorm;
  sc_array(i) = aux; sc_array2(i) = aux2; total = total + aux;
]
OUTPUT sc_array(1),sc_array2(1);
  ('  Reflected energy fraction: ',f10.6,' +/- ',f10.6);
  etc
"*******************************************************************"
subroutine ausgab(iarg);
  " For tutor6.mortran. Provides an example of doing statistics 
  " without batches using technique suggested by Francesc Salvat.  
  " Copyright National Research Council of Canada 2000"
"*******************************************************************"
$IMPLICIT-NONE; $INTEGER iarg,irl; real*8 aux;
;COMIN/SCORE, "to get the scoring arrays and iscore"
  EPCONT, "to get EDEP"
  STACK/; "to get the region number"
IF( iarg < 5 ) [ "energy is being deposited"
  irl = ir(np);
  IF( icase = sc_last(irl) )["still the same shower that deposited energy"
    "last time in this region"
    sc_tmp(irl) = sc_tmp(irl) + edep*wt(np);
  ]
ELSE [ "we have the next shower depositing energy into region irl"
  aux = sc_tmp(irl);
  sc_array(irl) = sc_array(irl) + aux;
  sc_array2(irl) = sc_array2(irl) + aux*aux;
  sc_tmp(irl) = edep*wt(np); sc_last(irl) = icase;
  ]
return; end;   "end of subroutine ausgab for tutor6.mortran"
```
Figure 35: 5mev_e_1mm_Ta.egsinp, an input file to run tutor6. Note that the text on the right are not a necessary part of the file but are effectively comments.

```
5mev_e_1mm_Ta.egsinp
TA
1.0,ECUT
0.01,PCUT
0,IRAYLR
1,IEDGFL
0,IPHTER
1,IBCMP
1,IPRDST
1,IBRDST
1,ibr_nist
1,ISPIN
0,ESTEPE
0,XIMAX
0,transport_algorithm
0,bca_algorithm
3,skindepth_for_bca
1,1,luxury_level,iseed
0.1,ZBOUND
1,IREJCT
5.0,ESAVE
1,nbr_split
0,i_play_RR Russian Roulette
-1,IQIN
5.0,EIN
0.,ANGLE
1000,NCASE
```

tutor6.mortran is designed to be run interactively, prompting for responses from the terminal. This can become tedious and to shorten the process the scripts used to run EGSnrc allow the user to specify an input file which is read as if it were input from the terminal. Figure 35 shows an example of such an input file to be used with tutor6.mortran. The only trouble is that the prompts become rather garbled since the code was not written to handle this case. Figure 36 shows the terminal session when tutor6.mortran is run interactively using the same inputs as in the sample input file.
Figure 36: Output from *tutor6.mortran* when run interactively using the same parameters as in the example file.

```
Starting non-debug interactive run with no input file

Input name of medium 1:TA
Input minimum electron transport energy (total, MeV): 1.0
Input minimum photon transport energy (MeV): 0.01
Rayleigh scattering on (1) or off (0)? 0
Atomic relaxations on (1) or off (0)? 1
Photo-electron angular distribution on (1) or off (0)? 0
Binding effects for Compton scattering on (1) or off (0)? 1
Pair angular distribution: the following choices are available:
  0: fixed pair angle (EGS4 default)
  1: leading term of the distribution
  2: Koch and Motz
your choice: 1
Bremsstrahlung angular distribution,
  0: leading term of Koch and Motz distn
  1: Koch and Motz 2BS(modified):
your choice: 1
Bremsstrahlung differential photon cross section to sample,
  0: use Bethe-Heitler distribution as in EGS4
  1: use NIST/ICRU 37 distributions
your choice: 1
Spin effects on (1) or off (0)? 1
Input maximum fractional energy loss per step (estepe): 0.0
using default value: 0.250
Input maximum 1st elastic scattering moment per step: 0.0
using default, ximax = 0.500
Electron-step algorithm: EGSnrc default (0) or PRESTA (1)? 0
Boundary crossing algorithm: exact (0) or PRESTA (1)? 0
Skin-depth for BCA:
  this is the distance from a boundary
  (measured in elastic mean-free-paths) at which the
  simulation switches to single scattering mode
  Best choice for efficiency is 3. If you set this
  parameter to a very large number (e.g. 1e10), you
  can force single scattering simulation in the entire
  geometry (this is very slow)
your choice: 3
Input random number luxury level (0-4) & seed (>0) (0 defaults OK): 1,1
```

continued...
Figure 36: tutor6.mortran output - continued

************************** RANLUX initialization **************************

luxury level: 1
initial seed: 1

************************** RANLUX initialization **************************

Input slab thickness: 0.1
Use (1) or do not use (0) electron range rejection? 1
Input the maximum energy to apply range rejection: 5.0
How many bremsstrahlung photons to create per event (0=>just 1): 1
Russian Roulette all secondary charged particles(yes=1,no=0)? 0
Input incident charge (-1, 0, +1): -1
Input incident kinetic energy (MeV): 5.0
Input incident angle (degrees): 0.
Input number of showers to be simulated: 1000

Start tutor6

CALL HATCH to get cross-section data
RAYLEIGH DATA AVAILABLE FOR MEDIUM 1 BUT OPTION NOT REQUESTED.

Reading screened Rutherford MS data done
Initializing spin data for medium 1 done
Medium 1 sige = 1.79464114 1.78708148
Initializing tmxs for estepe = 0.25 and ximax = 0.5

Output from subroutine EDGSET:

===
 Atomic relaxations requested!
Reading photo-absorption data Done
Reading relaxation data Done
Reading photo cross section data Done

Bound Compton scattering requested, reading data Done
Initializing Bound Compton scattering
Medium 1 has 21 shells:
 1 861 1 0.02740 0.141E+01 67.413
 2 862 2 0.02740 0.503E+01 11.680
 3 863 3 0.02740 0.247E+01 11.136
 4 864 4 0.05479 0.271E+01 9.881
 5 865 5 0.02740 0.111E+02 2.705
 6 866 5 0.02740 0.652E+01 2.466

continued...
Figure 36: tutor6.mortran output - continued

<table>
<thead>
<tr>
<th>7 867</th>
<th>5</th>
<th>0.05479</th>
<th>0.696E+01</th>
<th>2.191</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 880</td>
<td>7</td>
<td>0.05479</td>
<td>0.944E+02</td>
<td>0.008</td>
</tr>
<tr>
<td>21 881</td>
<td>7</td>
<td>0.01370</td>
<td>0.221E+03</td>
<td>0.008</td>
</tr>
</tbody>
</table>

...... Done.

Using NIST brems cross sections!
Initializing brems data for medium 1...
Max. new cross sections per energy loss: 1.79542971 1.78786802

EGS SUCCESSFULLY 'HATCHED' FOR ONE MEDIUM.

knock-on electrons can be created and any electron followed down to 0.189 MeV kinetic energy
bremsstrahlung photons can be created and any photon followed down to 0.010 MeV

Starting shower simulation ...
Finished 10.0% of cases
| | Finished 100.0% of cases

Finished shower simulation with 1000 cases.

Reflected energy fraction: 0.139521 +/- 0.007509
Deposited energy fraction: 0.716428 +/- 0.007973
Transmitted energy fraction: 0.144051 +/- 0.006239

total: 1.000000

===
Finished simulation
Elapsed time: 0.7 s (0.000 h)
CPU time: 0.7 s (0.000 h)
Ratio: 1.026
End of run Tue Nov 11 14:37:29 2003
===
4.7 tutor7.mortran: using SUBROUTINE GET_INPUTS

`tutor7.mortran` is like the same as `tutor6.mortran` but it uses `SUBROUTINE GET_INPUTS` to input the necessary inputs. This is a powerful package which allows for a very descriptive input format which makes the creation of input files much simpler. This example is given here to encourage people to learn about `SUBROUTINE GET_INPUTS` which is described in detail in another manual[94].

4.8 Sophisticated User Codes

The EGSnrc distribution includes a variety of NRC written general purpose user codes such as DOSRZnrc, FLURZnrc etc. These are described in a separate manual (“NRC User Codes for EGSnrc”[94]). These provide many working examples of how to do more sophisticated operations such as handle cylindrical geometries, properly score fluence, use complex LATCH algorithms, handle statistical analysis etc. The BEAM system is for modelling linear accelerators and doing dose calculations in a CT-based patient phantom[75, 93, 98]. This system is based on the EGS Code System but is not part of the EGS distribution. For further information see http://www.irs.inms.nrc.ca/inms/irs/BEAM/beamhome.html.
5 Adapting EGS4 User Codes to EGSnrc

5.1 Introduction

Section 1.4 presents a brief summary of the major changes in EGS4 found in EGSnrc. More details are found in section 2 although not necessarily contrasted to EGS4. These changes taken together represent a major change in the code system.

Nonetheless, we have tried to make EGSnrc as much as possible compatible with existing EGS4 user codes. A full compatibility could not be achieved because of the various changes and enhancements in the modelling of the underlying physical processes. In addition, we have decided not to support what we now consider bad coding practices, especially replacement of EGS internal (private) common blocks or subroutine COMIN’s. This will increase the portability and insensitivity of user codes to future changes and enhancements of the system, once they are adapted to EGSnrc.

In general, the following main incompatibilities may occur in the process of adaptation of user codes to EGSnrc:

1. Incompatibilities due to redefinitions in the user code of EGS internal common blocks (COMINs).

2. Incompatibilities due to the lack of explicit data typing in any user replacement of macro templates used within EGSnrc since EGSnrc uses IMPLICIT NONE; everywhere.

3. Incompatibilities in the scoring routines due to implicit or explicit assumptions about what particles are in what order on the STACK after a given interaction.

4. The lack of a HOWNEAR routine if the user code did not use PRESTA-I, but otherwise HOWNEAR is used in a compatible manner.

5. Incompatibilities (or possibly just lack of efficiency) for user codes which implemented their own versions of range rejection, bremsstrahlung splitting and/or Russian Roulette, especially range rejection.

This section of the manual gives guidelines for the adaptation of existing user codes. The next section briefly summarises changes to EGS4 common blocks and subroutines. Section 5.3 discusses the use of APPEND vs REPLACE. Section 5.4 is devoted to the use of explicit data typing. Section 5.5 deals with the resolution of incompatibilities in the user scoring routine AUSGAB. Possible approaches for the coding of HOWNEAR and the options available if this task is too complicated are given in Sec. 5.6. Section 5.7 deals with the use of electron range rejection, Sec. 5.8 with the input of transport options. Section 5.9 presents a “cook book” fashion guide for the adaptation procedure. Finally, section 5.10 shows an example for the adaptation of the user code XYZDOS.
5.2 Short description of changes

5.2.1 The system

Most of the NRCC changes/additions to EGS4 over the years have been included in the standard EGSnrc files,

egsnrc.macros standard EGSnrc macros and replacements
egsnrc.mortran standard EGSnrc subroutines.

The use of the nrcc4mac.mortran, presta.macros and presta.mortran files is therefore not necessary any more. In addition, BLOCK DATA, previously in egs4blok.mortran, is included in egsnrc.mortran.

5.2.2 EGS4 COMMON blocks

- COMIN/BREMPR/ was modified to provide data for the new sampling techniques employed in the routines BREMS and PAIR. In addition, the material composition which is needed for the bremsstrahlung and pair angular selection macros (NRC extensions), is included now by default. BREMPR also holds flags that determine the angular selection scheme (IBRDST and IPRDST and the bremsstrahlung cross section employed, (ibr_nist);

- COMIN/ELECIN/: Unused variables were removed from the definition of this COMIN. Additional variables that hold information necessary for the modified implementation of the fictitious cross section method, electron range calculations and multiple elastic scattering are included in COMIN/ELECIN/;

- COMIN/EPCONT/: BETA2 and TSCAT were removed (not needed), IAUSFL was expanded to 28 elements in order to define calls to the scoring routine after various relaxation transitions;

- COMIN/MULTS/ and COMIN/PATHCM/ which were needed to implement Molière’s multiple scattering theory and path-length corrections, are not necessary in the new system and are therefore removed;

- EGSnrc provides two random number generators: RANMAR[89, 90] and RANLUX[91, 92]. They are included via the configuration file, ranmar.macros (macros) and ranmar.mortran (initialisation routine) are needed in order to use RANMAR, ranlux.macros (macros) and ranlux.mortran (initialisation and sampling routines) are needed for RANLUX. The definition of COMIN/RANDOMM/ is removed from the main system and included in the ranmar.macros or ranlux.macros files. An additional consequence is that the random number generator is no longer initialised in HATCH, the user must provide the initialisation in their user code (although RANLUX is self-initialising to a default luxury level of 1 and fixed initial random number seed).

- The NRCC additions LATCH and LATCHI to COMIN/STACK/ are now included by default. In addition, a variable NPold, which points to the location of the particle initiating
a given discrete interaction, i.e. the top of the stack before the last interaction, is included in COMIN/STACK/.

- COMIN/THRESH/: removed ESCD2 (not needed);
- COMIN/USEFUL/: removed IBLOBE which is not needed with the new implementation of atomic relaxations;

5.2.3 NRC extensions to EGS4

- COMMON/EDGE/ used for fluorescent X-ray emission is now a standard EGSnrc common block which is included in $COMIN-PHOTO$ and $COMIN-BLOCK$. It is completely different from the definition found in nrcc4mac.mortran as EGSnrc models K,L and M fluorescence and Auger and Coster-Kronig relaxation transitions.

- The common block /USERXT/IPHTER($MXREG$) which used to turn on photo-electron angular sampling and was defined to be part of COMIN/USER-MISC/ in nrcc4mac.mortran, is now a part of a standard EGSnrc common block. The variable IPHTER is included in COMMON/EDGE/ and should be discarded from definitions and replacements in user codes;

- Electron transport parameters such as the maximum geometrical step-size ($SMAX$ or $SMAXIR($MAXRG$)), the maximum energy loss per step ($ESTEPR($MAXRG$)) etc., have been frequently included in COMIN/USER/ in EGS4 user codes. Most electron transport parameter are now included in COMIN/ET-Control/;

5.2.4 New EGSnrc COMMON blocks of interest

- COMIN/NIST-BREMS/: contains information necessary to sample the energy of brem from the NIST cross section data base, which is the basis for ICRU radiative stopping powers;

- COMIN/COMPTON-DATA/: contains information necessary for the modelling of binding effects and Doppler broadening in incoherent photon scattering events;

- COMIN/ET-Control/: combines all variables that determine electron transport settings, such as maximum fractional energy loss per step, maximum first elastic moment per step, maximum geometrical step-size restriction, boundary crossing algorithm, electron-step algorithm, etc;

- COMIN/MS-Data/: contains information necessary for the new multiple scattering theory based on the screened Rutherford cross section;

- COMIN/Spin-Data/: data for the additional rejection loop in the multiple scattering routine that is necessary to take into account spin effects;

- EGS-VARIANCE-REDUCTION: A few variance reduction techniques that have proved to be very useful for applications we are interested in at the National Research Council have been implemented internally. The COMIN EGS-VARIANCE-REDUCTION contains flags and variables necessary for the operation of these variance reduction techniques.
5.2.5 Explicit data typing

In all of the EGSnrc routines there is a macro $\texttt{IMPLICIT-NONE}$; followed by a macro $\texttt{DEFINE-LOCAL-VARIABLES-XXXX}$; XXXX denoting the subroutine name. The default replacement is implicit none to allow for explicit data typing. The $\texttt{DEFINE-LOCAL-VARIABLES-XXXX}$ macros, to be found in egsnrc.macros, define all of the local variables in the corresponding routines. See section 5.4 below about dealing with these features.

5.2.6 Changes in EGS4 subroutines

Details concerning the following changes are contained in section 2 of this manual.

- **ANNIH**: Now implements radiative splitting internally, the time consuming evaluation of a logarithm was taken out of the main sampling loop.

- **BHABHA**: No changes compared to EGS4 version 3.0 (but note there was a sampling bug present in older EGS4 distributions[48])

- **BLOCK DATA**: Numerous changes to provide initialisations for EGSnrc additions.

- **BREMS**: There is a bug in the EGS4 sampling algorithm which shows up only if the electron kinetic energy is not much larger than the bremsstrahlung production threshold AP. The sampling algorithm was completely recoded to remove the bug and increase the efficiency. Radiative splitting is implemented internally, the bremsstrahlung angular selection macro (NRC extension) is modified to allow for the use of the leading term of the angular distribution, the EGS4 fixed angle selection scheme is removed. The new BREMS routine can also use the NIST bremsstrahlung cross section data base to sample photon energies if the flag $\texttt{ibr_nist}$ is set to 1.

- **COMPT**: Completely recoded to take into account binding effects and Doppler broadening in incoherent scattering events.

- **ELECTR**: Completely recoded to include the improvements in the implementation of the condensed history technique some of which have become known as PRESTA-II.

- **HATCH**: Now calls several additional subroutines which read in data and perform initialisations necessary for the EGSnrc enhancements.

- **MOLLER**: No changes to the EGS4 version 3.0 (but note the Møller bug present in older EGS4 distributions[48]).

- **MSCAT**: Completely recoded to implement the new exact multiple scattering theory.

- **PAIR**: Sampling technique modified to make it more efficient at photon energies below 20-30 MeV. Pair production is now skipped if the electron Russian Roulette flag is set and the pair electrons are selected to be “killed” (for efficiency).
• PHOTO: Completely recoded. When relaxation is being modelled, in the case of mixtures, PHOTO explicitely samples the atomic number of the element involved in the interaction and explicitly selects the shell. This prevents the local absorption of all sub-K-shell photons typical for EGS4.

• EDGSET: Completely recoded, reads in the data necessary for the implementation of K,L,M shell atomic relaxations.

• PHOTON: Only a minor change to reflect the fact that, due to the internal implementation of variance reduction techniques, after pair events the top particle is not necessarily an electron or a positron.

• SHOWER: No changes

• UPHI: Modified to implement a more efficient azimuthal angle sampling algorithm. The use of interpolation tables for the evaluation of sines and cosines is disabled by default. Note, however, that the calculation of a sine and a cosine is necessary only after pair events in EGSnrc. It is planned that the next release of EGSnrc will sample the pair angle cosines directly so that the issue of trigonometric evaluations will become entirely irrelevant.

5.2.7 New EGSnrc subroutines

• fix_brems: Re-calculates some quantities in the common block BREMPR for use with the new BREMS sampling algorithm.

• init_compton: Reads in data necessary for the modelling of binding effects and Doppler broadening in incoherent scattering events.

• mscati: Performs various initialisations such as the calculation of maximum step-size, the calculation of the maximum electron/positron cross section per unit energy loss (necessary for the modified implementation of the fictitious cross section method) and calls the multiple scattering initialisation routines.

• spin_rejection: A function that returns the value of the rejection function due to spin effects for the current step-length, material, energy, and scattering angle.

• sscat: Samples an elastic scattering angle from the single elastic scattering cross section.

• init.ms_SR: Reads-in and initialises data necessary to sample multiple scattering angles from the MS theory based on the screened Rutherford cross section.

• init_spin: Reads in and initialises data necessary to sample multiple scattering angles when spin effects are taken into account.

• set_spline: An auxiliary subroutine which sets cubic spline interpolation coefficients.

• spline: An auxiliary function which performs a cubic spline interpolation. The spline coefficients must have been set with set_spline.
• **msdist.pII**: Performs a condensed history step using the improved electron-step algorithm (i.e. samples a multiple scattering angle and the final position, given a path-length and energy loss).

• **msdist.pI**: Performs a condensed history step à la PRESTA.

• **RELAX**: Performs the de-excitation cascade of K,L,M and N shell vacancies.

• **init.nist.brems**: Reads-in and initialises data necessary for the sampling of brems energies from the NIST cross section data base.

• **prepare.alias.table**: Prepares an alias sampling table using linear interpolation between data given in the arrays `xs.array` (abscissas) and `ys.array` (ordinates) which both have the dimension `(0:nsbin)`.

• **alias.sample1**: Employs a modified version of the alias sampling technique to sample a random quantity from an alias table previously initialised with `prepare.alias.table`. Used for sampling bremsstrahlung energies from the NIST cross section data base.

• **gauss.legendre**: Calculate abscissas and weights for a Gauss-Legendre quadrature.

• **vmc.electron**: Implements the VMC electron transport algorithm (much faster but not so general). Not distributed with the system for commercial reasons regarding the clinical implementation of Monte Carlo treatment planning.

5.3 REPLACE vs APPEND

It seems to have been a common practise that in user codes, standard EGS4 comin’s and common’s are replaced by user definitions. A typical example is the inclusion of `COMIN/GEOM/` in `$COMIN-PHOTON` in order to implement photon interaction forcing (this is accomplished by the appropriate replacement of `$SELECT-PHOTON-MFP`). The replacement

```
REPLACE {\$COMIN-PHOTON;} WITH
{;COMIN/DEBUG,BOUNDS,GEOM,MEDIA,MISC,EPCONT,PHOTIN,STACK,THRESH,
 UPHIOT,USEFUL,USER,RANDOM;/}
```

(e.g. in CAVRZ) has the obvious disadvantage that if the default definition of `$COMIN-PHOTON` is changed in a new EGS release (e.g. in order to include new common blocks necessary to model photo-nuclear reactions), the user code will not work properly with the updated system (because the new common blocks are missing from `$COMIN-PHOTON`). If we compare the above replacement with the default definition of `$COMIN-PHOTON` in `egs4mac.mortran`, we see that the only difference is the inclusion of `COMIN/GEOM/`! This task can be accomplished by the use of **APPEND**,

```
APPEND {;COMIN/GEOM;/} TO {\$COMIN-PHOTON;}
```

This technique has the advantage of making the user code independent of changes/updates in the EGS system. We therefore strongly recommend the use of **APPEND** instead of **REPLACE**, not only for the adaptation process but also for the writing of new user codes. In fact,
the misuse of the mortran REPLACE capability was one of the main source for coding efforts necessary to adapt NRC user codes to the EGSnrc system.

Note that when you APPEND something to another macro, the other macro MUST BE DEFINED FIRST. In the above example, the APPEND statement must occur after the definition of $COMIN-PHOTON.

5.4 Use of explicit data typing

The FORTRAN "advantage" of pre-defined data types for variables frequently leads to programming errors that are sometimes difficult to find (such as typos). The EGS4 system is well benchmarked and therefore one can be quite confident that there are no such bugs in the EGS4 routines. However, the redefinition of standard EGS macros such as $SELECT-PHOTON-MFP, $SELECT-ELECTRON-MFP, $USER-RANGE-DISCARD, $CALL-HOWNEAR, $PARTICLE-SELECTION-XXXX (XXXX stands for a subroutine name) introduces the possibility that EGS internal variables are used and eventually changed in these macros. The easiest way to avoid conflict of variables is to always use separate routines to perform the tasks of the above macros, e.g.

REPLACE { $SELECT-PHOTON-MFP; } WITH

{ dpmfp = select_photon_mfp(gle,x(np),y(np),z(np),u(np),v(np),w(np),ir(np)); }

(this will also make unnecessary the inclusion of COMIN/GEOM/ into $COMIN-PHOTON). In terms of efficiency, use of routine calls instead of macros is not crucial as modern compilers will inline the routine if it is simple enough (and if the routine is not inlined, then the overhead due to a routine call is most likely to be negligible compared to the time necessary to execute the routine).

Another way of preventing conflict of variables is to make use of the explicit data typing introduced into the EGSnrc system (see section 5.2.5). In order to do so, all macro variables must be defined in the user code using the APPEND statement, e.g.

APPEND {
$REAL real_var1,real_var2,...;
$INTEGER int_var1,int_var2,...; } TO

{$DEFINE-LOCAL-VARIABLES-XXXX;}

Here $REAL and $INTEGER are macros defined in egsnrc.macros with the default replacement real*4 and integer*4 and XXXX stands for the name of the subroutine where the macro is placed (if double precision and logical variables are used as well, they of course have to be defined too). If it happens that the macro uses EGSnrc internal variables that are already defined in $DEFINE-LOCAL-VARIABLES-XXXX or one of the common blocks, a good FORTRAN compiler will complain about multiple definition of variables\(^{15}\)

\(^{15}\)Note, however, that the warning/error messages can not always be immediately attributed to the multiple definition of a variable. The GNU g77 compiler, for instance, takes out a variable, declared as a member of a common block and then re-declared, out of the common block, and then prints warnings that the common block has different lengths at different places of the program!
Note also that the use of explicit data typing together with the \textsc{real} macro allows for the easy switch to double precision, if double precision turns out to be important for your application (e.g. high energy applications are good candidates for use of double precision). If you want your application to produce the same history sequence on different machines, double precision is a good idea, too.

We strongly recommend the use of explicit data typing in EGSnrc user codes. However, if you are confident that your macro replacements and main code do not contain collisions with EGSnrc internal variables and you are too lazy to declare all variables used, the simplest approach is to include the statement

\begin{verbatim}
REPLACE \{$\textsc{implicit-none;}\} \textsc{with} \{;\}
\end{verbatim}

at the beginning of your user code.

5.5 The scoring routine

It is impossible to predict all possible applications of a coupled electron photon Monte Carlo simulation package and therefore it is impossible to give guidelines for the adaptation of all user codes available. We believe, however, that the only problems that may arise in \texttt{ausgab} are problems related to assumptions about the outcome of a particular interaction made in the coding of the scoring routine.

As an example, consider a call to \texttt{ausgab} after Compton events in order to flag scattered photons (so that, for instance, dose due to scattered photons can be scored separately). A typical implementation is the following piece of code in \texttt{AUSGAB}:

\begin{verbatim}
IF(IARG = 18) \{ "a Compton event just occurred"
 IF(IQ(NP) = -1) \{ LATCH(NP-1) = 1; "photon is at NP-1"
 ELSE \{ LATCH(NP) = 1; "photon is at NP"
 \}
\}
\end{verbatim}

If binding effects are turned on in EGSnrc, the above may lead to unpredictable results because the outcome of a Compton event may be any one of the following:

1. The original photon, if the interaction was rejected due to binding effects
2. A scattered photon and a Compton electron, if the interaction took place and no vacancy with a binding energy above the specified transport threshold energies (ECUT and PCUT) was created
3. A scattered photon, a Compton electron and one or more relaxation particles.

If, for instance, the interaction was rejected and the photon was the only particle on the stack (NP=1), the above code will override a portion of the memory leading to an unpredictable outcome of the simulation. Problems of that type can be resolved by including a loop over all particles from NPold (the stack pointer before the last interaction) to NP (the current stack pointer). In the current EGSnrc version problems may arise only after Compton scattering and photo-electric absorption. However, to guarantee compatibility of your user
code to future EGSnrc releases, it is a good idea to *always* use a loop over all particles created and not assume a certain outcome of interactions. The implementation of electron impact ionization, which will affect the routines MOLLER and BHABHA, is scheduled for the next EGSnrc release, if we one day decide to explicitly simulate triplet production and large energy transfer electron-electron bremsstrahlung, the outcome of PAIR and BREMS will also become unpredictable.

The above piece of code is adapted to EGSnrc using

```fortran
IF( iarg = 18 ) [ "A Compton event has occurred"
   IF( NP > NPold ) [ "i.e. the interaction really took place"
   DO ip = NPold, NP [ IF( iq(ip) = 0 ) latch(ip) = 1; ] ] ]
```

Note that this coding defines fluorescent photons as scattered photons and only works if Russian Roulette is not being played (since if it were, all electrons might be gone and NP = NPold even when the interaction took place). To explicitly flag only the Compton scattered photons one could use:

```fortran
IF( iarg = 18 ) [ "A Compton event has occurred"
   IF( NP > NPold ) [ "i.e. the interaction really took place"
   IF( iq(NPold) = 0 ) latch(NPold) = 1; ] ]
```

which makes use of the fact that the scattered photon is always at NPold but also makes the assumption that Russian Roulette is not being played on the charged particles (see section 3.7.2, page 124 for more details – the variable i_survived_RR allows these cases to be distinguished).

5.6 HOWNEAR

In order to be able to use the improved condensed history implementation, EGSnrc requires the knowledge of the perpendicular distance to the closest boundary at the beginning of each electron step, as did PRESTA-I. The user is asked for this distance via the macro

```bash
$CALL-HOWNEAR(#);
```

The default replacement of $CALL-HOWNEAR(#) in egsnrc.macros prints a message to the standard output that a user definition of this macro is required and aborts the execution of the code. If your user code is not using the PRESTA algorithm, the recommended replacement is

```bash
REPLACE { $CALL-HOWNEAR(#); } WITH {
   call hownear({P1},x(np),y(np),z(np),ir(np)); }
```

together with the code for the subroutine `hownear`. If your user code is using the PRESTA algorithm, there must be a definition of $CALL-HOWNEAR$ somewhere in your user code. We recommend modifying the definition to a subroutine call, but this is not a necessary requirement. If you decide not to modify an existing $CALL-HOWNEAR$ definition, you need to append declarations of all variables that this macro uses to $DEFINE-LOCAL-VARIABLES-ELECTR$, or replace IMPLICIT-NONE with null at the beginning of your user code (see section 5.4).
If your geometry is too complex and you are not able to code a **hownear** routine (even some second order surfaces require the solution of a sixth order equation in order to determine the minimum perpendicular distance), you should include the following replacement in your user code:

```
REPLACE {\$CALL-HOWNEAR(#);} WITH { {P1} = 0; }
```

EGSnrc will then always assume that the particle is very close to a boundary. The accuracy and speed of the simulation will crucially depend on the setting of the **bca_algorithm** variable which is in **COMIN/ET-Control/**:

- **bca_algorithm = 0**: The entire simulation will be performed in single elastic scattering mode. This is very accurate but extremely slow and probably not feasible for most applications.

- **bca_algorithm = 1**: The entire simulation will be performed without lateral deflections in the individual electron steps taken into account. This is similar to the original EGS4 condensed history implementation although the path-length correction is more accurate. We recommend to set the parameter **ximax**, which is also in **COMIN/ET-Control/**, to not more than 0.05 for accurate results. Reducing **ximax** is better than reducing **ESTEPE** as it automatically takes into account differences in the strength of elastic scattering (and so, you don’t need to use **ESTEPE** of 3-4% for low-Z materials but **ESTEPE** only 0.3% for high-Z materials).

5.7 Use of electron range rejection

Many user codes employ some form of electron range rejection technique (which terminates electrons if their range is less than the perpendicular distance to the closest boundary, or to a region of interest). To implement this technique, the **$USER-RANGE-DISCARD** macro is replaced with some code that estimates the CSDA range of electrons and then compares it with the minimum perpendicular distance. In EGSnrc the range is used (and therefore calculated) internally to calculate energy loss to sub-threshold processes. It is ABSOLUTELY ESSENTIAL for the correct operation of EGSnrc that the variable **range**, which holds the current electron CSDA range, is NOT MODIFIED by a user estimate of the range in the macro **$USER-RANGE-DISCARD**! You should check your user code for a replacement of the macro **$USER-RANGE-DISCARD** and rename the variable used for the electron range if it is called **range**! (such a collision with the EGSnrc internal **range** variable would be automatically detected with the use of implicit data typing, see section 5.4). If you fail to do so, the most likely result will be an abort of execution a short time after the begin of the simulation and a message in the output file from the **mscat** routine which says that the maximum step-size in **mscat** was exceeded.

Note that EGSnrc already implements electron range rejection on a region-by-region basis internally. Therefore, a user range rejection is not necessary, unless it is more sophisticated and rejects electrons that can not reach certain volume elements even if capable of escaping the current region.
5.8 Input of electron transport parameters and cross section options

If you don’t make any changes to the electron transport and cross section settings, EGSnrc will run in its most accurate mode possible. If you want to modify some of the transport parameter settings (default values are set in the block data), you may

1. Hard-code the values you want to use for the simulations. In order to do so, you need to include the appropriate COMIN’s into the routine that sets the desired values, i.e.

 subroutine my_routine;
 ;COMIN/COMPTON-DATA/;
 ...
 DO j=1,$MXREG [ibcmp(j) = 0;]
 return; end;

 will turn off bound Compton scattering. The tutorial code, tutor6.mortran contains examples of setting all the parameters we could think of for a simple calculation (section 4.6, page 162).

2. Read desired transport settings from an input file. The easiest way to do so is to include the statement

 call get_transport_parameter(ounit);

 in your user code anywhere before the call to HATCH. Here, ounit is an integer variable that is the unit number of the file to which the get_transport_parameter routine will print a summary of the transport parameter settings (if ounit is less or equal to zero, no output will be produced). If you decide to use get_transport_parameter, you need to include the files transportp.macros and get_inputs.mortran via the configuration file. The syntax used by get_transport_parameter is described extensively in the user-code manual[94] and in the file get_inputs.mortran, the tutorial code tutor7.mortran gives an example of the usage of get_transport_parameter. The advantage of this approach is twofold:

 i. Future changes of the system (e.g. to implement electron impact ionization) will be readily available to your user code without changes.

 ii. You don’t need to specify all transport parameters in the input file, just the ones that you want to change. Missing transport parameter input will cause the system to use default values for the corresponding variables.
5.9 Adapting user codes: cook book instructions

After the discussions of the previous sections, we are ready to give the steps that must be followed to adapt existing EGS4 user codes to EGSnrc in a “cook book fashion”. If your user code is basically a minor modification of an NRC user code such as DOSRZ, it may be more efficient to adapt the corresponding EGSnrc user code. Note that this section assumes that you have the EGSnrc system running so, e.g. you have already redefined $SHEN_HOUSE to point to the EGSnrc system and you have sourced Cshrc_additions_for_egsnrc which means you will pick up the new scripts using the old commands (so, e.g. the command mf now picks up egs_compile instead of egs4_compile) and the naming convention for files is slightly different (e.g., .egsinp instead of .egs4inp, etc). After ensuring the system is ready (see section 8, page 259), do the following steps with your EGS4 user code.

Step 1: Modify your configuration file. If your code does not have its own configuration file, it is using the default configuration and you don’t need to take any actions. If your user code has a configuration file, it is best to start from the file **standard_configuration**, found on the main EGSnrc installation area, and modify it to include the additional files needed by your user code. Note that none of the NRC extensions (nrcc4mac.mortran, presta.macros, presta.mortran) is needed with EGSnrc.

Step 2: Check whether your code defines the $CALL-HOWNEAR macro. If it is defined, decide whether it is simple enough to change the definition to a subroutine call. If yes, do so (see section 5.6). If not, append **COMIN/GEOM** (or whatever COMIN you need for your geometry routines) to **$COMIN-ELECTR** (see section 5.3). If $CALL-HOWNEAR is not defined in your user code, try to code a subroutine that calculates the minimum perpendicular distance to the closest boundary for your geometry and replace $CALL-HOWNEAR with a call to this subroutine. If your geometry is too complex, make $CALL-HOWNEAR return a tperp value of zero (see section 5.6). For a complete discussion of HOWNEAR routines, see section 3.6, page 121).

Step 3: If your user code redefines the $RANDOMSET macro and/or the **COMIN/RANDOM**, consider whether you want to leave it redefined or use the RANLUX or RANMAR generators. Adjust any I/O related to the RNG’s seeds. If the user code uses the default RNG, make any adjustments to the fact that the default is now RANLUX. Check whether your code initialises the random number generator. If not, provide initialisation by putting e.g. the macro $RNG-INITIALIZATION somewhere in your user code before the user code uses a random number or at least before the first call to SHOWER. Note that you don’t need an initialisation if you use the RANLUX generator (which is the default), but it is also not wrong to use it. Note that if you redefine **COMIN/RANDOM**, it must include integer variable **rng.seed**. See sections 3.4.1.iv (page 109) and 3.9 (page 126) for further details.

Step 4: Check your user code for replacements of **COMIN/XXXX/** where XXXX stands for an EGS4 or EGSnrc COMIN block name other than USER, USER-MISC, etc. If you find such replacements, compare them with the corresponding COMIN definition in egsnrc.macros. If the definitions match, remove the replacement from your user code. If not, put user variables into a new common block that will later become a part of your user code.
of COMIN/USER/ (see step 6) and remove this COMIN definition from your user code. A typical example of a user re-defined COMIN is COMIN/BREMPR/ with the inclusion of parameters that control bremsstrahlung splitting. Such variables should be in a user common block and passed to the EGSnrc routines via COMIN/USER/(see section 3).

Step 5: Check your user code for replacements of $COMIN-XXXX$, XXXX being a EGS4/EGSnrc subroutine name. If you find such replacements, compare them to the corresponding definition in egsnrc.macros. If they match, remove the replacement statement from your user code. If not, change the replacement statement to APPEND to include necessary comin’s with $COMIN-XXXX$ (see section 5.3). Don’t forget that some EGS4 comin’s have been eliminated (see section 5.2).

Step 6: If you are using the NRC extensions from nrcc4mac.mortran (check your configuration file), COMIN/USER/ is replaced there by

`COMIN/USER-STEP-CONTROLS, USER-VARIANCE-REDUCTION, USER-MISC/`

In the present release, most of the NRC extensions are included in egsnrc.macros and so the use of nrcc4mac.mortran is not necessary. However, we found that it is better to return to the original EGS4 definition of COMIN/USER/ namely a null (;) and let the user define their own COMIN/USER/. Check therefore your user code for definitions of USER-STEP-CONTROLS, USER-VARIANCE-REDUCTION and USER-MISC. Combine all of these definitions to a COMIN/USER/ definition. Include also common blocks or variables needed to account for previous replacements of EGS4 / EGSnrc internal comin’s (see step 4 above).

Step 7: Check whether one or more of the common blocks included in COMIN/USER/ are not already defined in COMIN/EDGE/ (e.g. COMMON/USERXT/) or in COMIN/ET-Control/ (e.g. SMAXIR) and discard them if so. Check also for appearances of ESTEP, ESTEPE, etc. If you intend to use the get_transport parameter routine (see step 13 and section 5.8), remove all of them. If not, make sure that COMIN/ET-Control/ is available.

Step 8: Check for definitions of $SET-BREMS-ANGLE$, $SET-PAIR-ANGLE$, $RAYLEIGH-CORRECTION$ and $SELECT-PHOTON-ELECTRON-DIRECTION$ in your user code. Discard them unless you are using angle selection schemes for bremsstrahlung, pair production or photo-electron production or a treatment of Rayleigh scattering which differ from what are now the internal EGSnrc sampling routines.

Step 9: Check for a definition of $USER-RANGE-DISCARD$. If you find one, make sure that it does not use the variable range. If your $USER-RANGE-DISCARD$ macro performs only electron range rejection on a region-by-region basis, you may consider using the internal EGSnrc range rejection capability and deleting the definition of $USER-RANGE-DISCARD$ from your user code.

Step 10: Decide whether you want to use implicit data types. If no (e.g. in order to save work), insert in your user code the statement REPLACE {$IMPLICIT-NONE;} WITH {;} If yes, perform the following steps:

- Include the $IMPLICIT-NONE; macro at the beginning of the main routine, HOWFAR, HOWNEAR, AUSGAB and all other user-written routines.
• Declare all local variables used in these routines.
• Declare all variables in COMIN/USER/;
• Check for definitions of the following in your user code. If one or more of these macros is redefined, declare all variables used by these macros using APPEND (see section 5.3) with the appropriate $DEFINE-LOCAL-VARIABLES-XXXX; (see section 5.4).

$SELECT-ELECTRON-MFP used in ELECTR
$USER-RANGE-DISCARD
$DE-FLUCTUATION
$PARTICLE-SELECTION-MOLLER
$PARTICLE-SELECTION-BHABHA
$PARTICLE-SELECTION-ANNIH
$PARTICLE-SELECTION-BREMS
$SELECT-PHOTON-MFP used in PHOTON
$RAYLEIGH-CORRECTION
$RAYLEIGH-SCATTERING
$PARTICLE-SELECTION-PAIR
$PARTICLE-SELECTION-COMPT
$PARTICLE-SELECTION-PHOTO
$SET-BREMS-ANGLE used in BREMS
$SET-PAIR-ANGLE used in PAIR
$SELECT-PHOTOELECTRON-DIRECTION used in PHOTO

Step 11: Try to compile your user code. If you get error messages check carefully steps 1-10 and if you are convinced that you have performed all changes described above and can not find the reason for the compilation errors, send an e-mail with a detailed description of the problems to iwan@irs.phy.nrc.ca (Iwan Kawrakow).

Step 12: Check your scoring routine for assumptions about the outcome of interactions (see section 5.5 above and section 3.7.2 on page 124). If you find any, modify accordingly.

Step 13: Decide if you want to be able to modify transport parameter settings. If yes, include a call to get_transport_parameter somewhere before the call to HATCH, code your own input routine or hard code the parameters you wish.

Step 14: Check your environment file. In addition to the unit numbers already reserved in EGS4 for data files (e.g. unit 12 is connected to the PEGS4 data file), EGSnrc uses various other units to read additional data required:

- unit 11: Multiple scattering data (file msnew.data)
- unit 76: NIST bremsstrahlung cross section data (file nist_brems.data)
- unit 77: Relaxation data (file photo_relax.data)
- unit 78: Bound Compton data (file incoh.data)
- unit 79: Photo-absorption cross section data (file photo_cs.data)

The above links are made directly in egs_run. If your user code uses any of the above units (via link statements in the environment file), modify accordingly.
Step 15: If your user code uses the PRESTA algorithm, the input file has most likely a
PRESTA associated input (5 numbers on a line). If the PRESTA associated input is
not the last line in your input file, DELETE IT before running the code.

Step 16: Run test calculations. If you encounter statistically significant differences to your
previous results in a way which differs from what has been discussed in the literature
or the documentation, please send a message with a detailed description of your results
to one of the authors since we would like to make a collection of situations where the
use of the new electron transport physics and various cross section options is necessary.

5.10 Example: adapting XYZDOSnrc

The user code XYZDOS has been used for timing studies of the EGS4 system[99]. It is a
relatively simple code that provides a good example for the adaptation procedure.

Step 1
Comparing the xyzdos.configuration file with standard.configuration on the main
EGSnrc area shows that the only non-system files needed are nrcc4mac.mortran and
prnter.mortran. The former is not needed with EGSnrc, the latter is obsolete. The stan-
dard configuration file is thus sufficient for the compilation of XYZDOS and so
xyzdos.configuration is removed.

Step 2
There is no definition of the $CALL-HOWNEAR macro in xyzdos.mortran so include the rec-
ommended replacement

REPLACE { $CALL-HOWNEAR(#); } WITH { call
hownear({ P1 }, x(np), y(np), z(np), ir(np)); }

near the beginning of xyzdos.mortran. The geometry information is contained in the comin
GEOM which must be made available to the hownear routine. The code for hownear, which is
added at the end of xyzdos.mortran, looks therefore as follows (using explicit data typing):

subroutine hownear(tperp, x, y, z, ir);

$IMPLICIT-NONE;

COMIN/GEOM/;
"Input/Output variables"
$REAL tperp, x, y, z;
$INTEGER ir;
"Local variables"
$INTEGER irx, iry, irz;

$DECODEIR(ir, irx, iry, irz); "xyzdos defined macro to decode region number"
tperp = 1e10;
tperp = min(tperp, xbound(irx+1)-x, x-xbound(irx));
tperp = min(tperp, ybound(iry+1)-y, y-ybound(iry));
tperp = min(tperp, zbound(irz+1)-z, z-zbound(irz));
return;
end;

Step 3
The macro $RNG-INITIALIZATION$; is added to the main routine after the input is complete. XYZDOS reads-in a variable INSEED which is used to initialise the old EGS4 random number generator (which had just one seed called IXX). XYZDOSnrc, the EGSnrc version will not modify the initial seed(s) and therefore all code associated with INSEED and IXX are removed. The default RNG for the system, viz RANLUX will be used with \texttt{luxury_level = 1}.

Step 4
There are no replacements of EGSnrc comin’s.

Step 5
I encounter no replacements of $\texttt{COMIN-XXXX}$ macros.

Step 6
XYZDOS uses the \texttt{nrcc4mac.mortran} file but there are no definitions of \texttt{USER_STEP_CONTROLS}, \texttt{USER_VARIANCE_REDUCTION} and \texttt{USER_MISC}.

Step 7
The only relevant definition and use encountered is \texttt{ESTEPE}. It is declared as \texttt{REAL ESTEPE($MXMED)} and used to input maximum allowed fractional energy losses for each medium. It is also passed to the \texttt{FIXTMX} routine which initialises step-lengths for the \texttt{ESTEPE} selected. In EGSnrc this task is performed internally by the \texttt{mscati} routine. Since the \texttt{get_transport_parameter} routine will be used to parse transport parameter settings, all appearances of \texttt{ESTEPE} are removed.

Step 8
There are no definitions of these macros.

Step 9
Range rejection is not used in XYZDOS.

Step 10
Explicit data typing is being used. Therefore

- The statement $\texttt{IMPLICIT_NONE}$; is included just before the line

 \texttt{;COMIN/BOUNDS,GEOM,MEDIA,MISC,RANDOM,SCORE,STACK,THRESH/;}

 in the main program and also in \texttt{HOWFAR} and \texttt{AUSGAB}.

- All variables used by the main program, in the common blocks, and by \texttt{HOWFAR} and \texttt{AUSGAB} are declared explicitly. Variable declaration for \texttt{HOWNEAR} was already performed in step 2.

- No declarations are needed for \texttt{COMIN/USER/}

- None of the macros from step 9 of the instructions is used in XYZDOS

5: Adapting EGS4 Codes
Step 11
When trying to compile, there were a couple of error messages. All of them are because of failure to declare some of the variables used. Once declared the code compiles without problems.

Step 12
The scoring routine does not need adaptation. However, it performs a check for stack overflow. In EGSnrc this check is performed internally and therefore the associated code is removed.

Step 13
To be able to modify transport parameter settings, a call to the get_transport_parameter routine is included just before the call to HATCH. When trying to compile, the linker complains about an undefined reference to this routine. To solve this problem, copy the standard.configuration file from the $HEN_HOUSE to xyzdos.configuration in $HOME/egsnrc/XYZDOS and include the files transportp.macros and get_inputs.mortran. The xyzdos.configuration file looks then as follows:

```
echo "Entering xyzdosnrc.configuration"
echo "-------------------------------"
echo " 
  Using machine: $my_machine"
echo " 

  %L > .mort job.mortran # Mortran switch to turn listing on
$HEN_HOUSE/catecho "$HEN_HOUSE,egsnrc.macros" "egsnrc standard macros"
$HEN_HOUSE/catecho "$HEN_HOUSE/lib/$my_machine/machine.mortran" "machine macros"
$HEN_HOUSE/catecho "$HEN_HOUSE/ranlux.macros" "RNG macros"
#$HEN_HOUSE/catecho "$HEN_HOUSE/ranmar.macros" "RNG macros"
$HEN_HOUSE/catecho "$HEN_HOUSE/transportp.macros" "transport parameter macros"

if ($?EGS_PERT != 1) echo "-------------------------------"
$HEN_HOUSE/catecho "$1.mortran" "user-code source"
if ($?EGS_PERT != 1) echo "-------------------------------"
$HEN_HOUSE/catecho "$HEN_HOUSE/ranlux.mortran" "RNG initialization"
#$HEN_HOUSE/catecho "$HEN_HOUSE/ranmar.mortran" "RNG initialization"
$HEN_HOUSE/catecho "$HEN_HOUSE/get_inputs.mortran" "input routines"
$HEN_HOUSE/catecho "$HEN_HOUSE/nrcaux.mortran" "NRC auxiliary subs"
$HEN_HOUSE/catecho "$HEN_HOUSE,egsnrc.mortran" "egsnrc subroutines"

echo " 
echo "-------------------------------"
echo "end of xyzdosnrc.configuration. .mortan.mortjob created"
echo "-------------------------------"
echo " 
```

The compilation is now successful. Note that the ranmar files are commented out. To switch
to the original Zaman and Marsaglia random number generator, one needs to uncomment
the ranmar files and comment out the ranlux files in xyzdos.configuration.

Up to this point the whole procedure took about 1.5 hours (including writing down what
was done).

Step 14
The environment file does not use any of the fortran units reserved for EGSnrc data input.

Step 15
XYZDOS does not use the PRESTA algorithm. one can therefore just take an example input file (*e.g.* benche.egs4inp which is the input file for the EGS4 timing benchmark) and run **XYZDOS**. However, let us modify the transport parameter settings from their default values to the ones that correspond as closely as possible to default EGS4. To do so, copy benche.egs4inp to test.egsinp (the default input file extension for EGSnrc is .egsnp instead of .egs4inp) and include the MC Transport Parameter section from the test_tutor7.egsinp file found in the tutor7 directory on the $HEN_HOUSE.

At this point it was noted that the transport cut-off energies \((ECUT,PCUT)\) are input in get_transport.parameter and also at the beginning of the main **XYZDOS** routine. This duplication renders one of the inputs unnecessary and so one should remove the code associated with \(ECUT,PCUT\) input in the main **XYZDOS** routine. Next modify the input file to make transport parameter settings in EGSnrc match EGS4 as closely as possible (see section 3.4.2.i. page 115). The modified test.egsinp file follows:

BENCHE: 20 MeV e- on 19cm**3 WATER Phantom - dual waters,rho=1.001
2
H2O
H2O2
-3,-3,-3
0.0,
1.0,9
0.25,4
1.0,9
0.0
1.0,9
0.25,4
1.0,9
0.0
1.0,6
0.25,4
1.0,12
1,22,1,22,1,22,1,1.001
1,22,1,22,2,2,2,1.001
1,22,1,22,4,4,2,1.001
1,22,1,22,6,6,2,1.001
1,22,1,22,8,8,2,1.001
1,22,1,22,10,10,2,1.001
1,22,1,22,12,12,2,1.001

5: Adapting EGS4 Codes
Step 16
Running the adapted XYZDOS code with this input file on NRC computers (600 MHz PIII with SuSE Linux and egcs-2.91.66 compiler, -O2 optimization) results in a CPU time of 93 seconds. This is quite disappointing compared to the 69 seconds for the benchmark using
standard EGS4 (in view of the fact that very similar transport parameter settings were used). However, different random number generators are used in the two codes and the EGSnrc version needs to calculate the perpendicular distance to the closest boundary at the beginning of each electron step, information which is not used in the simulation mode mimicking EGS4. To check the influence of these two differences

• Re-implement the simple multiplicative random number generator used in the original XYZDOS version. This is most easily done by including

```
REPLACE {;COMIN/RANDOM/;} WITH {
    ;COMMON/RANDOMM/IXX;
    $INTEGER IXX;
}
REPLACE {$RANDOMSET#;} WITH {
    IXX=IXX*663608941;
    {P1}=0.5 + IXX*0.23283064E-09;
}
REPLACE {$RNG-INITIALIZATION;} WITH {IXX=987654321;}
```

in the xyzdos.mortran file (this overrides the definitions from ranlux.mortran). Running the code with this random number generator reduces the CPU time to 85 seconds.

• Remove the calculation of the minimum perpendicular distance by replacing the $CALL-HOWNEAR macro with

```
REPLACE {$CALL-HOWNEAR(#);} WITH { {P1} = 0; }
```

After that modification the CPU time becomes 79 seconds.

The remaining 20% CPU time difference must be due to the various modifications of the sampling and transport techniques. However, all modified sampling routines run faster, or at least as fast, compared to the original EGS4 implementation, if tested alone. The difference must be therefore due to the more accurate evaluation of energy dependent quantities in EGSnrc (such as CSDA energy loss, multiple scattering related quantities, etc.). The very purpose of implementing more accurate techniques for energy dependent quantities is to allow for longer electron steps and so, the use of the 4% maximum fractional energy loss per step in EGSnrc is wasteful. On the other side, using an EGS4-type algorithm for path-length corrections and boundary crossing is not particularly accurate and step-sizes should not be allowed to exceed certain limits. This is best accomplished by reducing the maximum allowed first elastic scattering moment per step ($ximax$), i.e. $ESTEPE$ is set to 0.25 and $ximax$ to 0.1 in the input file. With this parameter selection the EGSnrc version of XYZDOS needs only 48 seconds for the benchmark, i.e. 1.5 times less that the original EGS4 version.
6 PEGS4 User Manual

The PEGS4 system has been modified very little for use with EGSnrc although EGSnrc requires considerably more data than provided by PEGS4 and this is read in directly via the HATCH routine (see fig 17 on page 98). Most of this section is basically a reprint of the PEGS4 User Manual from SLAC-265. There have been a few additions to PEGS4 since 1985 and these are summarized in the next section.

In addition to what is described here, the EGSnrcMP environment includes a user-friendly GUI for using PEGS4. See Report PIRS-877[11] for a detailed description.

![Figure 37: Screen shot of the egs_gui set to run PEGS4 to create an air data set. Filling in this form is much easier than creating an input file and access to the density effect corrections is easy. The GUI does not allow any value except IUNRST = 0. For details, see PIRS-877[11].]

6.1 Some new documentation

6.1.1 Some additional outputs- unrestricted cross sections

The original version of PEGS4 contained a few undocumented options which many people have made use of, so they are now documented here. Basically there is an additional parameter, IUNRST which allows various stopping powers to be calculated, rather than just the restricted stopping powers normally calculated when IUNRST = 0. The IUNRST input is made as part of the namelist input for INP (along with NE, AE etc). Basically IUNRST gives access to a variety of different stopping powers and allows for simulations which model various types of CSDA calculations.

Last edited 2003-11-12 09:29:24-05
IUNRST = 0, restricted stopping powers: This is the default case which is needed for normal simulations. The stopping powers output by PEGS4 are the restricted collision and radiative stopping powers.

IUNRST = 1, unrestricted collision stopping power: This is useful for calculating unrestricted stopping powers for comparison to frequently published values.

IUNRST = 2, CSDA data set: This produces a data set which can do one form of CSDA calculation. The stopping power produced is the unrestricted total (collision + radiative) stopping power and the distances to discrete electron interactions is infinite (i.e. they never occur). A simulation done with this data set is a form of CSDA calculation, with all of the bremsstrahlung energy deposited locally.

IUNRST = 3, CSDA calculation with brem interaction: The stopping powers are the sum of the unrestricted collision stopping power plus the restricted stopping power and the distance to discrete interactions takes into account only bremsstrahlung events.

IUNRST = 4, CSDA calculation with delta-ray interactions: The stopping powers are the sum of the restricted collision stopping powers and the unrestricted collision stopping powers and the distance to discrete interactions takes into account only the creation of knock-on electrons or delta-rays.

IUNRST = 5, unrestricted radiative stopping power: This complements IUNRST = 1 and allows comparison to published radiative stopping powers.

IUNRST = 6, restricted radiative stopping power: Allows for direct calculation of the restricted radiative stopping powers.

IUNRST = 7, restricted collision stopping powers: Allows for direct calculation of the restricted collision stopping power.

Note that for low values of AP (e.g. 0.010 keV) the restricted radiative collision stopping power is very close to zero and hence the stopping powers with IUNRST = 0 are close to those for IUNRST = 7.

The code EXAMIN (see section 3.12.3, page 131) will take the data sets produced by PEGS4 and print tables of cross section data and/or plot these same data in user friendly units.

6.1.2 Use of ICRU Report 37 Collision Stopping Powers

For very precise dosimetry work it is often advantageous to make use of collision stopping powers recommended by the ICRU in their Report 37[44]. This option was added to PEGS4 in 1989[57]. Basically PEGS4 allows the user to read in a file which contains an arbitrary density effect data set (δ values). The EGSnrc distribution supplies the data sets required for a large number of materials as calculated by Berger and Seltzer[55] for ICRU Report 37 (see $HEN_HOUSE/pegs4/density_corrections).

To implement this option, one adds EPSTFL=1 to the INP namelist input for the ELEM, COMP or MIXT option and executes PEGS4 as:
pegs4 input1 input2

where input1.pegs4inp contains the standard PEGS4 input file (with EPSTFL=1) and input2.density is the file with the density effect data needed.

PEGS4 verifies that the data in input2.density corresponds to the same material as described in input1.pegs4inp, and in particular demands that the densities match. If you want to create a data set using the density effect data for graphite based on a density of 2.26 g/cm3 but the real bulk data is 1.70 g/cm3, you must edit the density effect file and artificially change the density to match the bulk density you are after, otherwise PEGS4 will stop.

Note that the density effect file also provides the ICRU 37 value of the I value for the material and PEGS4 uses this rather than its internally calculated value.

Data sets created with EPSTFL=1 and IUNRST = 1 should match the collision stopping powers in ICRU Report 37 exactly.

6.1.3 Use of ICRU Report 37 Radiative Stopping Powers

In 1989 an option was added to PEGS4[45] which ensured that the unrestricted radiative stopping powers calculated by PEGS4 were identical to those calculated by Berger and Seltzer[55] and included in ICRU Report 37[44]. This was done by scaling the cross sections used in PEGS4 to ensure that these stopping powers matched. This made a significant difference to the bremsstrahlung cross sections at low energies. It is strongly recommended that this option always be used and has been made the default value in PEGS4. To restore the original PEGS4 values, enter the input IAPRIM=0 to the INP namelist input for the ELEM, COMP or MIXT option.

Note that this change does not produce the same photon differential cross sections as calculated by Seltzer and Berger[42], but this option has been added to EGSnrc (see section 3.4.2) and turned on by setting ibr_nist = 1.

6.1.4 A Bug in PEGS4

Although the PEGS4 manual reports that one may produce data sets for many materials in one run, this is not in fact possible. One must run the code separately for each material desired and then concatenate these files into one master file.
6.2 Original PEGS4 User Manual

SLAC265 - APPENDIX 3

PEGS4 User Manual

By

Walter R. Nelson
Stanford Linear Accelerator Center
Stanford University
Stanford, CA 94305, U.S.A.

Hideo Hirayama
National Laboratory for High Energy Physics (KEK)
Oho-machi, Tsukuba-gun, Ibaraki, Japan

David W. O. Rogers
National Research Council of Canada
Ottawa K1A 0R6, Canada

31 December 1985

[This PEGS4 User Manual is based directly on Appendix 3 of SLAC-265, The EGS4 Code System]
A3. PEGS4 USER MANUAL

A3.1 Introduction

The PEGS code (Preprocessor for EGS) is a stand alone utility program written in Mortran **. PEGS’ purpose is to generate material data for the EGS code, and to provide other services for the user who is studying or simulating electromagnetic interactions. The active operations of PEGS are functionals; that is, they are operations whose arguments are functions (the functions related to physics interactions). Included among these operations are:

- Fitting of functions by means of piecewise linear fits.
- Production of print plots of selected functions.
- Evaluation of functions at selected points.
- Comparision of functions with sampled spectra.

Associated with these active functionals are other operations; namely,

- Selection of material to which the functions refer.
- Selection of energy cutoffs for fits.
- Punching of fit data.

[Note: Those interested in preparing data sets for EGS4 can go directly to Section A3.3]

A3.1-1
A3.2 Structural Organization of PEGS

The PEGS code contains over 4200 Fortran source lines which are the source for a MAIN program, BLOCK DATA subprogram, 12 subroutines, and 83 functions. Despite the large number of subprograms, PEGS has a simple structure. Fig. A3.2.1 shows a flowchart of the MAIN program of PEGS. After the once-only initializations an option loop is entered. Each time through the option loop, an option is read (option names are four characters and are read as 4A1), numeric control parameters are read (using NAMELIST/INP/), and then the option name is looked up in the option table. If not found, the job is aborted. If found, the appropriate code is executed and return is passed to the beginning of the option loop. Normal exit from the loop is by selection of the STOP option, or detection of an End of File condition on the control input file. The details for the use of the options are contained in Section A3.3.

Fig. A3.2.2 shows the subprogram relationships of PEGS. Boxed items are subprograms, and labels for option names (i.e., :CALL:) are used to show which subprograms correspond to which options. It can be seen that the physical routines are accessed directly for the PWLF option. For utility options (TEST, PLTN, PLTI, HPLT, and CALL) the physical routines are referenced using the function FI—the so-called "function multiplexer". Function FI has five arguments. The first argument (I) tells which physical function to invoke, and the other four arguments (X1, X2, X3, X4) are used as needed as arguments for the called function. FI then returns the value returned by the called function.

This method of implementing options that are functionals was selected to avoid the necessity of having a separate call to the associated utility routines for each physical function on which it might be desired to operate. It was also desired to be able to refer to the particular function symbolically, both at compile time and at run-time, and to know the number of arguments to each function. In order to have these conveniences and also allow easy insertion or deletion of functions to the list of functions accessible to FI, a Fortran macro ($FUNCTIONS) was written which takes a list of names of functions (each of which is immediately preceded by the number of arguments it has) and generates other macros containing the desired information. In particular, A3.2-1
Fig. A3.2.1 Flowchart of the MAIN Program of PEGS

(continued on next page)
Fig. A3.2.1 Flowchart of the MAIN Program of PEGS
(continued from previous page)
Fig. A3.2.2 Subprogram Relationships of PEGS
(continued on next page)
Fig. A3.2.2 Subprogram Relationships of PEGS
(continued from previous page)
the following macros are defined:

\$NFUNS - Gives the number of functions.

\$FLIST$DATA(FNAME) - Generates a data statement initial-
izing the array FNAME(6,\$NFUNS) so that FNAME(i,j) has
the ith character of the name of the jth function.

\$FLIST$NARGS - Gives a list of the number of arguments
for each function, which is used to initialize the run-
time array NFARG(\$NFUNS).

\$FLIST$FNUMS - Gives a list of numbers from 1 to
\$NFUNS, which is used to generate the computed GO TO
in FI.

\$FLIST$FCALLS - Generates the function calls in FI with
the proper number of arguments for each function taken
from the list X1, X2, X3, X4.

\$FN(function name) - Gives the function index of the
specified function.

\$NA(function name) - Gives the number of arguments for
the specified function.

It should also be noted that there are relationships
between the functions shown in Fig. A3.2.2 that are not
indicated there. We show the most complicated of these in
Figs. A3.2.3a,b (Bremsstrahlung Related Functions) and in
Figs. A3.2.4a,b (Pair Production Related Functions). One
reason for the complexity of these is that the higher level
forms of the cross sections must be obtained by numerical
integration of the more differential forms.
Fig. A3.2.3a Bremsstrahlung Related Functions---Most Accurate Form
(Used to Produce the Total Cross Sections and Stopping Power).
A3.2-7
Fig. A3.2.3b Bremsstrahlung Related Functions---With Run-Time Approximations (For Comparison with Sampled Spectra).
Fig. A3.2.4a Pair Production Related Functions---Most Accurate Form (Used to Produce the Total Cross Sections and Stopping Power).
Fig. A3.2.4b Pair Production Related Functions---With Run-Time Approximations (For Comparison with Sampled Spectra).
Table A3.2.1 lists the SUBROUTINES used in PEGS. A brief description of their use and page references for a fuller discussion is given.

Table A3.2.2 lists the FUNCTIONS used in PEGS along with their mathematical symbols, definitions, and locations in this report for a fuller discussion. The names of most of the functions have been chosen in a rather mnemonic way. The first three or four letters suggest the process being considered. The last letter designates the form of the cross section (Z for element, M for mixture, and R for "run-time" mixture). The next to last letter describes either the particular form of the cross section (such as D for differential, T for total or R for range-integrated), or it indicates that only the secondary energy is to vary, with other data being passed through a common. The letter F is used in such cases and the data in common is initialized using the corresponding function that has a next to last letter of D. If the function word begins with an I through N (i.e., the FORTRAN integer convention) the word is prefixed with the letter A. A few examples are given below:

AMOLDM is the differential Moller cross section for a mixture of elements.

BREMDR is the differential bremsstrahlung cross section for a "run-time" mixture of elements.

BREMRRM is the bremsstrahlung cross section, integrated over some energy range, for a mixture of elements.

BRMSSTM is the soft bremsstrahlung total cross section for a mixture of elements.

PAIRRR is the pair production cross section, integrated over some energy range, for a "run-time" mixture of elements.

PAIRTZ is the total cross section for pair production for an element.

This method of naming is not strictly adhered to, however. For example, SPIONE is the ionization stopping power for an electron, PBR1 and PBR2 are positron branching ratios, and GMFP is the gamma-ray mean free path.
<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIFFER</td>
<td>Determines the various parameters needed for bremsstrahlung and pair production energy sampling.</td>
<td>A3.2-4, A3.3-11</td>
</tr>
<tr>
<td>EFUNS</td>
<td>Subprogram to compute electron functions to be fit in a way that avoids repetition.</td>
<td>A3.2-4</td>
</tr>
<tr>
<td>GFUNS</td>
<td>Subprogram to compute photon functions to be fit in a way that avoids repetition.</td>
<td>A3.2-4</td>
</tr>
<tr>
<td>HPLT1</td>
<td>Creates line printer plot comparisons of EGS-sampled data (UCTESTSR User Code) and theoretical functions of PEGS.</td>
<td>A3.2-4, A3.3-20, A3.3-21</td>
</tr>
<tr>
<td>LAY</td>
<td>Subprogram to produce a deck of material dependent data (for subsequent use by EGS).</td>
<td>A3.2-4, A3.3-17</td>
</tr>
<tr>
<td>MIX</td>
<td>Computes Z-dependent parameters that reside in COMMON/MOLVAR/.</td>
<td>A3.2-4, A3.3-11</td>
</tr>
<tr>
<td>MOLIER</td>
<td>Computes material independent multiple scattering data (EGS2 only!).</td>
<td>A3.2-4</td>
</tr>
<tr>
<td>PLOT</td>
<td>Subprogram to plot a given function (referenced by number).</td>
<td>A3.2-4</td>
</tr>
<tr>
<td>PMDCON</td>
<td>Determines the physical, mathematical, & derived constants in a mnemonic way.</td>
<td>A3.2-4</td>
</tr>
<tr>
<td>PWLF1</td>
<td>Subprogram to piecewise linearly fit up to 10 functions simultaneously on an interval (XL,XU).</td>
<td>A3.2-4, A3.3-14</td>
</tr>
<tr>
<td>RFUNS</td>
<td>Subprogram to compute Rayleigh scattering functions to be fit in a way that avoids repetition.</td>
<td>A3.2-4</td>
</tr>
<tr>
<td>SPINIT</td>
<td>Initializes stopping power functions for a particular medium.</td>
<td>A3.2-4, A3.3-11</td>
</tr>
</tbody>
</table>
Table A3.2.2

FUNCTIONS Used In PEGS

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFFACT</td>
<td>Atomic form factor (squared) for an element or mixture of elements.</td>
<td>A3.2-4,9</td>
</tr>
<tr>
<td>AINTP</td>
<td>Linear or log interpolation function.</td>
<td>A3.2-5,</td>
</tr>
<tr>
<td>ALKE</td>
<td>Log of kinetic energy (ALOG(E-RM)), used as a cumulative distribution</td>
<td>A3.2-5,</td>
</tr>
<tr>
<td></td>
<td>function for fits and plots.</td>
<td>A3.3-20</td>
</tr>
<tr>
<td>ALKEI</td>
<td>Inverse of ALKE (=EXP(X)+RM).</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>ALIN</td>
<td>Linear cumulative distribution function for plots (ALIN(X)=X).</td>
<td>A3.2-5,</td>
</tr>
<tr>
<td>ALINI</td>
<td>Inverse of ALIN (=same as ALIN).</td>
<td>A3.2-5</td>
</tr>
<tr>
<td></td>
<td>Used as inverse cumulative distribution function in plots.</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>ADFMOL</td>
<td>Approximate cumulative distribution function for Moller and Bhabha cross</td>
<td>A3.2-5,</td>
</tr>
<tr>
<td></td>
<td>sections (ADFMOL(E)=-1/(E-RM)).</td>
<td>A3.3-20</td>
</tr>
<tr>
<td>ADIMOL</td>
<td>Inverse of ADFMOL.</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>ADDMOL</td>
<td>Derivative of ADFMOL.</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>AMOLDM</td>
<td>Moller differential cross section for a mixture of elements.</td>
<td>A3.2-5,11,14</td>
</tr>
</tbody>
</table>

(continued on next page)
Table A3.2.2
(continued)

FUNCTIONS Used In PEGS

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMOLFM</td>
<td>"One argument" form of AMOLDM.</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>AMOLRM</td>
<td>Moller cross section, integrated over some energy range, for a mixture of</td>
<td>A3.2-5</td>
</tr>
<tr>
<td></td>
<td>elements.</td>
<td></td>
</tr>
<tr>
<td>AMOLTM</td>
<td>Moller total cross section for a mixture of elements.</td>
<td>A3.2-4,5</td>
</tr>
<tr>
<td>ANIHDM</td>
<td>Annihilation differential cross section for a mixture of elements.</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>ANIHFM</td>
<td>"One argument" form of ANIHDM.</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>ANIHRM</td>
<td>Annihilation cross section, integrated over some energy range, for a mixture</td>
<td>A3.2-5</td>
</tr>
<tr>
<td></td>
<td>of elements.</td>
<td></td>
</tr>
<tr>
<td>ANIHTM</td>
<td>Annihilation total cross section for a mixture of elements.</td>
<td>A3.2-4,5</td>
</tr>
<tr>
<td>APRIM</td>
<td>Empirical correction factor in bremsstrahlung cross section.</td>
<td>A3.2-5,7</td>
</tr>
<tr>
<td>AREC</td>
<td>Reciprocal function (=derivative of ALOG(X)). Used as probability density</td>
<td>A3.2-5</td>
</tr>
<tr>
<td></td>
<td>function in log plots (AREC(X)=1/X).</td>
<td></td>
</tr>
<tr>
<td>BHABDM</td>
<td>Bhabha differential cross section for a mixture of elements.</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>BHABFM</td>
<td>"One argument" form of BHABDM.</td>
<td>A3.2-5</td>
</tr>
</tbody>
</table>

(continued on next page)
Table A3.2.2
(continued)

FUNCTIONS Used In PEGS

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHABRM</td>
<td>Bhabha cross section, integrated over some energy range, for a mixture of elements.</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>BHABTM</td>
<td>Bhabha total cross section for a mixture of elements.</td>
<td>A3.2-4,5</td>
</tr>
<tr>
<td>BREMDDR</td>
<td>Bremsstrahlung differential cross section for a "run-time" mixture of elements.</td>
<td>A3.2,5,8,11</td>
</tr>
<tr>
<td>BREMDFR</td>
<td>"One argument" form of BREMDDR.</td>
<td>A3.2-5,8</td>
</tr>
<tr>
<td>BREMDDZ</td>
<td>Bremsstrahlung differential cross section for an element.</td>
<td>A3.2-5,7</td>
</tr>
<tr>
<td>BREMDFZ</td>
<td>"One argument" form of BREMDDZ.</td>
<td>A3.2-5,7</td>
</tr>
<tr>
<td>BREMRM</td>
<td>Bremsstrahlung cross section, integrated over some energy range, for a mixture of elements.</td>
<td>A3.2-5,7,11</td>
</tr>
<tr>
<td>BREMRR</td>
<td>Bremsstrahlung cross section, integrated over some energy range, for a "run-time" mixture of elements.</td>
<td>A3.2-5,8</td>
</tr>
<tr>
<td>BREMRRZ</td>
<td>Bremsstrahlung cross section, integrated over some energy range, for an element.</td>
<td>A3.2-5,7</td>
</tr>
<tr>
<td>BREMTM</td>
<td>Bremsstrahlung total cross section for a mixture of elements.</td>
<td>A3.2-4,5,7</td>
</tr>
<tr>
<td>BREMTR</td>
<td>Bremsstrahlung total cross section for a "run-time" mixture of elements.</td>
<td>A3.2-5,8</td>
</tr>
</tbody>
</table>

(continued on next page)

A3.2-15
<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRMSDZ</td>
<td>Soft bremsstrahlung differential cross section for an element.</td>
<td>A3.2-5,7</td>
</tr>
<tr>
<td>BRMSFZ</td>
<td>"One argument" form of BRMSDZ.</td>
<td>A3.2-5,7</td>
</tr>
<tr>
<td>BRMSRM</td>
<td>Soft bremsstrahlung cross section, integrated over some energy range, for a mixture of elements.</td>
<td>A3.2-5,7</td>
</tr>
<tr>
<td>BRMSRZ</td>
<td>Soft brems cross section integrated over an energy range, for an element.</td>
<td>A3.2-5,7, A3.3-19,20</td>
</tr>
<tr>
<td>BRMSTM</td>
<td>Soft bremsstrahlung total cross section for a mixture of elements.</td>
<td>A3.2-5,7,11</td>
</tr>
<tr>
<td>COHERTM</td>
<td>Coherent (Rayleigh) total cross section for a mixture of elements.</td>
<td>A3.2-4,5</td>
</tr>
<tr>
<td>COHETZ</td>
<td>Coherent (Rayleigh) total cross section for an element.</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>COMPDM</td>
<td>Compton differential cross section for a mixture of elements.</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>COMPFM</td>
<td>"One argument" form for COMPDM.</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>COMPRM</td>
<td>Compton cross section, integrated over an energy range, for a mixture of elements.</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>COMPTM</td>
<td>Compton total cross section for a mixture of elements.</td>
<td>A3.2-4,5</td>
</tr>
<tr>
<td>CRATIO</td>
<td>Coherent (Rayleigh) cross section ratio</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>DCADRE</td>
<td>Quadrature routine to integrate f(x) from a->b by cautious Romberg extrapolation.</td>
<td>A3.2-7-10,19</td>
</tr>
<tr>
<td>EBIND</td>
<td>Function to get an average photo-electric binding energy.</td>
<td>A3.2-4,5</td>
</tr>
</tbody>
</table>
Table A3.2.2
(continued)

FUNCTIONS Used In PEGS

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBR1</td>
<td>Function to determine the electron(-) branching ratio (Brem/Total).</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>EDEDX</td>
<td>Evaluates SPTOTE with cutoff energies of AE and AP.</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>ESIG</td>
<td>Determines the total electron(-) interaction cross section (probability per radiation length).</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>FCOULC</td>
<td>Coulomb correction term in pair production and bremsstrahlung cross sections.</td>
<td>A3.2-5,7,9</td>
</tr>
<tr>
<td>FI</td>
<td>Function multiplexer.</td>
<td>A3.2-1,5,6</td>
</tr>
<tr>
<td>GBR1</td>
<td>Function to determine the gamma-ray branching ratio (Pair/Total).</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>GBR2</td>
<td>Function to determine the gamma-ray branching ratio ((Pair+Compton)/Total).</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>GMFP</td>
<td>Function to determine the gamma-ray mean free path.</td>
<td>A3.2-5,11, A3.3-18,19</td>
</tr>
<tr>
<td>IFUNT</td>
<td>Given PEGS function name, it looks it up name in table and returns the function index. Used by options that specify functions by name.</td>
<td></td>
</tr>
<tr>
<td>PAIRDR</td>
<td>Pair production differential cross section for a "run-time" mixture of elements.</td>
<td>A3.2-5,10,18</td>
</tr>
<tr>
<td>PAIRDZ</td>
<td>Pair production differential cross section for an element.</td>
<td>A3.2-5,9,18</td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAIRFR</td>
<td>"One argument" form of PAIRDR.</td>
<td>A3.2-5,10</td>
</tr>
<tr>
<td>PAIRFZ</td>
<td>"One argument" form of PAIRDZ.</td>
<td>A3.2-5,10</td>
</tr>
<tr>
<td>PAIRRM</td>
<td>Pair production cross section, integrated over some energy range, for a mixture of elements.</td>
<td>A3.2-5,9</td>
</tr>
<tr>
<td>PAIRR</td>
<td>Pair production cross section, integrated over some energy range, for a "run-time" mixture of elements.</td>
<td>A3.2-5,10,11</td>
</tr>
<tr>
<td>PAIRZ</td>
<td>Pair production cross section, integrated over energy range, for element.</td>
<td>A3.2-5,9</td>
</tr>
<tr>
<td>PAIRTE</td>
<td>"Empirical" total pair production cross section for a mixture (=SUM(PZ(I)*PAIRTZ(Z(I))).</td>
<td>A3.2-5,9</td>
</tr>
<tr>
<td>PAIRTM</td>
<td>Pair production total cross section for a mixture of elements, obtained by numerical integration of differential cross section.</td>
<td>A3.2-5,9</td>
</tr>
<tr>
<td>PAIRT</td>
<td>Pair production total cross section for a "run-time" mixture of elements.</td>
<td>A3.2-5,10</td>
</tr>
<tr>
<td>PAIRT</td>
<td>Pair production total cross section actually "used". Same as PAIRTE for primary energy less than 50 MeV; otherwise, same as PAIRTM.</td>
<td>A3.2-4,5,9</td>
</tr>
<tr>
<td>PAIRZ</td>
<td>Computes contribution to empirical pair production total cross section for an element assuming one atom per molecule. It is obtained by log-linear interpolation of Israel-Storm data.</td>
<td>A3.2-5,9,11</td>
</tr>
<tr>
<td>PBR1</td>
<td>Function to determine the positron branching ratio (Brem/Total).</td>
<td>A3.2-5,11</td>
</tr>
<tr>
<td>NAME</td>
<td>DESCRIPTION</td>
<td>PAGES</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>PBR2</td>
<td>Function to determine the positron branching ratio ((Brem+Bhabha)/Total).</td>
<td>A3.2-5,11</td>
</tr>
<tr>
<td>PDEDX</td>
<td>Evaluates SPTOTP with cutoff energies of AE and AP.</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>PHOTTE</td>
<td>Determines the proper mix of PHOTTZ’s for a mixture.</td>
<td>A3.2-4,5</td>
</tr>
<tr>
<td>PHOTTZ</td>
<td>Determines the interpolated total photoelectric cross section from tabulated data.</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>PSIG</td>
<td>Determines the total positron interaction cross section (probability per radiation length).</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>QD</td>
<td>Driver function for DCADRE, the numerical integration routine.</td>
<td>A3.2-7-10</td>
</tr>
<tr>
<td>QFIT</td>
<td>Utility logical function for the piecewise linear fit subroutine, PWLF1.</td>
<td>A3.2-4, A3.3-14,15</td>
</tr>
<tr>
<td></td>
<td>It returns .TRUE. if a given partition gives a good fit.</td>
<td></td>
</tr>
<tr>
<td>SPIONB</td>
<td>Does the work for SPIONE and SPIONP. One argument tells whether to compute stopping power for electron or positron.</td>
<td>A3.2-7</td>
</tr>
<tr>
<td>SPIONE</td>
<td>Calculates the stopping power due to ionization for electrons(−).</td>
<td>A3.2-5,7</td>
</tr>
<tr>
<td>SPIONP</td>
<td>Calculates the stopping power due to ionization for positrons.</td>
<td>A3.2-5,7</td>
</tr>
<tr>
<td>SPTOTE</td>
<td>Calculates the total stopping power (ionization plus soft bremsstrahlung) for electrons(−) for specified cutoffs.</td>
<td>A3.2-4,5,7</td>
</tr>
</tbody>
</table>

(continued on next page)
FUNCTIONS Used In PEGS

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPTOTP</td>
<td>Calculates the total stopping power (ionization plus soft bremsstrahlung) for positrons for specified cutoffs.</td>
<td>A3.2-4,5,7,19</td>
</tr>
<tr>
<td>TMXB</td>
<td>Determines the maximum total step length consistent with Bethe’s criterion.</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>TMXS</td>
<td>Determines the minimum of TMXB and 10 radiation lengths.</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>TMXDE2</td>
<td>Included for possible future modification purposes (=TMXB/(E2*BETA4)). It might be easier to fit this quantity than to fit TMXB and then apply the denominator in EGS at run-time.</td>
<td>A3.2-5</td>
</tr>
<tr>
<td>XSIF</td>
<td>Function to account for bremsstrahlung and pair production in the field of the atomic electrons.</td>
<td>A3.2-5,7,9</td>
</tr>
<tr>
<td>ZTBL</td>
<td>Given the atomic symbol for an element, it returns the atomic number.</td>
<td></td>
</tr>
</tbody>
</table>
A3.3 PEGS Options and Input Specifications

A3.3.1 Interrelations Between Options

Fig. A3.3.1 illustrates the logical relationship between options of PEGS. For example, in order to be able to use the PLTN option, one of the material specification options (ELEM, MIXT, COMP) must have already been processed. The PWLF option requires that both the ENER option and one of the material specification options precede it. To use the DECK option, it is sufficient to have validly invoked the PWLF option. The STOP and MIMS options are seen to be independent of the others.

In the following sections, for each option we will give its function, parameters which control it, the format of cards needed to invoke it, and an explanation of the routines (if any) that are used to implement it. The cards for a given option are named with the first part of their name being the option name, and the last part the card number. For example, MIXT2 is the name of the second card needed for the MIXT option. The information is summarized in Table A3.3.1. It should be noted that IBM and CDC require different formats for NAMELIST data. Also, the single card referred to as being read by NAMELIST may in fact be several cards, provided that the proper convention for continuing NAMELIST cards is followed. Once the first card (indicating the option) has been read in, however, the second card (i.e., NAMELIST/INP/) must follow (see examples at the end of Section A3.3.2). We will use the IBM form of NAMELIST in our examples.

A3.3.2 The ELEM, MIXT, COMP Options

The purpose of the ELEMent, MIXTure, and COMPound options is to specify the material used by the PEGS functions. The parameters needed to specify a material are its density (RHO), the number of different kinds of atoms (NE), and, for each different kind of atom, its atomic number (Z(I)), its atomic weight (WA(I)), and its proportion either by number (PZ(I)) for a compound or by weight (RHOZ(I)) for a mixture. PEGS has tables for the atomic symbol (ASYMT(1:100)) and the atomic weight (WATBL(1:100)) for elements I=1 through I=100, so the type of atom is specified by giving its atomic symbol (ASYM(I)). PEGS also has a table of the densities of the elements (RHOTBL(1:100)). Rayleigh (coherent) scattering data will be appended to the normal output data if the IRAYL flag is set to 1 in NAMELIST/INP/.

A3.3-1
Fig. A3.3.1 Logical Relationship Between the Options of PEGS
Table A3.3.1
PEGS Control Cards

<table>
<thead>
<tr>
<th>CARD</th>
<th>FORMAT</th>
<th>VARIABLES READ</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEM1</td>
<td>(4A1)</td>
<td>OPT(1:4)</td>
<td>'ELEM'. Means "select material that is an element."</td>
</tr>
<tr>
<td>ELEM2</td>
<td>NAMELIST/INP/</td>
<td>RHO</td>
<td>Optional. If given, this over-rides the PEGS default density (g/cm**3) for the element.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WA(1)</td>
<td>Optional. Atomic weight of element. If given, this over-rides the PEGS default.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IRAYL</td>
<td>Optional. Set to unity to included Rayleigh output.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IUNRST</td>
<td>Optional. Set to unity for unrestricted collision stopping power.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISSB</td>
<td>Optional. Set to unity to use own density effect parameters (see text below).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GASP</td>
<td>Optional. See MIXT or COMP</td>
</tr>
<tr>
<td>ELEM3</td>
<td>(24A1, 6X, 24A1)</td>
<td>MEDIUM(1:24)</td>
<td>Identifier assigned to data set to be produced.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IDSTRN(1:24)</td>
<td>Optional. Identifier of medium name under which desired Sternheimer-Seltzer-Berger coefficients are given in PEGS. If not specified, identifier in MEDIUM(1:24) is used.</td>
</tr>
<tr>
<td>ELEM4</td>
<td>(24(A2,1X))</td>
<td>ASYM(1)</td>
<td>Atomic symbol for element.</td>
</tr>
<tr>
<td>COMP1</td>
<td>(4A1)</td>
<td>OPT(1:4)</td>
<td>'COMP'. Means "select material that is a compound."</td>
</tr>
<tr>
<td>COMP2</td>
<td>NAMELIST/INP/</td>
<td>NE</td>
<td>Number of elements in compound.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RHO</td>
<td>Density (g/cm**3) of compound (at NTP for gases).</td>
</tr>
</tbody>
</table>

A3.3-3 (continued on next page)
Table A3.3.1
(continued)
PEGS Control Cards

<table>
<thead>
<tr>
<th>CARD</th>
<th>FORMAT</th>
<th>VARIABLES READ</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PZ(I),I=1,NE)</td>
<td></td>
<td>Relative numbers of atoms in compound.</td>
<td></td>
</tr>
<tr>
<td>GASP</td>
<td></td>
<td>Optional. Defines state of compound: zero (default) for solid or liquid, otherwise value gives gas pressure (atm).</td>
<td></td>
</tr>
<tr>
<td>(WA(I),I=1,NE)</td>
<td></td>
<td>Optional. May be used to over-ride default atomic weights (e.g., to allow for special isotopes).</td>
<td></td>
</tr>
<tr>
<td>IRAYL</td>
<td></td>
<td>Same as for ELEM2.</td>
<td></td>
</tr>
<tr>
<td>IUNRST</td>
<td></td>
<td>Same as for ELEM2.</td>
<td></td>
</tr>
<tr>
<td>ISSB</td>
<td></td>
<td>Same as for ELEM2.</td>
<td></td>
</tr>
<tr>
<td>COMP3 (24A1, MEDIUM,IDSTRN)</td>
<td>6X,24A1</td>
<td>Same as for ELEM3.</td>
<td></td>
</tr>
<tr>
<td>COMP4 (24(A2, (ASYM(I),I=1,NE)</td>
<td>1X)</td>
<td>Atomic symbols for the atoms in the compound. Duplicates are allowed if several isotopes of the same element are present, or may be required for diatomic molecules (e.g. nitrogen gas).</td>
<td></td>
</tr>
<tr>
<td>MIXT1 (4A1)</td>
<td>OPT(1:4)</td>
<td>'MIXT'. Means "select material that is a mixture."</td>
<td></td>
</tr>
<tr>
<td>MIXT2 NAMELIST/INP/</td>
<td>NE</td>
<td>Number of elements in mixture.</td>
<td></td>
</tr>
<tr>
<td>RHO</td>
<td></td>
<td>Density (g/cm**3) of mixture (at NTP for gases).</td>
<td></td>
</tr>
<tr>
<td>(RHOZ(I),I=1,NE)</td>
<td></td>
<td>Relative amount of atom in mixture (by weight).</td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
Table A3.3.1
(continued)

PEGS Control Cards

<table>
<thead>
<tr>
<th>CARD</th>
<th>FORMAT</th>
<th>VARIABLES READ</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GASP</td>
<td>Optional. Defines state of mixture: zero (default) for solid or liquid, otherwise value gives gas pressure (atm).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(WA(I),I=1,NE)</td>
<td>Optional. May be used to over-ride default atomic weights.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRAYL</td>
<td>Optional. Set to unity to included Rayleigh output.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IUNRST</td>
<td>Same as for ELEM2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISSB</td>
<td>Same as for ELEM2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIXT3</td>
<td>(24A1, MEDIUM,IDSTRN</td>
<td>Same as for ELEM3.</td>
<td></td>
</tr>
<tr>
<td>MIXT4</td>
<td>(24(A2, (ASYM(I),I=1,NE)</td>
<td>Same as for COMP4.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENER1</th>
<th>(4A1)</th>
<th>OPT(1:4)</th>
<th>'ENER' => "select energy limits."</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENER2</td>
<td>NAMELIST/INP/</td>
<td>AE</td>
<td>Lower cutoff energy (total) for charged particle transport (MeV).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UE</td>
<td>Upper limit energy (total) for charged particle transport (MeV).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP</td>
<td>Lower cutoff energy for photon transport (MeV).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UP</td>
<td>Upper limit energy for photon transport (MeV).</td>
</tr>
</tbody>
</table>

Note: If the user supplies negative values for the energy limits above, the absolute values given will be interpreted as in units of the electron rest mass energy. Thus, $AE=-1$ is equivalent to $AE=0.511$ MeV.

(continued on next page)

A3.3-5
Table A3.3.1
(continued)

PEGS Control Cards

<table>
<thead>
<tr>
<th>CARD</th>
<th>FORMAT</th>
<th>VARIABLES READ</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWLF1</td>
<td>(4A1)</td>
<td>OPT(1:4)</td>
<td>'PWLF'. Means "select piecewise linear fit."</td>
</tr>
<tr>
<td>PWLF2</td>
<td>NAMELIST/INP/</td>
<td>Note: The following PWLF parameters (see Section A3.3.4) are optional and may be over-ridden by the user. The default values (in BLOCK DATA) are indicated below.</td>
<td></td>
</tr>
<tr>
<td>EPE</td>
<td>0.01</td>
<td>Electron EP parameter.</td>
<td></td>
</tr>
<tr>
<td>EPG</td>
<td>0.01</td>
<td>Gamma EP parameter.</td>
<td></td>
</tr>
<tr>
<td>ZTHRE(1:8)/8*0./</td>
<td>Electron ZTHR parameter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZTHRG(1:3)/0.,.1,0./</td>
<td>Gamma ZTHR parameter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEPE(1:8)/8*0./</td>
<td>Electron ZEP parameter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEPG(1:3)/0.,.01,0./</td>
<td>Gamma ZEP parameter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIPE/20/</td>
<td>Electron NIP parameter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIPG/20/</td>
<td>Gamma NIP parameter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NALE/$MXEKE/</td>
<td>Electron NIMX parameter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NALG/$MXGE/</td>
<td>Gamma NIMX parameter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DECK1</td>
<td>(4A1)</td>
<td>OPT(1:4)</td>
<td>'DECK'. Means "write fit data and other useful parameters."</td>
</tr>
<tr>
<td>DECK2</td>
<td>NAMELIST/INP/</td>
<td>No parameters.</td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
Table A3.3.1
(continued)

PEGS Control Cards

<table>
<thead>
<tr>
<th>CARD</th>
<th>FORMAT</th>
<th>VARIABLES READ</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIMS1</td>
<td>(4A1)</td>
<td>OPT(1:4)</td>
<td>'MIMS'. Means "Calculate Material Independent Multiple Scattering Data" (for EGS2 only).</td>
</tr>
<tr>
<td>MIMS2</td>
<td>NAMELIST/INP/</td>
<td></td>
<td>MIMS is controlled by macro settings and by data in BLOCK DATA that is not accessible to the NAMELIST.</td>
</tr>
<tr>
<td>TEST1</td>
<td>(4A1)</td>
<td>OPT(1:4)</td>
<td>'TEST'. Means "Plot the fitted functions."</td>
</tr>
<tr>
<td>TEST2</td>
<td>NAMELIST/INP/</td>
<td>NPTS</td>
<td>Optional. Number of points to plot per function (Default=50).</td>
</tr>
<tr>
<td>CALL1</td>
<td>(4A1)</td>
<td>OPT(1:4)</td>
<td>'CALL'. Means "Call the designated function and print value."</td>
</tr>
<tr>
<td>CALL2</td>
<td>NAMELIST/INP/</td>
<td>XP(1:4)</td>
<td>Values for up to four arguments of the function.</td>
</tr>
<tr>
<td>CALL3</td>
<td>(6A1)</td>
<td>NAME(1:6)</td>
<td>Name of function to be evaluated.</td>
</tr>
<tr>
<td>PLTI1</td>
<td>(4A1)</td>
<td>OPT(1:4)</td>
<td>'PLTI'. Means "Plot function given its index and the index of the distribution function."</td>
</tr>
<tr>
<td>PLTI2</td>
<td>NAMELIST/INP/</td>
<td>IFUN</td>
<td>The index of the function to be plotted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>XP(1:4)</td>
</tr>
</tbody>
</table>

(continued on next page)
Table A3.3.1 (continued)

PEGS Control Cards

<table>
<thead>
<tr>
<th>CARD</th>
<th>FORMAT</th>
<th>VARIABLES READ</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td></td>
<td>Variable telling which argument is to be varied (e.g., IV=2 means plot function vs. its second argument).</td>
<td></td>
</tr>
<tr>
<td>VLO</td>
<td></td>
<td>Lower limit for argument being varied.</td>
<td></td>
</tr>
<tr>
<td>VHI</td>
<td></td>
<td>Upper limit for argument being varied.</td>
<td></td>
</tr>
<tr>
<td>NPTS</td>
<td></td>
<td>Number of points to plot.</td>
<td></td>
</tr>
<tr>
<td>IDF</td>
<td></td>
<td>Index of distribution function used to select independent variable.</td>
<td></td>
</tr>
</tbody>
</table>

PLTN1 (4A1) OPT(1:4) 'PLTN'. Means "Plot the named function."

PLTN2 NAMELIST/INP/ XP(1:4),IV, Same as PLTI2. VLO,VHI,NPTS, IDF,MP

PLTN3 (2(6A1)) NAME(1:6) Name (6 characters) of function to be plotted.

IDFNAM(1:6) Name of distribution function to be used.

(continued on next page)
Table A3.3.1
(continued)
PEGS Control Cards

<table>
<thead>
<tr>
<th>CARD</th>
<th>FORMAT</th>
<th>VARIABLES READ</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPLT1</td>
<td>(4A1)</td>
<td>OPT(1:4) 'HPLT'. Means "Plot histogram to compare the sampled spectrum with the range-integrated & the differential theoretical values."</td>
<td></td>
</tr>
<tr>
<td>HPLT2</td>
<td>NAMELIST/INP/ E I</td>
<td>Test particle total energy (MeV).</td>
<td></td>
</tr>
<tr>
<td>ISUB</td>
<td>Variable telling which function is being tested:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1=PAIR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2=COMPT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3=BREMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4=MOLLER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5=BHABHA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6=ANNIH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPLT3</td>
<td>(' TEST DATA FOR ROUTINE=',12A1,',#SAMPLES=',I10,',NBINS=',I5)</td>
<td>NAMESB(1:12) Name of subroutine tested.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NTIMES Number of samples.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NBINS Number of histogram bins.</td>
<td></td>
</tr>
<tr>
<td>HPLT4</td>
<td>(' IQI=',I2,',RNLO,RNHI=',2F12.8,',IRNFLG=',I2)</td>
<td>IQI Charge of test particle.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RNLO,RNHI Lower and upper limits to random number preceding call to test function.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IRNFLG Non-zero means to "apply above limits to preceding random number to test for correlation." Zero value means "don’t do this."</td>
<td></td>
</tr>
<tr>
<td>HPLT5</td>
<td>...etc. (9I8) NH(1:NBINS)</td>
<td>Sampled data (from User Code UCTESTSR).</td>
<td></td>
</tr>
</tbody>
</table>
The ELEMent option is used if the material in question has only one type of atom. In this case PEGS knows that NE=1, has the density in a table, sets PZ(1)=1, and deduces Z(1) and WA(1) from ASYM(1). Thus the atomic symbol (ASYM(1)) is the only information that the user need supply. Before each option, RHO and the WA(I) are saved and then cleared so that it can be determined whether these have been set by the user. If so, they over-ride the table values in PEGS. This allows the different atoms to be non-standard isotopes and/or allows the overall density to be adjusted to the experimental state. For options other than ELEM, MIXT, or COMP, RHO and WA(I) are restored after reading the NAMELIST.

The COMPound option is used when there is more than one different kind of atom and it is desired to give the proportions by relative number of atoms (PZ(I)). The only required data is NE, ASYM(I), and PZ(I) (for I=1,NE). Optionally, any of the WA(I) can be over-ridden.

The MIXTure option is similar to the COMPound option except that the relative atomic proportions are given by weight (RHOZ(I)) rather than by number.

When the PZ(I) values have been specified, PEGS obtains the RHOZ(I) using RHOZ(I)=PZ(I)*WA(I); otherwise, the PZ(I) are obtained from PZ(I)=RHOZ(I)/WA(I). The absolute normalization of the PZ(I) and RHOZ(I) values is not important because of the way the quantities are used. For example, the macroscopic cross sections contain factors like

$$PZ(I)/\text{SUM}(PZ(I)\times WA(I))$$

where the denominator is the "molecular weight".

In addition to physically specifying the material being used, a name for it must be supplied (MEDIUM(1:24)) for identification purposes. This name is included in the output deck when the DECK option is selected. The name can be different for any two data sets that are created, even though the same material has been used. For example, one might produce PEGS output using a particular material but different energy limits (or fit tolerances, density effect parameters, etc.), with separate identification names for each (e.g., FE1, FE2, etc.).
The quantity IDSTRN(1:24) is used to identify the Sternheimer-Seltzer-Berger density effect parameters that are tabulated in BLOCK DATA (see Table 2.13.2 of SLAC-265 for complete list of identifier names). If IDSTRN(1) is blank, then IDSTRN is given the same value as MEDIUM. If this name is not identifiable with any of those in BLOCK DATA, the Sternheimer density effect scheme is replaced with a general formula by Sternheimer and Peierls. Although not recommended, setting IUNRST to unity causes the unrestricted collision stopping power to be used (instead of the sum of the restricted and radiative stopping powers). An option is available to allow users to supply their own values for the various parameters used to calculate the density effect correction (see Section 2.13 of SLAC-265 for a discussion). To initiate this option, all six parameters (AFACT, SK, X0, X1, CBAR, and IEV) must be read in the NAMELIST input in ELEM, MIXT, or COMP, and ISSB must be set to non-zero as a flag. Note that if one only wants to override IEV, one must still input all six parameters (see Table 2.13.2 of SLAC-265).

After reading the input data for these options, subroutine MIX is called in order to compute the Z-related parameters that reside in COMMON/MOLVAR/, subroutine SPINIT is called to initialize the stopping power routines for this material, and subroutine DIFFER is called to compute run-time parameters for the pair production and bremsstrahlung sampling routines. The reader might find the comments in subroutine MIX useful.

The following are examples of sets of data cards that can be used with the ELEM, MIXT, and COMP options:

(Note: The NAMELIST data (i.e., &INP...&END) starts in column 2).

A. Material - Element is Iron with defaults taken.

<table>
<thead>
<tr>
<th>Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card</td>
</tr>
<tr>
<td>ELEM1</td>
</tr>
<tr>
<td>ELEM2</td>
</tr>
<tr>
<td>ELEM3</td>
</tr>
<tr>
<td>ELEM4</td>
</tr>
</tbody>
</table>

A3.3-11
B. Material - He-3 with density & atomic weight over-ridden by user.

```
Card 123456789112345678921234567893123456789412345678..etc.
ELEM1 ELEM
ELEM2 &INP RHO=1.E-2,WA(1)=3 &END
ELEM3 HELIUM-3 HE
ELEM4 HE
```

C. Material - Compound is sodium iodide with IDSTRN(1:24) defaulting to MEDIUM(1:24).

```
Card 123456789112345678921234567893123456789412345678..etc.
COMP1 COMP
COMP2 &INP NE=2,RHO=3.667,PZ(1)=1,PZ(2)=1 &END
COMP3 NAI
COMP4 NA I
```

D. Material - Compound is polystyrene scintillator (e.g., PILOT-B or NE-102A) with data taken from: "Particle Properties Data Booklet, April 1982" (Physics Letters 111B, April 1982). Sternheimer-Peierls default.

```
Card 123456789112345678921234567893123456789412345678..etc.
COMP1 COMP
COMP2 &INP NE=2,RHO=1.032,PZ(1)=1,PZ(2)=1.1 &END
COMP3 POLYSTYRENE SCINTILLATOR
COMP4 C H
```

E. Material - Mixture is lead glass, consisting of five specified elements (and 1 per cent of the trace elements unspecified). Sternheimer-Peierls default.

```
Card 123456789112345678921234567893123456789412345678..etc.
MIXT1 MIXT
MIXT2 &INP NE=5,RHO=3.61,RHOZ=41.8,21.0,29.0,5.0,2.2 &END
MIXT3 LEAD GLASS
MIXT4 PB SI O K NA
```
F. Material - Mixture is U-235, U-238, and carbon (not a real material). Sternheimer-Peierls default.

A3.3.3 The ENER Option

The ENERgy option is used to define the electron and photon energy intervals over which it is desired to transport particles, and hence, over which fits to total cross sections and branching ratios must be made. The electron energy interval is (AE, UE) and the photon interval is (AP, UP). If any of these is entered negative, it is multiplied by -RM=-0.511 MeV; that is, the absolute magnitude is assumed to be the energy in units of the electron rest mass energy. The quantities TE=AE-RM, TET2=2*TE, and TEM=TE/RM, as well as the bremsstrahlung and Moller thresholds (RM+AP and AE+TM, respectively), are then computed and printed out.

The following are examples of sets of data cards that can be used with the ENER option:

(Note: The NAMELIST data (i.e., &INP...&END) starts in column 2).

A. Electron and photon cutoff energies are 1.5 MeV and 10 keV, respectively. The upper energy limit for both is set at 100 GeV. (Note: All energies are in MeV and are total energies).

Column
Card 123456789112345678921234567893123456789412345678..etc.
ENER1 ENER
ENER2 &INP AE=1.5,UE=100000.,AP=0.01,UP=100000. &END

A3.3-13
B. Same as above, except AE=3*RM.

Column
Card
ENER1 ENER
ENER2 &INP AE=-3,UE=100000.,AP=0.01,UP=100000. &END

A3.3.4 The PWLF Option

The PieceWise Linear Fit option performs a simultaneous piecewise linear (vs. ln(E-RM)) fit of eight electron functions over the energy interval (AE,UE) and a simultaneous piecewise linear (vs. ln E) fit of three or four photon functions over the energy interval (AP,UP). Each simultaneous fit over several functions is accomplished by a single call to subroutine PWLF1---once for the electrons and once for the photons.

By simultaneous fit we mean that the same energy subintervals are used for all of the functions of a set. Alternately, we could describe it as fitting a vector function. The PWLF1 subroutine is an executive routine that calls the function QFIT. Function QFIT, which does most of the work, tries to perform a fit to the vector function by doing a linear fit with a given number of subintervals. It returns the value .TRUE. if the fit satisfies all tolerances and .FALSE. otherwise. Subroutine PWLF1 starts out doubling the number of subintervals until a successful fit is found. Additional calls to QFIT are then made to determine the minimum number of subintervals needed to give a good fit. Sometimes, because of discontinuities in the functions being fitted, a fit satisfying the specified tolerances cannot be obtained within the constraints of the number of subintervals allowed by the array sizes of EGS. When this happens, PEGS prints out the warning message (for example):

\[
\text{NUMBER OF ALLOCATED INTERVALS(= 150) WAS INSUFFICIENT TO GET MAXIMUM RELATIVE ERROR LESS THAN 0.01}
\]

Even in this case a fit is produced which is sufficient most of the time.
Let NFUN be the number of components to the vector function \(F(\text{IFUN},E(J)) \) (where \(\text{IFUN}=1,\text{NFUN} \)), and let \(E(J) \) be a sequence of points \((J=1,NI) \) covering the interval being fitted. The number of points \((NI) \) is about ten times the number of fit intervals \((NINT) \) in order that the fit will be well tested in the interiors of the intervals. If \(FEXACT(\text{IFUN},J) \) and \(FFIT(\text{IFUN},J) \) are the exact and fitted values of the \(\text{IFUN} \)-th component at \(E(J) \), then the logical function \(\text{QFIT} \) may be given as follows:

```fortran
LOGICAL FUNCTION QFIT(NINT);
COMMON.......etc.
QFIT=.TRUE.;
REM=0.0; "RELATIVE ERROR MAXIMUM"
NI=10*NINT;
DO J=1,NI
  DO IFUN=1,NFUN [ 
    AER=ABS(FEXACT(IFUN,J)-FFIT(IFUN,J));
    AF=ABS(FEXACT(IFUN,J));
    IF(AF.GE.ZTHR(IFUN)) [IF(AF.NE.0.0) REM=AMAX1(REM,AER/AF);]
    ELSE [IF(AER.GT.ZEP(IFUN)) QFIT=.FALSE.;]
  ]
  QFIT=QFIT.AND.REM.LE.EP;
RETURN; END;
```

Thus we see that \(EP \) is the largest allowed relative error for those points where the absolute computed value is above \(\text{ZTHR(\text{IFUN})} \), and \(\text{ZEP(\text{IFUN})} \) is the largest allowed absolute error for those points where the absolute computed value is less than \(\text{ZTHR(\text{IFUN})} \).

Other features of the \(\text{QFIT} \) routine include provisions for aligning a subinterval boundary at a specified point in the overall interval (in case the fitted function has a discontinuous slope such as at the pair production or Moller thresholds), and computation of fit parameters in bins flanking the main interval to guard against truncation errors in sub-interval index computations.
The net result of the fit is to obtain coefficients AX, BX, AF(IFUN,J), and BF(IFUN,J) such that

\[FVALUE(E) = AF(IFUN,INTERV) \times XFUN(E) + BF(IFUN,INTERV) \]

is the value of the IFUN-th function, and where

\[INTERV = \text{INT}(AX \times XFUN(E) + BX) \].

XFUN is called the distribution function and is \(\ln(E-RM) \) for electrons and \(\ln(E) \) for photons.

The coding of EGS and its original $EVALUATE$ macros are designed to allow a "mapped PWLF" in which we have AX, BX, AF(IFUN,J), BF(IFUN,J), and M(I), such that when

\[I = \text{INT}(AX \times XFUN(E) + BX) \]

and

\[J = M(I) \],

then

\[FVALUE(E) = AF(IFUN,J) \times XFUN(E) + BF(IFUN,J) \]

for the IFUN-th function. This kind of fit has the advantage that it could get a better fit with a smaller amount of stored data. However, this fitting scheme has never been implemented in PEGS. With the present scheme more data than necessary is used in describing the functions at the higher energies where they vary quite smoothly.

The following is an example of the data cards that can be used with the PWLF option:

```
Column  Card  123456789112345678921234567893123456789412345678..etc.
PWLF1   PWLF
PWLF2   &INP &END
```

APPENDIX 3
A3.3.5 The DECK Option

The DECK option, with the aid of subroutine LAY, prints and punches the data needed to specify the current material, the energy intervals specified, various computed molecular parameters (e.g., the radiation length), the run-time parameters for pair production and bremsstrahlung, and the fit data produced by the PWLF option. In other words, DECK prints and punches anything that might be of use to EGS in simulating showers, or to the user in analysis routines. The macros ECHOREAD and ECHOWRITE have been written to give nicely captioned print-outs of data (read or written) and to eliminate the need for creating separate write statements to echo the values.

Subroutines LAY (in PEGS) and HATCH (in EGS) are a matched pair in that HATCH reads what LAY writes (PEGS "lays" and EGS "hatches"). Thus, if the users would like to get more information at EGS run-time, they need only modify LAY and HATCH accordingly.

DECK should be invoked when either ELEM, MIXT, or COMP and ENER and PWLF have been run for the current material and before any of these have been executed for the next material (see Fig. 3.3.1).

The following is an example of the data cards that can be used with the DECK option:

<table>
<thead>
<tr>
<th>Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card</td>
</tr>
<tr>
<td>123456789112345678921234567893123456789412345678..etc.</td>
</tr>
<tr>
<td>DECK1</td>
</tr>
<tr>
<td>DECK</td>
</tr>
<tr>
<td>DECK2</td>
</tr>
<tr>
<td>&INP &END</td>
</tr>
</tbody>
</table>

A3.3.6 The MIMS Option and the EGSCMS Code

The MIMS option produces a data set for EGS (Version 2 only) that contains Material Independent Multiple Scattering data. A stand alone program, EGSCMS (EGS Continuous Multiple Scattering), performs an analogous function for EGS3/EGS4, except that the data is held in a BLOCK DATA subprogram in the EGS code itself rather than in an external data set.
In the sense that these data sets are produced already, the MIMS option and EGSCMS code are now dispensible. However, as documentation for the origin of the present data, they are valuable and they will be maintained with the EGS Code System. (Note: EGSCMS was originally written in Fortran2 and will remain that way since it is not expected to be used again).

A3.3.7 The TEST Option

The TEST option is used as an easy way to obtain plots of all the functions (not the fits) that the PWLF option fits. These plots are valuable in getting a feel for the magnitudes and variations of the functions to be fitted.

The following is an example of the data cards that can be used with the TEST option:

```
  Column
  Card   123456789112345678921234567893123456789412345678..etc.
  TEST1 TEST
  TEST2 &INP NPTS=50 &END
```

A3.3.8 The CALL Option

The CALL option is used whenever one desires to have PEGS evaluate a particular function and print out the results.

The following is an example of the data cards that can be used with the CALL option in order to test for discontinuities in GMFP (Gamma Mean Free Path) near 50 MeV. (Note: In this example we have included the (necessary) ELEM option cards for Lead).
The resulting output from PEGS is:

OPT=CALL
FUNCTION CALL: 1.95522 = GMFP OF 49.9900

OPT=CALL
FUNCTION CALL: 1.97485 = GMFP OF 50.0100

(Note: This calculation was done on the IBM-3081 computer).

A3.3.9 The PLTI and PLTN Options

The PLTI and PLTN options may be used to obtain printer---and with some work, possibly graphic---plots of any of the functions in the PEGS function table. The PLTI option is rather primitive in that the functions involved must be specified by number, so we shall instead concentrate on the PLTN option in which the functions are specified by name.

Consider the function BRMSRZ(Z,E,K1,K2) which is the soft bremsstrahlung cross section (for an electron of total energy E and element Z) integrated over the photon energy range (K1,K2). Suppose we would like to see a plot of BRMSRZ(Z,E,0.0,1.5) for values of E from 5 to 100 MeV. Also assume we want the data points evenly spaced in ln(E). Then (see Table 3.3.1) the function name is 'BRMSRZ', the distribution function name is IDNAM='ALOG', the static arguments are...
XP(1)=2., XP(3)=0.0, XP(4)=1.5, the independent variable is the second argument (i.e., IV=2), and its limits are VLO=5.0 and VHI=100.0. If we want 100 points on the plot we let NPTS=100.

The cards necessary to accomplish this plot are:

```
Column
Card   123456789112345678921234567893123456789412345678..etc.
PLTN1  PLTN
PLTN2  &INP XP(1)=2.,XP(3)=0.0,XP(4)=1.5,IV=2,VLO=5.,
       VHI=100.,NPTS=100 &END
PLTN3  BRMSRZALOG
```

Distribution functions that are available are indicated below:

<table>
<thead>
<tr>
<th>IDFNAM</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>'ALIN'</td>
<td>Linear plot.</td>
</tr>
<tr>
<td>'ALOG'</td>
<td>Natural log plot.</td>
</tr>
<tr>
<td>'ALKE'</td>
<td>Natural log of electron kinetic energy plot.</td>
</tr>
<tr>
<td>'ADFMOL'</td>
<td>Approximation to Moller and Bhabha distributions</td>
</tr>
<tr>
<td></td>
<td>(i.e., 1/K.E. distribution).</td>
</tr>
</tbody>
</table>

A3.3.10 The HPLT Option

The Histogram PLoT option is designed to be used in conjunction with UCTESTSR (User Code to TEST Sampling Routine), which is provided on the EGS4 distribution tape. (Note: UCTESTSR was simply referred to as TESTSR in the EGS3 User Manual (see Section 2.6 of SLAC-210)).

The basic idea is that a probability density function, PDF(X) (see Section 2.2 of SLAC-265), is to be sampled by EGS (note: PDF(X) will have other static arguments which we ignore for this discussion). Let CDF(X) be the cumulative distribution function associated with PDF(X).

A3.3-20
If PDF(X) drops sharply with increasing X, we will not get many samples in the bins with large X unless we make the bins themselves larger in such regions. We accomplish this by finding another p.d.f. and c.d.f., PDG(X) and CDG(X), respectively, such that PDG(X) approximates PDF(X). If we want N bins, we then pick the X(I) such that

\[CDG(X(I+1)) - CDG(X(I)) = (CDG(X(N+1)) - CDG(X(I))) / N. \]

For all I, this implies that

\[X(I) = CDGI((CDG(X(N+1)) - CDG(X(I))) * I / (N+1) + CDG(X(I))) \]

where CDGI is the inverse function of CDG. Thus, if PDG(X) is a reasonable approximation, the histogram bins at large X should have the same order of magnitude of counts as those at lower X. The function CDG(X) is called the "distribution function" in the context of the HPLT option. CDG(X), CDGI(X), and PDG(X) are used by the UCTESTSR and HPLT1 programs. If we let SPDF(X) and SCDF(X) be the "sampled" data, and PDF(X) and CDF(X) be the theoretical data, then the routine HPLT1 can be summarized by the pseudo-code:

```plaintext
DO I=1,N [ 
    PLOT((SCDF(X(I+1))-SCDF(X(I)))/(CDG(X(I+1))-CDG(X(I))));
    PLOT((CDF(X(I+1))-CDF(X(I)))/(CDG(X(I+1))-CDG(X(I))));
]
DO....X(I) at 10 points in the interval (X(I),X(I+1)) [ 
    PLOT(d(SCDF)/d(CDG)=PDF(X)/PDG(X));]
]
RETURN; END;
```

Thus the theoretical and sampled distributions can be compared and problems with the sampling routine (or the random number generator, for example) can be detected.

All of the control cards for the HPLT option are punched directly by UCTESTSR. The reader should refer to the listing for UCTESTSR and comments therein for a better understanding of the HPLT option (see also Chapter 6 of SLAC-210).
A3.4 Concluding Remarks

In the previous sections we have seen the various uses for PEGS. We summarize by giving the option sequences most generally used.

A. Minimal material data set creation (for use by EGS).

1. ELEM (or MIXT, or COMP)
2. ENER
3. PWLF
4. DECK

B. Same as A. with default plots of all the functions that the PWLF option fits.

1. ELEM (or MIXT, or COMP)
2. ENER
3. TEST
4. PWLF
5. DECK

C. Comparison of theoretical and sampled distributions by means of the HPLT option.

1. ELEM (or MIXT, or COMP)
 Note: Data cards should agree with those used with the UCTESTSR run.
2. HPLT
 Note: Output data from UCTESTSR run.

D. Selective plotting of various functions.

1. ELEM (or MIXT, or COMP) - for material 1
2. PLTN - for function 1
3. PLTN - for function 2,....etc.
4. ELEM (or MIXT, or COMP) - for material 2,....etc.
5. PLTN - for function 1
6. PLTN - for function 2,....etc.
7 EGS User Guide to MORTRAN3

SLAC265 - APPENDIX 4

EGS User Guide to Mortran3

By

Walter R. Nelson
Stanford Linear Accelerator Center
Stanford University
Stanford, CA 94305, U.S.A.

David W. O. Rogers
National Research Council of Canada
Ottawa K1A 0R6, Canada

31 December 1985

[This EGS User Guide to Mortran3 was originally Appendix 4 of SLAC-265. This guide was excerpted from SLAC Computation Research Group Report CGTM No. 165 (June 1975): "A User’s Guide to Mortran2" by A. James Cook and L. J. Shustek and modified by the authors to represent Mortran3.]

With the EGSnrcMP environment, there have been a few changes to the MORTRAN3 processor. In source code, C-style comments (viz /* comment */) are now allowed, and any line starting with a # is output directly without any processing (this is to allow C-preprocessor statements to be used.)
EGS is written in a structured language called Mortran3 which has been developed at SLAC by A. James Cook and L. J. Shustek. The Mortran3 precompiler is written in 1966 ANSI standard FORTRAN IV and 1977 ANSI standard FORTRAN 77, and both are included on the EGS4 distribution tape. This guide, which is also maintained on the EGS4 distribution tape, is meant to be a brief introduction to Mortran3 to allow EGS4 users to use it. For a complete description, the user is referred to the "Mortran3 User’s Guide" by A. J. Cook, SLAC Computation Research Technical Memorandum CGTM-209 (1983).

Although it is possible to write EGS User Codes entirely in FORTRAN, we strongly urge you to use Mortran because of how easily one can write readable (and therefore more likely correct) code, because of its flexibility, and because of its ability to improve execution time by allowing for in-line code generation.
7.1 Introduction

The term Mortran, like FORTRAN, has several meanings, depending upon the context in which the term is used. Mortran has come to mean:

- A Structured Language. - A Translator for that language. - A Macro-processor.

The structured language is implemented as a set of macros which are used by the macro processor to translate the language into FORTRAN. The resulting FORTRAN program is then run like any other FORTRAN program. User-defined macros are easily added to the standard (language-defining) set of macros so that the language is "open-ended" in the sense that extensions to the language may be made at any time by the user. Extensions have ranged from very simple ones like matrix multiplication, to complex ones like those which define new data types.

Users need not concern themselves with the method of implementation or the macro facility in order to take advantage of the structured language which is provided by the standard set of macros. The features of this language include:

- Free-field (column and card boundaries may be ignored). - Alphanumeric labels of arbitrary length. - Comments inserted anywhere in the text. - Nested block structure. - Conditional statements which may be nested (IF, IF-ELSE, and ELSEIF).
- Loops (repetitively executed blocks of statements) which test for termination at the beginning or end or both or neither (WHILE, UNTIL, FOR-BY-TO, LOOP and DO).
- EXIT (jump out of) any loop. - NEXT (go to NEXT iteration) of any loop. - Multiple assignment statements. - Conditional (alternate) compilation.
- Program listing features include:
 - Automatic printing of the nesting level.
 - Automatic indentation (optional) according to nesting level.
 - Abbreviations for simple I/O statements. - Interspersion of FORTRAN text with Mortran text.
The user may elect to override the standard set of macros and write a set which defines another, perhaps "problem oriented", language.

The Mortran3 processor is a FORTRAN program of approximately 2000 statements. The 1966 ANSI standard has been observed throughout, so that transportability of the processor is assured.

7.2 Coding Rules

Mortran programs may be written without regard to column or card boundaries. Statements may begin anywhere on the input line (card image), and may end anywhere on the same line or on a succeeding line. The end of a statement is determined by a semicolon (;). This feature permits "free-field" or "free-form" programming. Normally, only the first 72 columns of the input line are interpreted as program text, but this can be changed (see Section A4.6).

Character strings comprising Hollerith fields are enclosed in apostrophes (as in 'THIS IS HOLLERITH DATA'). If an embedded apostrophe is desired as a character within a quoted string, use a pair of apostrophes to represent each such embedded apostrophe (as in 'DON''T').

Comments in Mortran are enclosed in quotation marks (as in "COMMENT") and may be inserted anywhere in the program (except in character strings or macros).

In Mortran, an alphanumeric label is a character sequence of arbitrary length enclosed in colons (as in :TOMATOES:). The characters which comprise the sequence may be any combination of letters and digits. An alphanumeric label may be used anywhere a FORTRAN statement label is allowed.

Multiple blanks (a sequence of two or more blanks) in a Mortran program are equivalent to a single blank except in quoted strings, where all blanks are preserved, and in macros (discussed in Section A4.5).
Summary of coding rules:

- Terminate statements with a semicolon (;).
- Enclose comments in quotation marks (").
- Enclose labels in colons (:).
- Enclose character strings in apostrophes (').
- Blanks may be inserted freely except in labels, character strings and user-defined macros.

It should be pointed out that any extensions provided by a particular FORTRAN compiler may be used, provided that they do not conflict with Mortran’s coding conventions. However, if transportability of the programs being written in Mortran is a consideration, the ANSI FORTRAN standard should be adhered to. The standard set of macros which define the language described in this Guide do not generate non-ANSI FORTRAN.

7.3 Structure

7.3.1 Statements

FORTRAN may be regarded as a subset of Mortran, since (with the exception of multiple blanks in a Hollerith string) any valid FORTRAN statement becomes a valid Mortran statement when

- it is terminated by a semicolon, and
- continuation marks (if any) are deleted.

7.3.2 Blocks

A Mortran block is a sequence of Mortran statements enclosed in the special characters [and], which we will call "brackets" (or "square brackets"). The left bracket may be read "begin" and the right bracket may be read "end". Let

\[S_1; S_2; S_3; \ldots S_k; \ldots S_n; \] \hspace{1cm} (A4.3-1)

be a sequence of statements. The sequence becomes a block when
it is enclosed in brackets

\[[\, S_1; S_2; S_3; \ldots S_k; \ldots S_n; \,] \] . \quad (A4.3-2)

(Note: the ellipses (\ldots) are meta-symbols indicating arbitrary repetition. The brackets are not meta-symbols; they are delimiters in the Mortran language).

Blocks may be nested. That is, any of the statements in a block may be replaced by a block. For example, in sequence (A4.3-2) we could replace Sk by a block and write

\[[\, S_1; S_2; S_3; \ldots [\, T_1; T_2; T_3; \ldots T_m; \,] \ldots S_n; \,] \] \quad (A4.3-3)

The block containing the sequence T_1;\ldots T_m; is completely contained, or nested, within the block containing the sequence S_1;\ldots S_n;. We will frequently write an ellipsis enclosed in brackets [\ldots] to denote a block.

Example of a block: \[[\, X=Y; \, \text{CALL} \, \text{SUB}(A); \, B=1; \,] \] .

7.3.3 Conditional Statements

The simplest form of a conditional statement in Mortran is written

\[\text{IF} \, e \, [\ldots] \] \quad (A4.3-4)

where e is an arbitrary logical expression, and the ellipsis enclosed in brackets denotes a block as described above. If e is true then the statements in the block are executed. If e is false, control is transferred to the first statement following the block. For example:

\[\text{IF} \, A.LT.B \, [\, C=D; \, E=F; \,] \, G=H; \]

If A is less than B then the statements C=D and E=F are executed after which G=H is executed. If A is not less than B control is transferred directly to the statement G=H.

Next in complexity is the IF-ELSE statement, which is written

\[\text{IF} \, e \, [\ldots] \, \text{ELSE} \, [\ldots] \] \quad (A4.3-5)

If e is true then the statements in the first block are executed
and control is transferred to the statement following the second block. If e is false then the statements in the second block are executed and control is transferred to the statement following the second block. For example, consider

\[
\begin{align*}
\text{IF } A \lt B & \quad [C=D; \ E=F;] \\
\text{ELSE} & \quad [G=H; \ I=J;] \\
K &= L;
\end{align*}
\]

If A is less than B the statements C=D and E=F are executed after which control is transferred to the statement K=L. If A is not less than B the statements G=H and I=J are executed after which control is transferred to the statement K=L.

Consider

\[
\text{IF } A = B \quad [X=Y;]
\]

Here the block to be executed, whenever A is equal to B, consists of the single statement X=Y; . An alternate form acceptable in Mortran is the standard FORTRAN logical IF:

\[
\text{IF } (A = B) \ X = Y;
\]

IF-ELSE statements may be nested to any depth. Even so, the IF-ELSE is not really adequate (in terms of clarity) for some problems that arise. For example, consider the following "case analysis" problem. Suppose that we have four logical expressions

\[
p, \ q, \ r, \ \text{and} \ s,
\]

and five blocks of statements

\[
A, \ B, \ C, \ D, \ \text{and} \ E.
\]

Now suppose that p, q, r, and s are to be tested sequentially. When the first TRUE expression is found we want to execute the statements in the corresponding block (p corresponds to A, q to B, etc.) and then transfer control to the statement following block E. If none of them is true we want to execute block E. Using nested IF-ELSE statements we could write
IF p [A]
ELSE [IF q [B]
 ELSE [IF r [C]
 ELSE [IF s [D]
 ELSE [E]
]
]
]}

While this does what we want, it is awkward because each ELSE increases the level of nesting. Mortran offers the ELSEIF statement as an alternative:

IF p [A]
ELSEIF q [B]
ELSEIF r [C] (A4.3-6)
ELSEIF s [D]
ELSEIF [E]

Using ELSEIF instead of ELSE allows all the tests to be written at the same nest level.

In summary, an IF statement may be optionally followed by any number of ELSEIF clauses which in turn may be optionally followed by a single ELSE clause.

7.3.4 Iteration

A Mortran loop is a block which is preceded by, and optionally followed by, a "control phrase". One such phrase is "WHILE e ". One of the loops we may write with this phrase is

WHILE e [...]

(A4.3-7)

The logical expression e is tested first. If e is true the block is executed and then control is returned to test e again. When e becomes false, control is transferred to the first statement following the block.

Another control phrase is " LOOP ". If we wanted to test at the end of the loop instead of the beginning, we could write

LOOP [...] WHILE e ;

(A4.3-8)

In (A4.3-8) the block is executed first. Then, if the logical expression e is true, the block is executed again. When e becomes false control is transferred to the statement following the loop (that is, the statement following the " WHILE e ;").
The logical converse of the WHILE loop is the UNTIL loop.

\[\text{UNTIL } e \] \hspace{1cm} (A4.3-9) \]

The logical expression \(e \) is tested first. If \(e \) is false the block is executed and then control is returned to test \(e \) again. When the logical expression becomes true, control is transferred to the first statement following the block. Similarly, the logical converse of (A4.3-8) may be written by replacing the WHILE in (A4.3-8) by UNTIL.

Tests for loop termination may be made at both ends of a loop. For example, if \(e \) and \(f \) are logical expressions

\[
\begin{align*}
\text{WHILE } e & \text{ [...] UNTIL } f ; \\
\text{WHILE } e & \text{ [...] WHILE } f ; \\
\text{UNTIL } e & \text{ [...] WHILE } f ; \\
\text{UNTIL } e & \text{ [...] UNTIL } f ;
\end{align*}
\]

all test at both the beginning and the end. The above list is by no means exhaustive, but we must develop other "control phrases" in order to complete the discussion.

The iteration control phrases discussed above do not involve "control variables"; that is, variables whose values are automatically changed for each execution of the loop. The following loop involves a control variable:

\[\text{FOR } v = e \text{ TO } f \text{ BY } g \text{ [...] } \] \hspace{1cm} (A4.3-10) \]

where \(v \) is the control variable and \(e, f, \) and \(g \) are arbitrary arithmetic expressions. The control variable \(v \) must be of type REAL or INTEGER, and may be an array element (subscripted variable). The value of any of the arithmetic expressions may be positive or negative. Moreover, the magnitudes as well as the signs of \(f \) and \(g \) may change during the execution of the loop.

The control variable \(v \) is set to the value of \(e \) and the test for loop termination (see below) is made. If the test is passed then the block is executed, after which \(v \) is incremented by the value of \(g \) and control is returned to the test. Note that the block is never executed if the test fails the first time.

The "test" for the termination of a FOR-loop refers to the logical expression

\[g * (v-f) \geq 0 \] \hspace{1cm} (A4.3-11) \]
If the value of (A4.3-11) is true, then the test is said to have failed and control is transferred to the statement following the loop. Multiplication by g in (A4.3-11) assures that loops in which the increment is (or becomes) negative will terminate properly.

The "FOR-loop" (A4.3-10) has two alternate forms

\[\text{FOR } v = e \text{ BY } g \text{ TO } f \ \text{ [...] (A4.3-12)} \]

and

\[\text{FOR } v = e \text{ TO } f \ \text{ [...] (A4.3-13)} \]

In (A4.3-13) no increment is given, so it is assumed to be one.

The iteration control phrase "DO I=J,K,N" also involves a control variable. In this case I, J, K, and N must all be of type INTEGER and may not be array elements or expressions (these are the standard FORTRAN rules for DO-loops). The following generates a standard FORTRAN DO-loop:

\[\text{DO I=J,K,N [...] (A4.3-14)} \]

There is one exception to the rule that loops must be preceded by control phrases; namely, the compact DO-loop notation

\[\text{[I=J,K,N; [...] (A4.3-15)} \]

which generates a standard FORTRAN DO-loop. This form permits compact notation for nests like

\[\text{[I=1,N1; [J=1,N2; [K=1,N3; A(I,J,K)=exp;]]]}. \]

(The use of the compact DO-loop notation is controversial; some people feel that it obscures the loop control. If desired, it can be removed from the language by deleting a single macro from the standard set).

The Mortran FOR- and DO-loops apply only to blocks of statements, not to I/O lists. The usual FORTRAN implied DO should be used within READ or WRITE statements.

There remains one more type of loop to be discussed. This loop is sometimes referred to as the "forever loop". One writes the forever loop in Mortran by preceding a block with the phrase "LOOP":

\[\text{LOOP [...] REPEAT (A4.3-16)} \]

or simply

\[\text{LOOP [...] (A4.3-17)} \]
The block is executed and control is transferred back to the beginning of the loop. The optional phrase "REPEAT" in (A4.3-16) is sometimes useful as a visual aid in locating the ends of deeply nested loops.

A reasonable question might be: "How do you get out of a forever loop? Or, for that matter, any of the loops?". One rather obvious way is to write

\[
\text{GO TO :CHICAGO: ;}
\]

where the label :CHICAGO: is on some statement (or block) outside the loop. If a convenient label doesn’t already exist, creating one for the sole purpose of jumping out of the loop can be annoying and distracting. For the case in which the jump is to the statement following the loop, the GO TO may be replaced by the Mortran "EXIT;" statement, which is written

\[
\text{EXIT;}
\]
(A4.3-18)

or, with a conditional statement

\[
\text{IF (e) EXIT;}
\]
(A4.3-19)

or

\[
\text{IF e [...EXIT;}
\]
(A4.3-20)

In any Mortran loop, the occurrence of the statement "EXIT;" causes a transfer of control to the first statement following the loop in which it occurs.

A companion to the "EXIT;" statement is the "NEXT;" statement, which is written

\[
\text{NEXT;}
\]
(A4.3-21)

or, with a conditional statement

\[
\text{IF (e) NEXT;}
\]
(A4.3-22)

or

\[
\text{IF e [...NEXT;}
\]
(A4.3-23)
The occurrence of a "NEXT;" statement (which is short-hand for "go to the next iteration of this loop") in any Mortran loop causes a transfer of control to the beginning of the loop in which it occurs, incrementing the control variable (if any) before making the test for continuation in the loop. In loops which test at both ends of the loop, only the test at the beginning of the loop is made; tests at the end of the loop are made only when the end of the loop is reached. The tests of control variables in FOR- and DO-loops are considered to be at the beginning of the loop.

Any Mortran loop may be optionally preceded by a label. We will call loops which are preceded by labels "labeled loops". Any EXIT or NEXT statement may be optionally followed by a label. Any labeled loop may contain one or more statements of the form

EXIT :label: ;

which transfers control to the first statement following the labeled loop. For example EXIT :ALPHA:; would transfer control to the statement following the loop which had been labeled :ALPHA:]. This transfer of control takes place regardless of nesting, and thus provides a "multi-level" EXIT capability. The statement

NEXT :label: ;

transfers control in the manner described above for the NEXT; statement.

Suppose we have a nest of loops which search some arrays. The outer loop has been labeled :SEARCH:, and two of the inner loops have been labeled :COLUMN: and :ROW:. Now we may write

NEXT :ROW: ; or NEXT :COLUMN: ; or EXIT :SEARCH: ;

when the transfer involves more than one level of nesting, or

NEXT; or EXIT;

when only one nest level is involved. Of course, the form

EXIT :label:;

may also be used to exit a single level if desired.
We can now summarize Mortran loops in the following chart:

WHILE a		UNTIL b		NEXT;	
LOOP		EXIT;		WHILE c;	
:label:	FOR v=x BY y TO z		EXIT :label: ;	[...]	UNTIL d;
FOR v=x TO y BY z		NEXT :label: ;		REPEAT	
FOR v=x TO y		DO i=j,k,n			

where a, b, c, and d are arbitrary logical expressions, x, y, and z are arbitrary arithmetic expressions, v is a subscripted or non-subscripted variable of type INTEGER or REAL, j, k, and n are non-subscripted INTEGER variables or INTEGER constants, and i is a non-subscripted INTEGER variable.

| | indicates "choose one",
[] indicates "optional", and
... indicates a (possibly null) sequence of statements.

7.4 Miscellaneous Features

7.4.1 Multiple Assignment

It is sometimes useful to be able to assign the value of some expression or variable to several variables in a single statement. In Mortran one writes

```
/ p,q,r...,z / = e  \hspace{1cm} (A4.4-1)
```

where p,q,r,...,z are variables and e is an expression. The expression e assigned to each variable in turn. For example,

```
/ I, A(I,K), J / = SQRT(X/2.0);
```

produces the following FORTRAN statements:

```
I = SQRT(X/2.0)
A(I,K) = SQRT(X/2.0)
J = SQRT(X/2.0)
```
7.4.2 I/O Abbreviations

Another instance in which the creation of a label can be annoying because it is used only once and contains no mnemonic information is the following:

\[
\text{READ (5,:NONSENSE:) i/o list; :NONSENSE: FORMAT(format list);}
\]

In Mortran one may write

\[
\text{INPUT i-o list; (format list);} \quad \text{(A4.4-2)}
\]

or

\[
\text{OUTPUT i-o list; (format list);} \quad \text{(A4.4-3)}
\]

whenever the input or output is to the standard FORTRAN input or output units (5 and 6, respectively). (If your FORTRAN compiler is already "extended" to allow the keywords INPUT and OUTPUT or if these keywords are already used in other contexts, the macros defining these statements may be removed or modified to use other keywords. Similarly, the input and output units may be easily changed to units other than 5 and 6.)

7.4.3 Operators

Relational operators (e.g., .LT. etc. in FORTRAN notation) may be denoted by:

\[
<, <=, =<, =, \sim=, =>, >=, \text{ and } >.
\]

Logical operators may be denoted by:

\[
\& (\text{and}), | (\text{or}), \text{ and } \sim (\text{not}).
\]

The usual FORTRAN notation is still valid, but one must NOT mix modes within a single statement (i.e., (A>B.AND.C>D) will be translated incorrectly.

7.5 User-Defined Macros

7.5.1 String Replacement

Macro definitions are written in the following form:

\[
\text{REPLACE \{pattern\} WITH \{replacement\}} \quad \text{(A4.5-1)}
\]
Macro definitions are not statements and therefore need not be terminated by semicolons (if you put one in it will be ignored). Macro definitions are "free field" in the sense that you may write more than one definition on one line, or extend one definition to several lines.

The pattern and replacement parts of a macro definition are character strings in the sense described in Section A4.2. Since embedded strings are permitted in macro definitions, the usual rules regarding the doubling of apostrophes apply.

The simplest kind of macro is one which contains neither parameters nor embedded strings. For example, one could write

\[
\text{REPLACE \{ARRAYSIZE\} WITH \{50\}} \quad \text{(A4.5-2)}
\]

after which all occurrences of the characters ARRAYSIZE in the program text would be replaced by 50. For example,

\[
\text{DIMENSION X(ARRAYSIZE); \ldots DO J=1,ARRAYSIZE [...]...}
\]

would produce the same FORTRAN program as if

\[
\text{DIMENSION X(50);\ldots DO J=1,50 [...]...}
\]

had been written.

Blanks are generally not significant when searching for occurrences of the pattern in the program text. For example, the macro

\[
\text{REPLACE \{SIGMA(1)\} WITH \{SIGMA1\}}
\]

would match the program text

\[
\text{SIGMA (1)}
\]

as well as

\[
\text{SIGMA(1)}
\]

In some cases it is desirable to require that one or more blanks be present in the program text in order that a match occur; this can be done by writing a single blank in the pattern part of the macro. For example the macro

\[
\text{REPLACE \{DUMP X;} WITH \{OUTPUT X; (F10.2);\}}
\]

would match

\[
\text{DUMP X;}
\]

but not

\[
\text{Y = DUMPX;}
\]
Normally, the text generated by a macro is itself eligible for replacement by other macros, or even by the same macro that generated the text.

7.5.2 Parameters in Macros

The pattern part of a macro definition may contain up to nine formal (or "dummy") parameters, each of which represents a variable length character string. The parameters are denoted by the symbol #. For example,

\{EXAMPLE#PATTERN#DEFINITION\} \hspace{1cm} (A4.5-3)

contains two formal parameters. The formal parameters are "positional". That is, the first formal parameter is the first # encountered (reading left to right), the second formal parameter is the second # encountered and so on. The corresponding actual parameters are detected and saved during the matching process. For example, in the string

EXAMPLE OF A PATTERN IN A MACRO DEFINITION \hspace{1cm} (A4.5-4)

(assuming (A4.5-3) is the pattern to be matched), the first actual parameter is the string "OF A", and the second actual parameter is the string "IN A MACRO". The parameters are saved in a "holding buffer" until the match is completed.

After a macro is matched, it is "expanded". The expansion process consists of deleting the program text which matched the pattern part of the macro and substituting for it the replacement part of the macro.

The replacement part may contain an arbitrary number of occurrences of formal parameters of the form \{Pi\} (i=1,2,...,9). During expansion, each formal parameter \{Pi\} of the replacement part is replaced by the i-th actual parameter. A given formal parameter may appear zero or more times in the replacement part. For example, the pattern part of the macro definition

REPLACE \{PLUS #;\} WITH \{\{P1\}={P1}+1;\} \hspace{1cm} (A4.5-5)

would match the program text

PLUS A(I,J,K); \hspace{1cm} (A4.5-6)
During the matching process the actual parameter $A(I,J,K)$ is saved in the holding buffer. Upon completion of the matching process (that is when the semicolon in the program text matches the semicolon in the pattern part), the "expansion" of the macro takes place, during which the actual parameter $A(I,J,K)$ replaces all occurrences of the corresponding formal parameter, producing

$$A(I,J,K)=A(I,J,K)+1; \quad (A4.5-7)$$

Note that the single formal parameter $\{P1\}$ occurs twice in the replacement part and therefore the single actual parameter $A(I,J,K)$ occurs twice in the resulting string.

The program text which may be substituted for the formal (dummy) parameter is arbitrary except for the following restrictions:

1. It may not be text containing an end-of-statement semicolon. This restriction prevents "run-away" macros from consuming large parts of the program.

2. Parentheses and brackets must be correctly matched (balanced). This facilitates the construction of macros which treat expressions as indivisible units.

3. Quoted character strings are considered to be indivisible units. If the opening apostrophe of a character string is part of the actual parameter, then the entire string must be within the actual parameter.

7.6 Control Cards

More properly called "processor control directives", Mortran3 control cards may appear anywhere within the program and fall into two categories:

1. Column-one-restricted directives
2. Free-form directives

Column-one-restricted directives MUST begin in column one and only one directive per line is recognized. Free-form directives, on the other hand, may appear anywhere on a line and are not limited by number. Some of both types have been found to be useful with the EGS4 Code System and they will be presented next [additional information is provided in A. J. Cook, "Mortran3..."].
7.6.1 Column-One-Restricted Directives

Each of these control cards begins with a "%" in column 1, and should not contain embedded blanks or program text.

<table>
<thead>
<tr>
<th>Column 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
</tr>
<tr>
<td>%</td>
</tr>
</tbody>
</table>

% Signals end of Mortran input. This is the ONLY control card that is required. All others are optional. Unlike Mortran2, % signals the final end of input and must not be used to signal end of input from this particular unit.

%F Switch to FORTRAN mode (initial mode is Mortran). While in FORTRAN mode, cards are read and written without any processing. This feature allows the interspersion of FORTRAN and Mortran text. If this feature is used, all FORTRAN statement labels should be restricted to four digits (or less) in order to avoid possible conflict with Mortran generated statement labels, all of which are five digits long (in the default mode).

%M Switch back to Mortran mode (initial mode is Mortran).

%E Eject (start new page) in Mortran listing.

%L List (i.e., turn on Mortran listing (initially ON)).

%N Nolist (i.e., turn off Mortran listing).

%In Indent n places per nest level in Mortran listing, where n=0,1,2,...,99 (initially 0). (Note: leading blanks are automatically suppressed when n>0 so that "ragged" programs will be "straightened" by Mortran).

%Cn Set input line width to n, where n=10,11,...,80 (initially n=72). Characters in columns n+1 thru 80 will appear in the Mortran listing, but will be ignored by the processor.

%An Annotation mode switch. Controls the generation of Mortran source as comments in the generated FORTRAN as follows:

n=0 Suppress Mortran text in FORTRAN file (initially n=0).
n=1 Interleave Mortran text as comments in the FORTRAN program starting in column 2 and extending through column 80. If column 80 of the Mortran source line is not blank, a second comment line is generated containing the 80th character.

n=2 Interleave the Mortran text as comments in the FORTRAN program in columns 40 thru 80. Each Mortran source line will appear as two comment lines in the FORTRAN listing, each of which contains one half of the Mortran source line.

%Qn Quote switch (initially n=0). Controls Mortran comments as follows:
 n=0 Comments must be fully enclosed in quotation marks (").
 n=1 All comments not closed at the end of each line will be closed by Mortran.

%Un Unit switch. Causes Mortran to switch to FORTRAN input unit n for further input, where n=1,2,3...99. When an end-of-file is read from unit n, input is switched back again to the unit from which the %Un was read. If another %Un is read before an end-of-file, the current input unit is stacked and the Mortran input unit is again switched. This control statement provides a facility similar to that implemented in other languages by "COPY" or "INCLUDE" statements. It is particularly convenient for introducing standard declarations, common blocks, or macro definitions from a predefined external file.

7.6.2 Free-Form Directives

Free-form directives begin with an exclamation point ("bang!") and end with a semicolon. The following are of particular use with EGS4/PEGS4:

!ANNOTATE; Interleave Mortran source in FORTRAN output. Mortran statements become COMMENTS in FORTRAN output. [%NOANNOTATE; means "Turn Off !ANNOTATE"].

!COMMENTS; Print Mortran comments as FORTRAN comments. Mortran comments are output to FORTRAN file with 'C' in column one. [%NOCOMMENTS; means "Turn
Off !COMMENTS]

!INDENT Mn; Set automatic indentation of Mortran listing to n columns per nesting level (same as %In above).

!INDENT Fn; Set automatic indentation of FORTRAN source to n columns per nesting level (like !INDENT Mn;).

!INDENT Cn; Set automatic indentation of FORTRAN comments to n columns per nesting level (but the 'C' remains in column one).

!LIST; Turn on Mortran listing. Same as %L above. (!NOLIST; means "Turn Off !LIST;")

!LABELS n; Reset FORTRAN statement label generator to n.
8 EGSnrc System Considerations

This section is almost completely superceded by Report PIRS-877 which describes the EGSnrcMP environment or system for using the EGSnrc system[11]. This section is left here for old time’s sake!

8.1 Introduction

The EGSnrc Code System works in a manner which is very similar to the EGS4 system so that those using the EGS4 system already should find this very familiar. The major changes are to make the user codes subdirectories of $HOME/egsnrc instead of $HOME/egs4 and to define the files related to specific runs as .egsinp instead of .egs4inp etc. These changes have been made to make it possible to run both systems in parallel for a while when making the transition, and to clearly identify which system various files refer to. This can be done by merely changing the definition of the environment variable HEN_HOUSE to point at either the EGSnrc or the EGS4 area, and sourcing Cshrc_additions_for_egsnrc instead of Cshrc_additions_for_egs4 in your .cshrc file. If you are already an EGS_pert then the rest of this section will be of little interest. If you are new to EGS and the above makes no sense at all, then this is the section for you!

8.2 On not creating a Windows version

The current version of EGSnrc was developed on a Linux system and generally works well with Unix based systems. In the past there has been an extensive effort to develop a parallel version of the system which is for use on Microsoft systems. With recent developments in software, this now seems like a waste of effort and we strongly encourage people to invest a few hundred dollars and purchase VMWARE which allows Linux to be run simultaneously on your Windows based machine, or preferably, because Linux is more stable, Windows to be run as a window on your Linux based machine. The advantage of this is that you can run your Monte Carlo calculations in the background while you are using your Windows based applications.

While we are aware that the above will not convince some die-hard Microsoft users, we strongly encourage that it be carefully considered since it will allow Windows users to update more easily as EGSnrc is improved, without waiting for the substantial effort required by those who make the port.

8.3 Overview

The EGSnrc system, which was originally developed for Unix based systems by Alex Bielajew, is very flexible and powerful. This comes at the expense of being somewhat complicated at first sight. However, the scripts which come with the system make it quite easy to use and flexible once you are familiar with the over-all design.
The EGSnrc system consists of two major directory areas. One area, the HEN HOUSE, holds all the standard EGSnrc files and does not get changed. The structure of the HEN HOUSE is shown in fig 38. The HEN HOUSE can be maintained anywhere on the system that all local EGSnrc users can read. One useful approach in a multi-user environment is to have a user called egsnrc and make the HEN HOUSE the $HOME directory of that user. If you are the only local EGSnrc user, you can make the HEN HOUSE a subdirectory of your $HOME area. In either case, when you initiate the INSTALL EGS procedure, you should do so on the directory where you want the HEN HOUSE to reside (see section 8.8 on page 270 for more on installation).

Figure 38: The components of the HEN HOUSE area for the EGSnrc system. There are also subdirectories related to documentation and NRC user codes which are not shown here.

The second major directory area of the EGSnrc system is on the individual user’s area and holds all the user’s user codes and run associated files. It is mandatory that you set up a subdirectory $HOME/egsnrc and for each user_code.mortran which you use or write, there must be a sub-directory with the same name as the user code, i.e. $HOME/egsnrc/user_code. A typical user’s area is shown in figure 39.
8.3.1 A complication for multi-architecture systems

At NRC we run with a variety of different machines, all of which access a single disk system. The EGSnrc system is set up to handle this transparently but this adds an additional level of complexity to the underlying system. The system keeps track of which machine you are on at all times and uses the appropriate execute modules etc. This aspect of things is handled by the variable \texttt{my_machine} which essentially identifies the type of cpu currently being used and is determined by the script \texttt{$\text{HEN_HOUSE}/get_machine$}. The system is set up to store the executable files (the \texttt{.exe} files) on separate disk areas for each type of machine. To execute the code on different machine you must first compile it on each type of machine you want to use. As new machines come along, the script \texttt{$\text{HEN_HOUSE}/get_machine$} may become out of date and users may have to update it to return appropriate information for their system and more importantly, adjust the run and compile scripts to use the appropriate switches for their machine.

8.3.2 System aliases and environment variables

The EGSnrc system is based on using \texttt{csh} C-shell scripts and to facilitate this one should run from the C-shell (\texttt{csh} or \texttt{tcsh}). To define the aliases and other variables needed by the system, there is a file called \texttt{Cshrc_additions_for_egsnrc} available on the \texttt{HEN_HOUSE}.
However, one first needs to set the environment variable `HEN_HOUSE` to point at the location of the `HEN_HOUSE`. This is most conveniently done with a declaration in your `.login` file or `.cshrc` file:

```bash
setenv HEN_HOUSE location_of_HEN_HOUSE (e.g. $HOME/HEN_HOUSE)
```

Then it is **essential** that in your `.cshrc` file you source the `Cshrc_additions_for_egsnrc` file, i.e. add the statement:

```bash
source $HEN_HOUSE/Cshrc_additions_for_egsnrc
```

This latter file sets up many aliases and other variables for you. These are most easily seen by executing the commands `alias`, `set` and `setenv` although this will show you all of the systems definitions as well. We will explain the use of many of these definitions in the remainder of this section but the most important of the aliases are:

- **mor** MORTRAN a stand alone code
- **m** MORTRAN a specified users code
- **mf** MORTRAN and Fortran compile and link a specified users code
- **f** Fortran compile and link a specified users code
- **ex** execute an egs user code
- **exb** execute an egs user code in batch mode
- **pegs4** run pegs4 (see section 8.4)
- **examin** examin a particular data set from pegs4

The use of these is described below in detail.

8.4 PEGS4

As described elsewhere in this report, PEGS4 is the program which prepares much of the material dependent cross section data sets required by EGSnrc to do the simulations (see section 6 on page 191).

The user must have the directories `$HOME/egsnrc/pegs4`, `$HOME/egsnrc/pegs4/inputs` and `$HOME/egsnrc/pegs4/data`. The user’s PEGS4 input file is on `$HOME/egsnrc/pegs4/inputs` and has the name `my_data.pegsinp`. The PEGS4 program outputs the data file for EGSnrc to `$HOME/egsnrc/pegs4/data/my_data.pegs4dat`. The listing file from the PEGS4 run is found onen `$HOME/egsnrc/pegs4` and is called `my_data.pegs4lst`. To invoke PEGS4 one enters:

```bash
pegs4 my_data density
```
where `my_data.pegsinp` is the input file described in detail in section 6.2 (page 216) and `density.density` is a file containing the density effect information needed for this particular calculation IF it is needed by `my_data.pegsinp`. The PEGS4 script checks the following directories, in order, for the file `density.density`.

$HOME/egsnrc/pegs4/inputs
$HOME/egsnrc/pegs4/density_corrections/elements
$HOME/egsnrc/pegs4/density_corrections/compounds
$HOME/egsnrc/pegs4/density_corrections
$HEN_HOUSE/pegs4/density_corrections/elements
$HEN_HOUSE/pegs4/density_corrections/compounds

8.4.1 Where pegs4 data is kept

Note that PEGS4 can only create one material output file per run and if the simulation you want to run requires data for more than one material, these must be joined into one file `pegs4dat` file, either by concatenation or using an editor.

The EGSnrc run scripts look for the data file requested (see section 8.6), first on $HOME/egsnrc/pegs4/data and if not found there, then it looks on $HEN_HOUSE/pegs4/data.

8.4.2 examin

The command:

```
examin file
```

(note there is no “e” at the end of `examin`) will allow you to plot and/or list much of the photon and electron cross section data in the file `$HOME/egsnrc/pegs4/data/file.pegs4dat`. The output is found on `$HOME/egsnrc/examin`. If requested, during execution `examin` pops open `xmgr` (a 2-D graphing package), otherwise you have to use the listing files created. See section 3.12.3 (page 131).

8.5 Compilation (MORTRAN and Fortran)

The EGSnrc system is written in the Mortran3 language which is a pre-processor for Fortran. Mortran3 is itself written in Fortran. The Mortran3 processor is part of the EGSnrc distribution and is discussed in detail in section 7, page 239 of this report. In order to create an executable file from the mortran source files, there are two steps needed. The first step, converts the mortran source code into standard Fortran77. We call this `MORTRAN` compiling. The next step turns the Fortran source into an executable, using the standard Fortran compile and link process.

To “compile” the user code `user_code.mortran`, one issues the command:

```
mf user_code a [opt0|opt1|opt2|opt3|opt4]
or
m user_code
```
The \texttt{mf} command will MORTRAN, Fortran and link the entire user-code called \texttt{user_code}, including the EGSnrc system. The Fortran and the execute modules are machine specific (SUN vs SGI vs Linux etc) but this is handled in a transparent manner by the scripts.

The \texttt{m} command will MORTRAN the entire user-code called \texttt{user_code}, including the EGSnrc system. The output is a Fortran file \texttt{user_code_\{my_machine\}.f} which is specific for the machine being used since the script picks up a set of macros which handles any differences between the machines.

The \texttt{f} command will Fortran and link the entire Fortran version of the user-code called \texttt{user_code_\{my_machine\}.f}, which includes the EGSnrc system. The scripts automatically detect the value for \texttt{my_machine} and use the appropriate value.

\texttt{user_code.mortran} or \texttt{user_code_\{my_machine\}.f} must be present on area \texttt{$HOME/egsnrc/user_code}.

The letter \texttt{a} after the user code name is a residual option which no longer exists, but which has been left for compatibility with a wide range of other scripts at NRC. This option was associated with a technique to avoid recompiling unchanged Fortran subroutines from one pass to the next, but this was removed since compilers have become so fast that it was not very useful and occasionally led to problems and always left many extra files around. Note that the standard \texttt{make} facility does not work because the date on the Fortran file is always more recent than that on the object module since MORTRAN creates a new version of the Fortran each time.

The option \texttt{[opt0|opt1|opt2|opt3|opt4|debug]} allows selection of the optimisation level to be used. For production codes, be sure to use at least \texttt{opt2} since these can save up to 50\% over \texttt{opt0}, but they usually take much longer to compile and link.

\section*{8.5.1 The \texttt{user_code_configuration} file}

During the MORTRAN stage, the scripts create a file, called \texttt{.mortjob.mortran} on \texttt{$HOME/egsnrc/user_code}. This file contains all the source code for this particular user_code (macros, user_code, and any other routines the user wants, etc). The files which are concatenated together to form \texttt{.mortjob.mortran} are defined in the file \texttt{$HOME/egsnrc/user_code/user_code_configuration}. If this file is not present, the script uses the generic \texttt{$HEN_HOUSE/standard_configuration}. Figure 40 presents a listing of this file.

The \texttt{.configuration} file allows for very flexible options when compiling a given user code. For example, it is possible to change which random number generator is being used throughout the system by merely changing which pair of files are included in the configuration file, either \texttt{ranlux.macros} and \texttt{ranlux.mortran} or \texttt{ranmar.macros} and \texttt{ranmar.mortran} (see section 3.9, page 126). However if anything other than the default seeds and luxury levels are desired, there may be some minor changes needed in \texttt{user_code.mortran} unless one is very careful (\eg DOSRZnrc is designed to use either rng).
Figure 40: The standard.configuration file.

```bash
#!/bin/csh
# standard.configuration (SID 1.4 last edited 00/2/21)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# When an EGSnrc code is compiled, the egs_compile script
# calls this file to create the overall source code by
# concatinating different files in a specified order. Generally
# user codes will require extensions to this bare bones configuration
# file. See the examples for dosrznrc etc.
# If no configuration file is present on the user-code directory
# (i.e. $HOME/egsnrc/user_code) then this file is used.
# Note that order IS IMPORTANT since the last definition of a macro
# is the one that is used.
# catecho is a simple little script to concatonate the named file
# and echo things to the terminal depending on whether EGS_PERT
# is set or not.
# The EGSnrc system has been structured to work with either the
# RANLUX or the RANMAR random number generators. To switch
# which rng to use, comment out the one not wanted (in 2 places).
# The only difference to the user is that RANLUX requires a
# luxury level (0 to 4) plus an initial seed (any positive integer)
# whereas RANMAR needs two initial seeds between 1 and roughly 30,000.

echo "Entering $HEN_HOUSE/standard.configuration (SID 1.4) "
echo "-------------------------------------------------------------"
echo " Using machine: $my_machine"
echo ""
echo "$L" > .mortjob.mortran # Mortran switch to turn listing on
$HEN_HOUSE/catecho "$HEN_HOUSE/egsnrc.macros " "egsnrc std macros"
$HEN_HOUSE/catecho "$HEN_HOUSE/lib/$my_machine/machine.mortran" "macros"
$HEN_HOUSE/catecho "$HEN_HOUSE/ranlux.macros " "RNG macros"
#$HEN_HOUSE/catecho "$HEN_HOUSE/ranmar.macros " "RNG macros"
if ($?EGS_PERT != 1) echo "--------------------------------------------"
$HEN_HOUSE/catecho "$1.mortran " "user-code source"
if ($?EGS_PERT != 1) echo "--------------------------------------------"
$HEN_HOUSE/catecho "$HEN_HOUSE/ranlux.mortran" "RNG initialization"
#$HEN_HOUSE/catecho "$HEN_HOUSE/ranmar.mortran" "RNG initialization"
$HEN_HOUSE/catecho "$HEN_HOUSE/nrcaux.mortran " "NRC auxilliary subs"
$HEN_HOUSE/catecho "$HEN_HOUSE/egsnrc.mortran " "egsnrc subroutines"
echo ""
echo "-------------------------------------------------------------"
echo "end of standard.configuration(SID 1.4). .mortan.mortjob created"
echo "-------------------------------------------------------------"
echo ""
```
8.5.2 Order is Important

When the file `.mortjob.mortran` is created, the order in which the various files are placed in the file is important. This is primarily because in Mortran3 the last definition of any macro is the one that is in force. Thus it is important that the `egsnrc.macros` file be read in early since this defines all of the default values of the macros. As long as it appears before the user code, then any macro redefinitions done in the user code take precedence.

8.5.3 Batch compilations

To compile in batch, just add a `b` to the above commands, *i.e. mfb etc.*. This will submit the compilation to whatever batch system you are using (see section 8.6.2).

8.5.4 machine.mortran files

Different compilers often have slightly different ways of handling certain things. The most common differences are regarding how files are opened (i.e., the format of the `OPEN` statement), and what is more difficult, how they handle time. EGSnrc itself has very few of these constructs within it, but the user codes cannot avoid them. To overcome these differences, there are a series of macros defined in `machine.mortran` files which are found on `$HENHOUSE/lib/$my_machine/machine.mortran`. It is even more complex for Linux machines where the `machine.mortran` files differ depending on what version of the compiler you are using. The default settings are for a fairly recent `g77` compiler but if you are using a slightly older one you may need to edit the `egs_compile` script to select a different default for the variable `Linux_compiler`.

The `machine.mortran` files define a macro `$MACHINE` which the user codes pick up. It is useful to define this properly in the `machine.mortran` which is picked up in your local environment.

8.5.5 get_machine, what if it fails?

The script `get_machine` is designed to tell the EGSnrc scripts what type of machine is being used. If the system you are using is not recognised by the scripts, it will try to compile using pretty vanilla flavoured compiler and loader flags. The script will print out what flags it is using. If you wish to change these to match the requirements of your machine, edit the `egs_compile` script. You may want to hard wire the selection of `my_flags` and `my_libs` to match your own machine/compiler. If it is a common, new machine or compiler, please let us know what settings were needed and we will try to fit them into the next release. We also hope to clean up these scripts and allow a more direct method to modify/tailor the system.

8.6 Execution

Once a user code has been compiled, it is executed by issuing:
ex[b] user_code input data [queue|debug]

$HOME/egsnrc/user_code/input.egsinp and $HOME/egsnrc/user_code/user_code.{my_machine}_exe must exist. The PEGS4 data is in data.pegs4dat which is located either on the users area or the system area, as discussed in section 8.4.1.

If queue is not specified when the batch option “b” is being used, then the default queue on your system is used.

In interactive mode, the 4-th input can be debug if a debug run is wanted. There must be an execute module created with the debug switch set during compilation for this to work.

Execution of EGSnrc jobs is handled by the script egs_run which is on the HEN_HOUSE.

At the completion of the run, all output and batch output files are found on $HOME/egsnrc/user_code/ unless the user has specified something different in the environment file (see below).

During execution, the egs_run script creates a separate subdirectory area and only modifies the files there. This is usually a subdirectory of $HOME/egsnrc/user_code/ but on a Linux system is on /tmp (this is to make the subdirectory local to the machine running the job since on the NRC system, having the disk on another machine would seriously slow down the job). All the files are moved back to $HOME/egsnrc/user_code/ after completion of the run. This can be confusing unless you are aware of this behaviour.

8.6.1 user_code.environment file

The execution scripts source $HOME/egsnrc/user_code/user_code.environment immediately prior to executing the user_code and then again immediately after. An example is given in $HEN_HOUSE/example_usercode.environment which is shown in figure 41. In general, this file defines the links to specific files from Fortran units, etc.

To understand the environment file one needs to know that (almost) all Fortran compilers associate a file called fort.n with any I/O unit n which is not attached explicitly within the code to some file name. Thus if HATCH read data from unit 12 without any open statement, then it looks for fort.12. In either the egs_run or user_code.environment file one then links this file name to the name of the real data file. We use soft links because of the NFS automount system which means the files may be on other disks. Figure 41 lists example_usercode.environment which shows an explicit example. There are a series of similar links established within egs_run for files which have common names for all user codes.

The following files are associated with a normal type of run with an NRC user code (although the environment files can add whatever files the user may want and the files below are not mandatory). For this example, the input file name is input.egsinp.

input.egsinp: defined by the user.

input.egslst: the output listing file from the run. Erased at start of next run if not renamed.
Figure 41: The example_usercode.environment file.

```bash
# example_usercode.environment (SID 1.3 last edited 00/02/21)
# The egs_run script executes this piece of code immediately
# before and after executing the user code. The environment file
# gives the user the ability to link specific file names to the
# standard names used by fortran and/or any other files they
# want to use.
#
# environment files are used extensively by the NRC user codes
# and the user is advised to look at them for further examples.
#
# This script can tell whether it is being called before or after
# execution by the value of the variable $user_operation which is setenv
# before execution and unsetenv afterwards.
#
# In the calling script the variable $inputfile has also been set
# if the user is using one.
#
# The script egs_run does those assignments needed by all user
# codes, namely unit 12, pegs4 input, unit 76,77,78,79 other
# cross-section data. The user code should not use these units.

if ($user_operation == "setenv") then
    # Preprocessing operations go here
    # This example attaches a usercode-specific plotting input file
    # to FORTRAN unit 9
    ln -s $usercode.my_plotting_package_input fort.9
    # This example attaches an inputfile-specific plotting output file
    # to FORTRAN unit 80
    ln -s $inputfile.my_plotting_package_output fort.80
    # This example attaches a file to the standard EGS_Windows output
    ln -s $inputfile.egsgph fort.13
else if ($user_operation == "unsetenv") then
    # Postprocessing operations go here
    # Note that any symbolic links created above are removed
    # automatically by the script egs_run.
else
    # This should not happen but print a message just in case
    echo "Warning. No user_operation set for modifying environment"
endif
```

8: EGSnrc System Considerations
input.egslog: The log file which echos the inputs and prompts when running in batch. Note, this has most of the error messages too, so get in the habit of reading this file.

input.egsdat: A file containing all the information needed to allow a calculation to be restarted again.

input.egsrns: Some codes allow a record of random number seeds at the start of each history to be kept (just most recent). These are kept in this file if requested.

input.egsplot (etc): Plotting files for various routines, the most up to date are for xmgr.

input.egsgeom: file with output description of geometry for EGS_windows.

input.egsgph: file with output phase space of each history for EGS_windows.

The one known exception to the rule above about fort.n files names is the HP unix system. Here the default Fortran unit name is ftn05 for fort.5 etc. The approach here is to use statements like setenv ftn11 fort.11 in the .environment file prior to the link statement. This is done within egs_run for many units which are regularly used.

8.6.2 Batch Queues

The EGSnrc system defines batch submission by utilising the variable ALTERNATE_EGS_BAT which can best be set in $HEN_HOUSE/local/Local_cshrc_additions_for_egsnrc. This file is sourced from $HEN_HOUSE/Cshrc_additions_for_egsnrc, which, as pointed out in the overview, the user must source from their .cshrc file.

If ALTERNATE_EGS_BAT is not set, the scripts use the standard unix at batch queue system. At NRC we use the more powerful NQS batch system by setting ALTERNATE_EGS_BAT to NQS_irs. Once ALTERNATE_EGS_BAT is set, the EGSnrc scripts know to use $HEN_HOUSE/local/\${ALTERNATE_EGS_BAT}_batch_compile and $HEN_HOUSE/local/\${ALTERNATE_EGS_BAT}_batch_run when submitting batch jobs. Examples of these files for use with the NQS are part of the distribution on $HEN_HOUSE/local. If you use a different batch system, you will need to create the appropriate \${ALTERNATE_EGS_BAT}_batch_compile and \${ALTERNATE_EGS_BAT}_batch_run files and define ALTERNATE_EGS_BAT in $HEN_HOUSE/local/Local_cshrc_additions_for_egsnrc to point to these new files.

8.7 Parallel Processing

Monte Carlo calculations with EGSnrc are easily run in parallel and the results combined at the end of the runs because every history is completely independent, as long as the random number sequences are independent. One of the reasons for selecting the random number generators distributed with EGSnrc is that there is a simple procedure for ensuring independent sequences (see section 3.9 on page 126).

The NRC user codes[94] have a parallel processing option built in. The system used requires the NQS batch submission system to be installed on all machines to be run in
parallel. The option is implemented via a script, called \texttt{pprocess} which makes an arbitrary number of input files from the original file, ensuring different random number sequences for each and then submitting the job to an arbitrary number of machines. At the end of the runs, the main user code is run once more with instructions to combine the results of the previous runs. Although crude, it is highly effective. We routinely run using more than 30 of our 38 CPUs running in parallel. The script \texttt{combine_egsnrc} has been written to automatically edit the required input file and execute the needed final run for the analysis of parallel runs with the NRC user codes. There is more discussion in reference [94].

Note that there is a useful script called \texttt{clean_after_parallel} which is found on \texttt{$HEN_HOUSE/pprocess}. Parallel runs create a huge number of files and this script helps clean them up, but only once they have been analysed.

8.8 Distribution / Installation of EGSnrc

The EGSnrc system is distributed via the WWW from the site at: \url{http://www.sao.nrc.ca/inms/irs/EGSnrc/EGSnrc.html}. Note that downloading any files from this site implies acceptance of the terms of the EGSnrc licence (see page 1).

There are several tar file on the site plus the \texttt{INSTALL} script file. The complete distribution requires the latest versions of all of these files. There are uncompressed, compressed and gziped versions of the tar files. You only need one, preferably the shortest you can handle.

At the NRC EGSnrc courses there will be a CDrom version of the distribution available. It contains several files, the \texttt{INSTALL} script and four tar files which are the uncompressed distribution tar files. This method of distribution by CD will \textbf{not be kept up to date} and will \textbf{not} be available except to current course participants.

There is a link on the distribution area to a file called \texttt{README.general} which will have the latest information on how to handle the installation process. In general, the EGSnrc system can be installed using the script \texttt{INSTALL} and the tar file of the system. Read the instructions at the top of the \texttt{INSTALL} script and/or the file \texttt{README.general} before proceeding.

This installation script requires that the environment variables \texttt{HEN_HOUSE} not be defined when the script is called and not be defined in the user’s \texttt{.cshrc} file. The installation will create the entire \texttt{$HEN_HOUSE} structure shown in fig 38 (page 260) and compile a variety of codes for the machine the user is doing the installation from (\textit{viz.} Mortran3, PEGS4, DOSRZnrc). It also partially sets up the user’s area \texttt{$HOME/egsnrc}. Most importantly, the installation leaves behind a file called \texttt{Cshrc_additions_for_egsnrc} which MUST be sourced from the user’s \texttt{.cshrc} script once the installation is complete, \textit{i.e.}, add the following to your \texttt{.cshrc} file:

\begin{verbatim}
source /explicit_path_to_your_HEN_HOUSE/Cshrc_additions_for_egsnrc.
\end{verbatim}

Once the \texttt{INSTALL} script has been successfully executed, one must ensure that the environment variable \texttt{HEN_HOUSE} is defined to point at wherever you have placed the EGSnrc system, and the \texttt{.cshrc} file modified to source \texttt{$HEN_HOUSE/Cshrc_additions_for_egsnrc}. The user should try to run the \texttt{tutor} codes to ensure the system is working.
For examples of the files created by INSTALL_EGS, see $HEN_HOUSE/test_distribution_outputs.

One can also run the script test_distribution (see section 3.12.4, page 132) which exercises the system extensively.

8.9 On-Line Manuals

The manuals for the EGSnrc system are on-line from the same site as the distribution, viz http://www.irs.inms.nrc.ca/inms/irs/EGSnrc/manuals.html. There is an html version as well as postscript and pdf versions of the manuals.

8.10 Changes and bugs corrected since initial release

The following changes were made to EGSnrc in a minor release in Oct, 2001

- A call to AUSGAB immediately prior to annihilation of a positron at rest was added with IARG=28.
- The auxiliary input routine for EGSnrc parameters was changed to use macros to define the defaults.
- A change was made to allow skindepth_for_bca to be less than 1.
- James Tickner pointed out that K-alpha1 and K-alpha2 transition probabilities had been inverted. This was fixed.

The following changes were made to EGSnrc in the May, 2001 release.

- WT = 0.0 now causes new particles to be discarded immediately via the USER-PHOTON-DISCARD and USER-ELECTRON-DISCARD exits which generate IARG = 3 exits. This saves time and avoids other problems (see section 3.8, page 126).
- $COMIN-RELAX is now defined in egsnrc.macros instead of in subroutine relax.

The following bugs in EGSnrc were fixed in the May, 2002 release.

- If using the SLAC geometry macros, the COMIN’s did not contain the needed declarations of the variables.
- Daniel Frei from Bern pointed out an error which affected a charged particle going directly backwards along the Z axis.
- Format of the region number output by subroutine WATCH was changed so that it would work for region numbers greater than 9,999. The original format caused EGS_Windows to misbehave.
• Alex Bielajew pointed out that egs_batch does not work when using the standard at batch command due to extra white space.

• Permissions on data sets are changed to allow world read access.

• Omar Chibani pointed out that the density scaling didn’t work properly. This has been fixed and the manual also made clearer.

• History by history statistical analysis was implemented in all user codes.

The following bugs in EGSnrc were fixed in the Nov., 2003 release.

• Many improvements to the GUI’s and the entire new EGSnrcMP environment (see Report PIRS-877[11] for an extensive discussion).

• Fixed the ranlux RNG so that restarting a specific history is now possible (useful for debugging purposes).

• Fixed a bug pointed out by Rebecca Nutbrown re normalization of results when a phase-space source was recycled.

• Fixed a bug in FLURZnrc.mortran regarding electron fluence in bins below ECUT.

• Fixed a serious normalization bug in DOSRZnrc for the case where parallel runs were done using a phase-space source. The bug was pointed out by Roberto Capote who also pointed out a similar sort of bug which applied to all the RZ codes when using a phase space source and recycling the source.

• Bug in the preview3d code for use with EGS_Windows for cylindrical geometries was fixed.

• A bug, which was pointed out by Wamied Abdel-Rahman and Frank Verhaegen regarding positron annihilation when using the NIST cross sections for bremsstrahlung production, was fixed.

• A bug related to discards for being below ECUT and PCUT in a vacuum was fixed.

8.11 Known bugs/restrictions

EGSnrc does not include electron impact ionization which might be important when studying spectra generated by low-energy x-ray units[100]. Straggling in the continuous energy loss is not modelled.
References

Index

G_1, 90
T_{med}, 70
.configuration file, 182, 264
cshrc, 261, 270
.egs4inp, 259
.egsgph, 150
.egsnp, 166, 182, 188, 266
.environment file, 150, 184, 267
 example, 155
.login, 261
.pegs4dat, 262, 263, 267
.pegs4inp, 262
$CALL-HOWNEAR, 108, 121, 182
$CHARGED-TRANSPORT, 110
$CHECK-STACK, 124
$COMIN-ELECTR, 182
$DEFAULT-LL, 127
$DEFINE-LOCAL-VARIABLES-ELECT, 179
$DEFINE-LOCAL-VARIABLES-XXXX, 174, 177
$FUDGEMS, 76
$HEN_HOUSE/local, 269
$HOME/egsnrc, 259
$IMPLICIT-NONE, 108, 144, 174
$INITIALIZE RNG USING, 109, 127
$INTEGER, 108, 144
$MACHINE, 266
$MXMED, 104, 108
$MXREG, 108
$MXSTACK, 104, 108, 124
$PARTICLE-SELECTION-, 125
$PLAN2P, 120
$RANDOMSET, 127, 182
$RAYLEIGH-DISCARD, 129
$RAYLEIGH-CORRECTION, 183
$RAYLEIGH-SCATTERING;, 46
$REAL, 108, 144
$RESET-RNG, 128
$RNG-INITIALIZATION, 182
$S, 111
$SELECT-LOW-ENERGY-PAIR-PRODUCTION, 27
$SELECT-PHOTOELECTRON-DIRECTION, 45, 183
$SET-BREMS-ANGLE, 183
$SET-PAIR-ANGLE, 183
$SET-RHOF, 109, 112
$SKIN_DEPTH_FOR_BCA, 92
$STORE-RNG, 128
$USER-RANGE-DISCARD, 129, 180
Molière theory, 74
get_machine, 266
5mev_e_1mm_Ta.egsinp, 166
acronym, 13
adapting user codes, 182
AE, 66, 104, 111
aliases, 261
allowed energy range, 14
ALTERNATE_EGS_BAT, 269
AMOLTM, 66
angular deflections
 inelastic collisions, 53, 54, 56, 75, 79
 single elastic scattering, 76
ANNIH, 174
annihilation, 68, 125
 at rest, 69
 sampling of, 68
 single photon, 69
 three photon, 69
AP, 104, 111
APPEND vs REPLACE, 176
associated documents, 20
atomic relaxations, 37, 46
 simulation of, 48
Auger electrons, 112
Auger transitions, 46
AUSGAB, 37, 50, 122, 129, 156
 example, 122, 139, 145, 148, 160, 165
 initialisation, 116
 response function, 147
 specifications, 121
Ban, 2
batch, 266
 compiling, 266
 queues at NRC, 269
 batch_compile, 269
 batch_run, 269

280
BCA_ALGORITHM, 91, 92, 102, 113–115
clean_after_parallel, 270
bc_algorithm, 163, 180
cohherent scattering, 46
BEAM code, 130
collision integral, 51
Berger, Martin, 69, 71, 192
collision stopping powers, 69, 191, 192
BETA2, 101, 172
combine_egsnrc, 270
Bethe-Heitler, 113
COMIN
Bhabha cross section, 67, 70
COMPTON-DATA, 173
Bhabha scattering, 67, 70, 125
EDGE, 173
sampling of, 67
Bhabha - subroutine, 174
EGS-VARIANCE-REDUCTION, 117,
Bhabha cross section, 67
173
sampling of, 67
ET-Control, 173, 183
Bielajew, Alex, 2, 13, 15, 20, 28, 30, 45, 61,
boundary crossing algorithm, 91, 113, 114
64, 66, 67, 113, 120, 259
fluence singularity, 91
boundary crossing algorithm, 91, 113, 114
single scattering, 91
BREMPR, 106, 172
BREMS, 174
COMINs, 106
bremsstrahlung, 56
COMON
angle, 106
BOUNDS, 100
angular distribution, 61
BREMPR, 106,
angular sampling, 113
COMPTON-DATA, 106
Bethe-Heitler, 56
EDGE, 106
Coulomb correction, 56
EGS-VARIANCE-REDUCTION, 100
cross section, 56, 58
ELECIN, 93
differential photon cross section, 113
EPCONT, 101
NIST, 56
ET-Control, 102
NIST data base, 113
ET-Control, 92
production, 106, 125
ET_Control, 102
simulation of, 58
ET_Control, 92
splitting, 65, 100, 125, 129
bugs, 271
bugs, 271
capabilities of EGSnc, 14
Catastrophic collisions, 51, 53, 56
changes from EGS4, 17, 171, 190
changing transport options, 162, 166
charged particle transport, 110
Class I scheme, 50
Compton effect, 106
Class II scheme, 50, 52, 56
Compton profiles, 32
multiple scattering, 77
validity of, 70

Last edited 2003-11-11 17:19:52-05
Compton scattering, 30, 125
 simulation of, 36
COMPTON-DATA, 106
condensed history technique, 50, 56
configuration file, 264
corrected bugs, 271
cosine, 109
COSPHI, 105
Coster-Kronig electrons, 106, 112, 123
Coster-Kronig transitions, 46
COSTHE, 105
cross section, 51
 annihilation, 52, 68
 Bhabha, 67
 bremsstrahlung, 52, 56
 coherent, 46
 differential, 56
 elastic, 52, 74
 incoherent, 30
 inelastic collisions, 52
 Møller, 65
 pair production, 25
 photo-electric absorption, 41
 total, 56
CSDA, 55
Cshrc_additions_for_egsnrc, 261, 262, 270
ddebug, 267
defaults, 99
densities for PEGS4, 262
density changes, 109, 112
density effect, 70, 71, 226
discrete interactions, 51, 56
 annihilation, 68
 Bhabha scattering, 67
 bremsstrahlung, 58
 distances between, 56, 92
 inelastic collisions, 65
 Møller scattering, 65
distance unit, 112
distribution, 270
DNEAR, 104, 118
Doppler broadening, 31
Doppler effects, 106
DOSRZnrc, 170
double precision, 116, 178
DUNIT, 103, 112
E, 104
e_max_rr, 94, 100, 129
E_RANGE, 101, 128
ECUT, 100, 111, 122
EDEP, 48, 101, 116
EDGE, 106, 173
EDGSET, 175
EGS-VARIANCE-REDUCTION, 30, 100, 117, 129
EGS4, 17, 27, 28, 102, 105, 106, 108, 112–115, 121, 124, 126, 128, 130, 162, 171, 190
 changes from, 17
 changes in subroutines, 174
 mimic, 92
EGS4/PRESTA, 115
EGS_Windows, 131, 150
egsnr, 259
EGSnc
 features, 14
 geometry, 15
 physics processes, 14
 summary capabilities, 14
 system changes, 18
 users area, 261
EKE, 101
elastic scattering, 56, 74
 moments, 82
 spin effects, 76
ELECIN, 172
ELECTR, 174
electric field transport, 15
electric fields, 110
electron impact ionization, 65
electron range, 93
electron step size, 114
electron transport, 50
 general discussion, 50, 51
electron-step algorithm, 56, 88
ELKE, 101
emf_macros.mortran, 15
emulating
 EGS4, 92
 EGS4/PRESTA, 92
emulating EGS4, 115
emulating EGS4/PRESTA, 115
energy loss, 92
energy loss straggling, 55
energy range, 14, 47
ENEW, 101
environment file, 150, 267
environment variables, 261
EOLD, 101
EPCONT, 101, 172
EPSTFL, 71, 192
ESCD2, 173
ESTEPE, 90, 102, 114, 183
ESTEPR, 102, 114, 173
ET-Control, 102, 173
ET_Control, 92
ex, 262
exact BCA, 113
EXAMIN, 131, 192, 263
examin, 262
example
 input file-tutor6, 166
example lst_install files, 271
example_usercode.environment
 listing, 268
examples
 .environment file, 150
 use of input file, 166
 user codes, 133
execution, 266
 subdirectory during, 267
execution in batch, 267
explicit data typing, 174, 177, 178
f, 262
features of EGSnrc, 14
fluorescence, 106
fluorescent photons, 112
fluorescent X-rays, 40, 46
FLURZnrc, 170
Fortran, 263
general description of code system, 97
geometry, 116
GET_INPUTS, 170
get_machine, 261
get_transport_parameter, 184
GLE, 101
Goudsmit-Saunderson theory, 82
HATCH, 174
HATCH call, 115
HEN_HOUSE, 260, 270
Hirayama, Hideo, 2, 194
history, 13
HOW_to_get_xmgr, 131
HOWFAR, 116, 118
 example, 119, 120, 139
 initialisation, 116
 specifications, 118
HOWNEAR, 108, 116, 121, 179
 example, 141
 initialisation, 116
 specifications, 121
i_do_rr, 94, 100, 129
i_play_RR, 30, 100, 130
i_survived_RR, 100, 125, 130
IAPRIM, 58, 59, 193
IARG, 122, 123, 156
 25, 26, 27, 50
 4, 37, 48
IAUSFL, 101, 122, 123, 156, 172
IBCMP, 35, 37, 39, 106, 112
IBLOBE, 173
ibr_nist, 56, 58, 59, 61, 106, 113, 163, 172, 193
IBRDST, 64, 105, 106, 113, 115, 172
ICRU, 173
ICRU Report 37, 113, 192, 193
IDISC, 101, 118, 126
IEDGFL, 41, 44, 106, 112
implicit data typing, 177
IMPLICIT-NONE, 108
incident particles, 117
incoherent scattering, 30
 binding effects, 31
 Compton profiles, 32
 Doppler broadening, 31
 Russian Roulette, 39
 simulation of, 36
incoherent scattering function, 33
incompatibilities
 EGS4-EGSnrc, 171
inelastic collisions, 65
init_compton, 35
INSTALL_EGS, 260, 270
installation, 260, 270
INDEX:

INTEGER, 108
intent of report, 13
interactive execution, 267
interrogating EGSnrc, 122
ion chamber calculations, 13
IPHTER, 45, 106, 113, 173
IPRDST, 28–30, 105, 106, 113, 115, 172
IQ, 104
IR, 104
IRAYLM, 103
IRAYLR, 46, 103, 112
IRNEW, 101, 118
IROLD, 101
iseed, 109
ISSB, 71, 218
IUNRST, 191
IWATCH, 131, 150, 152–154
IXX, 103
JXX, 103
Klein-Nishina, 31, 112
KMPI, 103
KMPO, 103
Known bugs, 272
Koch and Motz, 106
LATCH, 104, 156, 173
example, 160
LATCHI, 104, 173
lateral correlation algorithm, 88
limitations
energy, 47
M shell, 48
Linux compiler, 266
Local .cshrc additions for egsrc, 269
low energy limit
electron, 14
photon, 14, 47
luxury level, 109, 126
timing, 127
m, 263
machine.mortran, 266
macro
$RANDOMSET, 127
$RANGE-DISCARD, 129
macroscopic cross section, 52
magnetic field transport, 15
magnetic fields, 110
mean ionization energy, 70
MED, 103, 111
MEDIA, 103, 111
MEDIUM, 105
MEDOLD, 105
mf, 262, 263
mfb, 262
MISC, 103
MOLLER, 174
Moller scattering, 125
mor, 262
Mortran3, 97, 239, 263
blocks, 243
C preprocessor statements, 239
C-style comments, 239
coding rules, 242
column one restricted directives, 256
conditional statements, 244
control cards, 255
free form directives, 257
I/O abbreviations, 252
introoduction, 241
iteration, 246
macros, 252
multiple assignment, 251
operators, 252
parameters in macros, 254
relational operators, 144, 252
statements, 243
string replacement, 252
structure, 243
UNTIL, 246
user defined macros, 252
WHILE, 246
Mott correction, 77–79
MSCAT, 174
multi-architecture system, 261
multiple elastic scattering, 56, 74, 79, 82
based on screened Rutherford, 82
energy loss, 85
sampling of, 85
small-angle approximation, 82
spin effects, 86
multiple scattering, 113
MULTS, 172

Index
EGSnrc Code System

my_machine, 261
Møller cross section, 65, 70
Møller scattering, 65
 sampling of, 66
n_RR_warning, 100
Namito, 2
nbr_split, 65, 69, 100, 129, 130
Nelson, Ralph, 2, 13, 24, 120, 194, 239
new subroutines in EGSnrc, 175
NMED, 103
NOSCAT, 103
NP, 104
NPold, 104, 173
NQS, 269
NRC EGSnrc user’s area, 261
NRC User Codes, 170
nrcc4mac.mortran, 173
on-line manuals, 271
overview of code system, 97
PAIR, 174
pair angular sampling, 113
pair production, 25, 106, 125
 angular distribution, 28
 Russian Roulette, 30
 simulation of, 27
parallel processing, 18, 126, 269
path-length, 54, 56
path-length correction, 88
PATHCM, 172
PCUT, 100, 111, 122
PEGS4, 262
 $FUDGEMS, 76
 AMOLTM, 66
 BHABTM, 67
 bug, 193
 CALL option, 234
 COMPT option, 216
 DECK option, 232
 ELEM option, 216
 ENER option, 228
 EPSTFL, 71, 192
 flow chart, 197, 198
 functions, 202–205, 208–215
 HPLT option, 235, 236
 IAPRIM, 193
 inputs, 216, 218–226
 examples, 227, 228
 introduction, 195
 macros, 201
 MIXT option, 216
 options, 216, 217
 PLT1 option, 234
 PLTN option, 234
 PWLF option, 229–231
 structure, 196
 subprograms, 199
 subroutines, 200, 206, 207
 TEST option, 233
 where data is kept, 263
pegs4.mortran, 71
PHOTO, 175
photo-electric absorption, 40
 detailed simulation of, 41
 direction of electron, 45
 simplified simulation of, 44
photoelectric interactions, 106, 125
 angular distribution, 106, 113
PHOTON, 175
physics processes in EGSnrc, 14
PI, 105
PLAN2P, 120
positron annihilation, 68, 118
pprocess, 269
preface, 2
PRESTA, 88, 89, 91–93, 162, 185
PRESTA-I, 114, 179
PRESTA-I BCA, 113
PRESTA-I transport, 114
PRESTA-II transport, 114
PRM, 105
PRMT2, 105
prob_RR, 30, 100, 130
purpose of report, 13
PWA, 74, 76
PZERO, 105
radiative splitting, 65, 69
radiative stopping powers, 56, 191, 193
RANDOM, 103, 127, 128, 182
random number generators, 126, 128
 initialisation, 109, 182
 portability, 131
seeds, 103
timing, 127
range, 93, 94
range rejection, 94, 100, 128, 129, 180
range_ep, 93
RANLUX, 103, 109, 126, 128, 172, 264
ranlux, 18
ranlux_test.mortran, 131
RANMAR, 103, 109, 126, 128, 172, 264
ranmar, 18
ranmar_test.mortran, 131
Rayleigh scattering, 46, 125
turning on, 112
README.general, 270
REAL, 108
relational operators, 144
relativistic spin effects, 113
relaxation, 172
relaxation events, 112
relaxation transitions, 48
relaxations, 37, 46
simulation of, 48
REPLACE vs APPEND, 176
response function, 147
restricted stopping power, 54, 56
restricted stopping powers, 69, 191
restrictions, 272
RHO, 103, 112
RHOF, 101, 109, 112
RHOR, 103, 109, 112
RLC, 103
RLDU, 103
RM, 105
RMSQ, 104
RMT2, 104
Russian Roulette, 30, 39, 100, 125, 130, 179
Rutherford scattering, 113
Sauter distribution, 45
schematic of code system, 98
screened Rutherford cross section, 74, 82, 83, 85, 86
screening parameter, 74, 79
Seltzer, Stephen, 69, 71, 77, 192
sequence of operations, 107
shell to use, 261
SHOWER, 52, 175
SHOWER call, 117
sine, 109
sine evaluation, 175
single elastic scattering, 76
single scattering, 91, 113
single scattering mode, 92
SINPHI, 105
SINTHE, 105
SKINDEPTH_FOR_BCA, 91, 92, 102, 114, 115
SLAC, 3
SLAC-265, 24, 37, 61, 66, 71
SMAX, 173
SMAXIR, 102, 114, 173
spin effects, 74, 76, 113
measurements, 87
SPIN_EFFECTS, 74, 76, 81, 86, 102, 113
STACK, 104
order, 124
STACK overflow, 124
standard configuration listing, 265
Step 1: Override macros, 107
Step 2: pre-hatch, 110
Step 3: HATCH call, 115
Step 4: HOWFAR initialisation, 116
Step 5: AUSGAB initialisation, 116
Step 6: incident particles, 117
Step 7: Shower call, 117
Step 8: output results, 117
step-size restrictions, 88
steps, 107
order, 107
stopping powers, 69, 70
subdirectory during execution, 267
SUBROUTINE GET_INPUTS, 170
SUBROUTINE HOWNEAR, 108
SUBROUTINE WATCH, 131, 150, 152–154
table lookup sines, 109
TE, 66, 104
terminating particle history, 126
test distribution, 132
RANLUX, 131
RANMAR, 131
test_distribution, 132, 271
test_distribution_outputs, 132
THETA, 105
THMOLL, 104
THRESH, 104, 173
timing vs EGS4, 189, 190
transport_algorithm, 88
transport_equation, 51
solution by MC simulation, 55
transport_options, 162, 166
TRANSPORT_ALGORITHM, 102, 114, 115
triplet_production, 25
Tsai’s radiation logarithms, 26
TSCAT, 172
TSTEP, 101
TUSTEP, 101
tutor1.mortran, 133
tutor2.mortran, 144
tutor3.mortran, 147
tutor4.mortran, 150
tutor5.mortran, 156
AUSGAB, 160
listing, 157
tutor6.mortran, 162, 166
tutor7.mortran, 170
tutor_data_pegs4dat, 133
tutorial_programs, 133
TWOP, 105
U,V,W, 104
UE, 104
uncertainties, 165
unrestricted_stopping_powers, 191
UP, 104
upgrading_from_EGS4, 171, 190
UPHI, 175
UPHITOT, 105
USEFUL, 105, 173
USER, 105, 183
User_codes, 19
user_codes
EXAMIN, 131
user’s_area, 261
USER-ELECTRON-DISCARD, 129
USER-MISC, 183
USER-STEP-CONTROLS, 183
USER-VARIANCE-REDUCTION, 183
USTEP, 101, 118
VACDST, 100
variance_reduction, 104, 128
brem_splitting, 65, 129
initialisation, 116
radiative_splitting, 69
range_rejection, 94, 128
Russian_Roulette, 30, 39, 130
Vavilov_processes, 55
VMC, 176
VSTEP, 101
WATCH, 131, 150
eXample, 153, 154
output, 153, 154
WATCH_routine, 152
weight, 126
WT, 104
WT=0.0, 126
X,Y,Z, 104
XCC, 76
XIMAX, 102, 114
ximax, 90
xmgr, 131, 263, 269
XSIF, 26